Cystic fibrosis: an inherited disease affecting mucin-producing organs

Int J Biochem Cell Biol. 2014 Jul:52:136-45. doi: 10.1016/j.biocel.2014.03.011. Epub 2014 Mar 28.

Abstract

Our current understanding of cystic fibrosis (CF) has revealed that the biophysical properties of mucus play a considerable role in the pathogenesis of the disease in view of the fact that most mucus-producing organs are affected in CF patients. In this review, we discuss the potential causal relationship between altered cystic fibrosis transmembrane conductance regulator (CFTR) function and the production of mucus with abnormal biophysical properties in the intestine and lungs, highlighting what has been learned from cell cultures and animal models that mimic CF pathogenesis. A similar cascade of events, including mucus obstruction, infection and inflammation, is common to all epithelia affected by impaired surface hydration. Hence, the main structural components of mucus, namely the polymeric, gel-forming mucins, are critical to the onset of the disease. Defective CFTR leads to epithelial surface dehydration, altered pH/electrolyte composition and mucin concentration. Further, it can influence mucin transition from the intracellular to extracellular environment, potentially resulting in aberrant mucus gel formation. While defective HCO3(-) production has long been identified as a feature of CF, it has only recently been considered as a key player in the transition phase of mucins. We conclude by examining the influence of mucins on the biophysical properties of CF sputum and discuss existing and novel therapies aimed at removing mucus from the lungs. This article is part of a Directed Issue entitled: Cystic Fibrosis: From o-mics to cell biology, physiology, and therapeutic advances.

Keywords: CF; CFTR; Mucin; Mucus; Pathogenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cystic Fibrosis / metabolism*
  • Cystic Fibrosis / pathology*
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism*
  • Humans
  • Mucins / biosynthesis*
  • Mucins / genetics

Substances

  • Mucins
  • Cystic Fibrosis Transmembrane Conductance Regulator