Dependence of α-helical and β-sheet amino acid propensities on the overall protein fold type

BMC Struct Biol. 2012 Aug 2:12:18. doi: 10.1186/1472-6807-12-18.

Abstract

Background: A large number of studies have been carried out to obtain amino acid propensities for α-helices and β-sheets. The obtained propensities for α-helices are consistent with each other, and the pair-wise correlation coefficient is frequently high. On the other hand, the β-sheet propensities obtained by several studies differed significantly, indicating that the context significantly affects β-sheet propensity.

Results: We calculated amino acid propensities for α-helices and β-sheets for 39 and 24 protein folds, respectively, and addressed whether they correlate with the fold. The propensities were also calculated for exposed and buried sites, respectively. Results showed that α-helix propensities do not differ significantly by fold, but β-sheet propensities are diverse and depend on the fold. The propensities calculated for exposed sites and buried sites are similar for α-helix, but such is not the case for the β-sheet propensities. We also found some fold dependence on amino acid frequency in β-strands. Folds with a high Ser, Thr and Asn content at exposed sites in β-strands tend to have a low Leu, Ile, Glu, Lys and Arg content (correlation coefficient = -0.90) and to have flat β-sheets. At buried sites in β-strands, the content of Tyr, Trp, Gln and Ser correlates negatively with the content of Val, Ile and Leu (correlation coefficient = -0.93). "All-β" proteins tend to have a higher content of Tyr, Trp, Gln and Ser, whereas "α/β" proteins tend to have a higher content of Val, Ile and Leu.

Conclusions: The α-helix propensities are similar for all folds and for exposed and buried residues. However, β-sheet propensities calculated for exposed residues differ from those for buried residues, indicating that the exposed-residue fraction is one of the major factors governing amino acid composition in β-strands. Furthermore, the correlations we detected suggest that amino acid composition is related to folding properties such as the twist of a β-strand or association between two β sheets.

MeSH terms

  • Amino Acid Sequence
  • Amino Acids / chemistry*
  • Databases, Protein
  • Molecular Sequence Data
  • Protein Structure, Secondary*
  • Proteins / chemistry*
  • Solvents / chemistry

Substances

  • Amino Acids
  • Proteins
  • Solvents