A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects

Am J Physiol Lung Cell Mol Physiol. 2012 May 15;302(10):L977-91. doi: 10.1152/ajplung.00362.2011. Epub 2012 Feb 3.

Abstract

Many chronic pulmonary diseases are associated with pulmonary hypertension (PH) and pulmonary vascular remodeling, which is a term that continues to be used to describe a wide spectrum of vascular abnormalities. Pulmonary vascular structural changes frequently increase pulmonary vascular resistance, causing PH and right heart failure. Although rat models had been standard models of PH research, in more recent years the availability of genetically engineered mice has made this species attractive for many investigators. Here we review a large amount of data derived from experimental PH reports published since 1996. These studies using wild-type and genetically designed mice illustrate the challenges and opportunities provided by these models. Hemodynamic measurements are difficult to obtain in mice, and right heart failure has not been investigated in mice. Anatomical, cellular, and genetic differences distinguish mice and rats, and pharmacogenomics may explain the degree of PH and the particular mode of pulmonary vascular adaptation and also the response of the right ventricle.

Publication types

  • Review

MeSH terms

  • Animals
  • Blood Pressure
  • Disease Models, Animal*
  • Familial Primary Pulmonary Hypertension
  • Heart Ventricles / pathology
  • Heart Ventricles / physiopathology*
  • Hypertension, Pulmonary / pathology
  • Hypertension, Pulmonary / physiopathology*
  • Hypertrophy, Right Ventricular / pathology
  • Hypertrophy, Right Ventricular / physiopathology*
  • Mice
  • Mice, Transgenic
  • Pulmonary Artery / pathology
  • Pulmonary Artery / physiopathology*
  • Rats
  • Vascular Resistance
  • Ventricular Function, Right
  • Ventricular Remodeling