Surviving chromosome replication: the many roles of the S-phase checkpoint pathway

Philos Trans R Soc Lond B Biol Sci. 2011 Dec 27;366(1584):3554-61. doi: 10.1098/rstb.2011.0071.

Abstract

Checkpoints were originally identified as signalling pathways that delay mitosis in response to DNA damage or defects in chromosome replication, allowing time for DNA repair to occur. The ATR (ataxia- and rad-related) and ATM (ataxia-mutated) protein kinases are recruited to defective replication forks or to sites of DNA damage, and are thought to initiate the DNA damage response in all eukaryotes. In addition to delaying cell cycle progression, however, the S-phase checkpoint pathway also controls chromosome replication and DNA repair pathways in a highly complex fashion, in order to preserve genome integrity. Much of our understanding of this regulation has come from studies of yeasts, in which the best-characterized targets are the stimulation of ribonucleotide reductase activity by multiple mechanisms, and the inhibition of new initiation events at later origins of DNA replication. In addition, however, the S-phase checkpoint also plays a more enigmatic and apparently critical role in preserving the functional integrity of defective replication forks, by mechanisms that are still understood poorly. This review considers some of the key experiments that have led to our current understanding of this highly complex pathway.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism
  • Chromosomes, Fungal / genetics
  • Chromosomes, Fungal / metabolism
  • DNA Damage
  • DNA Repair
  • DNA Replication*
  • DNA, Fungal / genetics*
  • DNA, Fungal / metabolism
  • Eukaryota / genetics
  • Eukaryota / metabolism
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism
  • Replication Origin
  • Ribonucleotide Reductases / genetics
  • Ribonucleotide Reductases / metabolism
  • S Phase Cell Cycle Checkpoints*
  • Yeasts / genetics*
  • Yeasts / metabolism

Substances

  • Cell Cycle Proteins
  • DNA, Fungal
  • Fungal Proteins
  • Ribonucleotide Reductases
  • Protein Serine-Threonine Kinases