Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair

Trends Biochem Sci. 2011 May;36(5):262-71. doi: 10.1016/j.tibs.2011.01.006. Epub 2011 Feb 25.

Abstract

The termini of DNA strand breaks induced by internal and external factors often require processing before missing nucleotides can be replaced by DNA polymerases and the strands rejoined by DNA ligases. Polynucleotide kinase/phosphatase (PNKP) serves a crucial role in the repair of DNA strand breaks by catalyzing the restoration of 5'-phosphate and 3'-hydroxyl termini. It participates in several DNA repair pathways through interactions with other DNA repair proteins, notably XRCC1 and XRCC4. Recent studies have highlighted the physiological importance of PNKP in maintaining the genomic stability of normal tissues, particularly developing neural cells, as well as enhancing the resistance of cancer cells to genotoxic therapeutic agents.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amino Acid Sequence
  • Animals
  • DNA Breaks*
  • DNA Repair Enzymes / genetics
  • DNA Repair Enzymes / metabolism*
  • DNA Repair*
  • DNA-Binding Proteins / metabolism
  • Humans
  • Phosphotransferases (Alcohol Group Acceptor) / genetics
  • Phosphotransferases (Alcohol Group Acceptor) / metabolism*
  • Protein Binding
  • Sequence Homology, Amino Acid
  • X-ray Repair Cross Complementing Protein 1

Substances

  • DNA-Binding Proteins
  • X-ray Repair Cross Complementing Protein 1
  • XRCC1 protein, human
  • XRCC4 protein, human
  • PNKP protein, human
  • Phosphotransferases (Alcohol Group Acceptor)
  • DNA Repair Enzymes