An intact centrosome is required for the maintenance of polarization during directional cell migration

PLoS One. 2010 Dec 23;5(12):e15462. doi: 10.1371/journal.pone.0015462.

Abstract

Background: Establishing and maintaining polarization is critical during cell migration. It is known that the centrosome contains numerous proteins whose roles of organizing the microtubule network range include nucleation, stabilization and severing. It is not known whether the centrosome is necessary to maintain polarization. Due to its role as the microtubule organizing center, we hypothesize that the centrosome is necessary to maintain polarization in a migrating cell. Although there have been implications of its role in cell migration, there is no direct study of the centrosome's role in maintaining polarization. In this study we ablate the centrosome by intracellular laser irradiation to understand the role of the centrosome in two vastly different cell types, human osteosarcoma (U2OS) and rat kangaroo kidney epithelial cells (PtK). The PtK cell line has been extensively used as a model for cytoskeletal dynamics during cell migration. The U2OS cell line serves as a model for a complex, single migrating cell.

Methodology/principal findings: In this study we use femtosecond near-infrared laser irradiation to remove the centrosome in migrating U2OS and PtK2 cells. Immunofluorescence staining for centrosomal markers verified successful irradiation with 94% success. A loss of cell polarization is observed between 30 and 90 minutes following removal of the centrosome. Changes in cell shape are correlated with modifications in microtubule and actin organization. Changes in cell morphology and microtubule organization were quantified revealing significant depolarization resulting from centrosome irradiation.

Conclusions/significance: This study demonstrates that the centrosome is necessary for the maintenance of polarization during directed cell migration in two widely different cell types. Removal of the centrosome from a polarized cell results in the reorganization of the microtubule network into a symmetric non-polarized phenotype. These results demonstrate that the centrosome plays a critical role in the maintenance of cytoskeletal asymmetry during cell migration.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Movement
  • Centrosome / ultrastructure*
  • Cytoplasm / metabolism
  • Green Fluorescent Proteins / metabolism
  • Humans
  • Lasers
  • Microscopy, Fluorescence / methods
  • Microtubules / metabolism
  • Osteosarcoma / metabolism
  • Potoroidae

Substances

  • Green Fluorescent Proteins