A dsbA mutant of Pseudomonas syringae exhibits reduced virulence and partial impairment of type III secretion

Mol Plant Pathol. 2000 Mar 1;1(2):139-50. doi: 10.1046/j.1364-3703.2000.00016.x.

Abstract

Abstract To identify virulence genes of P. syringae pv. tomato strain DC3000 we screened for mutants with reduced virulence on its plant hosts, Arabidopsis thaliana and tomato. We isolated a Tn5-insertion mutant that exhibited reduced virulence on both hosts. Further characterization showed that this mutant carried a single Tn5 insertion in the dsbA gene, which encodes a periplasmic disulphide bond-forming protein. In addition to reduced virulence, the dsbA mutant exhibits mucoid colony morphology, loss of fluorescence, decreased motility, and a reduced growth rate in culture. The dsbA mutant is able to multiply in A. thaliana and tomato plants, trigger the hypersensitive response on tobacco and elicit Pto-mediated resistance in tomato, indicating that type III secretion occurs in this background. However, type III secretion appears to function with reduced efficiency in the dsbA mutant, as type III-dependent secretion of HrpZ and AvrRpt2 is impaired. These findings indicate that while the dsbA gene is required for multiple cellular functions in P. syringae, type III secretion in P. syringae is only partially dependent on dsbA.