Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins

Dev Cell. 2005 Dec;9(6):791-804. doi: 10.1016/j.devcel.2005.11.005.

Abstract

Cell membranes undergo continuous curvature changes as a result of membrane trafficking and cell motility. Deformations are achieved both by forces extrinsic to the membrane as well as by structural modifications in the bilayer or at the bilayer surface that favor the acquisition of curvature. We report here that a family of proteins previously implicated in the regulation of the actin cytoskeleton also have powerful lipid bilayer-deforming properties via an N-terminal module (F-BAR) similar to the BAR domain. Several such proteins, like a subset of BAR domain proteins, bind to dynamin, a GTPase implicated in endocytosis and actin dynamics, via SH3 domains. The ability of BAR and F-BAR domain proteins to induce tubular invaginations of the plasma membrane is enhanced by disruption of the actin cytoskeleton and is antagonized by dynamin. These results suggest a close interplay between the mechanisms that control actin dynamics and those that mediate plasma membrane invagination and fission.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins / metabolism*
  • Adaptor Proteins, Signal Transducing / antagonists & inhibitors
  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism
  • Amino Acid Sequence
  • Animals
  • COS Cells
  • Carrier Proteins / antagonists & inhibitors
  • Carrier Proteins / genetics
  • Carrier Proteins / metabolism*
  • Cell Membrane / metabolism*
  • Chlorocebus aethiops
  • Computational Biology
  • Cytoskeleton / metabolism*
  • Dynamins / metabolism*
  • Fatty Acid-Binding Proteins
  • HeLa Cells
  • Humans
  • Immunoglobulin G / immunology
  • Lipid Bilayers
  • Liposomes / metabolism
  • Molecular Sequence Data
  • Protein Structure, Tertiary
  • RNA, Small Interfering / pharmacology
  • Rabbits
  • Rats
  • Sequence Homology, Amino Acid
  • Transferrin / metabolism
  • src Homology Domains

Substances

  • Actins
  • Adaptor Proteins, Signal Transducing
  • Carrier Proteins
  • FNBP1 protein, human
  • FNBP1L protein, human
  • Fatty Acid-Binding Proteins
  • Immunoglobulin G
  • Lipid Bilayers
  • Liposomes
  • RNA, Small Interfering
  • SH3GL2 protein, human
  • Transferrin
  • Dynamins