Skip to main content
Log in

Development of an Albumin Copper Binding (ACuB) Assay to Detect Ischemia Modified Albumin

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Myocardial ischemia (MI) induces many changes in the body, including pH decrease and electrolyte imbalance. No obvious symptoms of MI appear until irreversible cellular injuries occur. Since early treatment is critical for recovery from ischemia, the development of reliable diagnostic tool is demanded to detect the early ischemic status. Ischemia modified albumin (IMA), formed by cleavage of the last two amino acids of the human serum albumin (HSA) N-terminus, has been considered so far as the most trustworthy and accurate marker for the investigation of ischemia. IMA levels are elevated in plasma within a few minutes of ischemic onset, and may last for up to 6 h. In the present study, we developed a novel assay for the examination of IMA levels to ameliorate the known albumin cobalt binding (ACB) test established previously. We observed a stronger copper ion bound to the HSA N-terminal peptide than cobalt ion by HPLC and ESI-TOF mass spectrometric analyses. The copper ion was employed with lucifer yellow (LY), a copper-specific reagent to develop a new albumin copper binding (ACuB) assay. The parameters capable of affecting the assay results were optimized, and the finally-optimized ACuB assay was validated. The result of the IMA level measurement in normal versus stroke rat serum suggests that the ACuB assay is likely to be a reliable and sensitive method for the detection of ischemic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. M. Buja, Cardiovasc. Pathol., 2005, 14, 170.

    Article  CAS  PubMed  Google Scholar 

  2. J. L. Farber, K. R. Chien, and S. Mittnacht Jr., Am. J. Pathol., 1981, 102, 271.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. P. F. Cohn, K. M. Fox, and C. Daly, Circulation, 2003, 108, 1263.

    Article  PubMed  Google Scholar 

  4. T. H. Lee and L. Goldman, N. Engl. J. Med., 2000, 342, 1187.

    Article  CAS  PubMed  Google Scholar 

  5. K. T. Moe and P. Wong, Ann. Acad. Med. Singapore, 2010, 39, 210.

    Article  PubMed  Google Scholar 

  6. D. W. Kehl, N. Iqbal, A. Fard, B. A. Kipper, A. de la Parra Landa, and A. S. Maisel, Transl. Res., 2012, 159, 252.

    Article  CAS  PubMed  Google Scholar 

  7. V. Bodi, J. Sanchis, J. M. Morales, V. G. Marrachelli, J. Nunez, M. J. Forteza, F. Chaustre, C. Gomez, L. Mainar, G. Minana, E. Ruiz, O. Husser, I. Noguera, A. Diaz, D. Moratal, A. Carratala, X. Bosch, A. Llacer, F. J. Chorro, J. R. Viña, and D. Monleon, J. Am. Coll. Cardiol., 2012, 59, 1629.

    Article  PubMed  Google Scholar 

  8. R. Fahrner, D. Beyoğlu, G. Beldi, and J. R. Idle, J. Surg. Res., 2012, 178, 879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. F. S. Apple, Adv. Clin. Chem., 2005, 39, 1.

    Article  PubMed  Google Scholar 

  10. A. Gunduz, S. Turedi, A. Mentese, V. Altunayoglu, I. Turan, S. C. Karahan, M. Topbas, M. Aydin, I. Eraydin, and B. Akcan, Am. J. Emerg. Med., 2008, 26, 874.

    Article  PubMed  Google Scholar 

  11. S. Sugio, A. Kashima, S. Mochizuki, M. Noda, and K. Kobayashi, Protein Eng., 1999, 12, 439.

    Article  CAS  PubMed  Google Scholar 

  12. G. Fanali, A. di Masi, V. Trezza, M. Marino, M. Fasano, and P. Ascenzi, Mol. Aspects Med., 2012, 33, 209.

    Article  CAS  PubMed  Google Scholar 

  13. D. Bar-Or, G. Curtis, N. Rao, N. Bampos, and E. Lau, Eur. J. Biochem., 2001, 268, 42.

    Article  CAS  PubMed  Google Scholar 

  14. M. K. Sinha, J. M. Vazquez, R. Calvino, D. C. Gaze, P. O. Collinson, and J. C. Kaski, Heart, 2006, 92, 1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D. C. Gaze, Drug Metab. Pharmacokinet., 2009, 24, 333.

    Article  CAS  PubMed  Google Scholar 

  16. H. Abboud, J. Labreuche, E. Meseguer, P. C. Lavallee, O. Simon, J. M. Olivot, M. Mazighi, M. Dehoux, J. Benessiano, P. G. Steg, and P. Amarenco, Cerebrovasc. Dis., 2007, 23, 216.

    Article  CAS  PubMed  Google Scholar 

  17. E. Sbarouni, P. Georgidaou, and V. Voudris, Clin. Chem. Lab. Med., 2011, 49, 177.

    Article  CAS  PubMed  Google Scholar 

  18. R. Beethan, C. Monk, L. Keating, J. R. Benger, and J. Kendall, Ann. Clin. Biochem., 2006, 43, 500.

    Article  Google Scholar 

  19. J. W. Brinkman, D. de Zeeuw, H. J. Lambers Heerspink, R. T. Gansevoort, I. P. Kema, P. E. de Jong, and S. J. Bakker, Clin. Chem., 2003, 53, 1520.

    Article  Google Scholar 

  20. D. Bar-Or, E. Lau, and J. V. Winkler, J. Emerg. Med., 2000, 19, 311.

    Article  CAS  PubMed  Google Scholar 

  21. D. Bar-Or, L. T. Rael, R. Bar-Or, D. S. Slone, C. W. Mains, N. K. Rao, and C. G. Curtis, Clin. Chim. Acta, 2008, 387, 120.

    Article  CAS  PubMed  Google Scholar 

  22. S. Anwaruddin, J. L. Januzzi Jr, A. L. Baggish, E. L. Lewandrowski, and K. B. Lewandrowski, Am. J. Clin. Pathol., 2005, 123, 140.

    Article  CAS  PubMed  Google Scholar 

  23. E. Mothes and P. Faller, Biochemistry, 2007, 46, 2267.

    Article  CAS  PubMed  Google Scholar 

  24. T. Mayr, D. Wencel, and T. Werner, Fresenius’ J. Anal. Chem., 2001, 371, 44.

    Article  CAS  PubMed  Google Scholar 

  25. J. Chen, Y. Li, L. Wang, Z. Zhang, D. Lu, M. Lu, and M. Chopp, Stroke, 2000, 32, 1005.

    Article  Google Scholar 

  26. I. Siddiqui, J. Q. Farooqi, D. A. Shariff, A. H. Khan, and F. Ghani, Int. J. Pathol., 2006, 4, 101.

    Google Scholar 

  27. C. Bo and Z. Ping, Anal. Bioanal. Chem., 2005, 381, 986.

    Article  CAS  PubMed  Google Scholar 

  28. P. L. Wirth and M. C. Linder, J. Natl. Cancer Inst., 1985, 75, 277.

    CAS  PubMed  Google Scholar 

  29. N. Takahashi, T. L. Ortel, and F. W. Putnam, Proc. Natl. Acad. Sci. U. S. A., 1984, 81, 390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. N. E. Hellman and J. D. Gitlin, Annu. Rev. Nutr., 2002, 22, 439

  31. V. Lopez-Avila, W. H. Robinson, and K. Lokits, Health, 2009, 1, 104.

    Article  Google Scholar 

  32. E. Sedlák, G. Zoldák, and P. Wittung-Stafshede, Biophys. J., 2008, 94, 1384.

    Article  PubMed  Google Scholar 

  33. T. Peters Jr., J. Biol. Chem., 1962, 237, 2182.

    Article  CAS  PubMed  Google Scholar 

  34. E. Giroux and J. Schoun, J. Inorg. Biochem., 1981, 14, 359.

    Article  CAS  PubMed  Google Scholar 

  35. A. Mentese, S. Turedi, S. Turkmen, A. Gunduz, A. Uzun, and O. Kutlu, Fertil. Steril., 2011, 95, e82.

  36. A. Gunduz, S. Turkmen, S. Turedi, A. Mentese, E. Yulug, H. Ulusoy, S. C. Karahan, and M. Topbas, Acad. Emerg. Med., 2009, 16, 539.

    Article  PubMed  Google Scholar 

  37. M. Uygun, S. Yilmaz, M. Pekdemir, C. Duman, and Y. S. Gürbüz, Acad. Emerg. Med., 2011, 18, 355.

    Article  PubMed  Google Scholar 

  38. T. Peters Jr., Clin. Chem., 1975, 23, 5.

    Article  Google Scholar 

  39. R. A. Bradshaw and T. Peters Jr., J. Biol. Chem., 1969, 244, 5582.

    Article  CAS  PubMed  Google Scholar 

  40. J. Masuoka, J. Hegenauer, B. R. Van Dyke, and P. Saltman, J. Biol. Chem., 1993, 268, 21533.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngjoo Kwon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eom, JE., Lee, E., Jeon, KH. et al. Development of an Albumin Copper Binding (ACuB) Assay to Detect Ischemia Modified Albumin. ANAL. SCI. 30, 985–990 (2014). https://doi.org/10.2116/analsci.30.985

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.30.985

Keywords

Navigation