Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 24, 2015

Making the LINC: SUN and KASH protein interactions

  • Dae In Kim , Birendra KC and Kyle J. Roux EMAIL logo
From the journal Biological Chemistry

Abstract

Cell nuclei are physically integrated with the cytoskeleton through the linker of nucleoskeleton and cytoskeleton (LINC) complex, a structure that spans the nuclear envelope to link the nucleoskeleton and cytoskeleton. Outer nuclear membrane KASH domain proteins and inner nuclear membrane SUN domain proteins interact to form the core of the LINC complex. In this review, we provide a comprehensive analysis of the reported protein-protein interactions for KASH and SUN domain proteins. This critical structure, directly connecting the genome with the rest of the cell, contributes to a myriad of cellular functions and, when perturbed, is associated with human disease.


Corresponding author: Kyle J. Roux, Sanford Children’s Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA; and Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57104, USA, e-mail:

Acknowledgments

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award numbers RO1GM102203, RO1GM102486, and National Institute of Biomedical Imaging and Bioengineering under award number RO1EB014869. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We apologize to the researchers whose works could not be cited due to practical space limits.

References

Anno, T., Sakamoto, N., and Sato, M. (2012). Role of nesprin-1 in nuclear deformation in endothelial cells under static and uniaxial stretching conditions. Biochem. Biophys. Res. Commun. 424, 94–99.10.1016/j.bbrc.2012.06.073Search in Google Scholar PubMed

Antoniacci, L.M., Kenna, M.A., Uetz, P., Fields, S., and Skibbens, R.V. (2004). The spindle pole body assembly component mps3p/nep98p functions in sister chromatid cohesion. J. Biol. Chem. 279, 49542–49550.10.1074/jbc.M404324200Search in Google Scholar PubMed

Antoniacci, L.M., Kenna, M.A., and Skibbens, R.V. (2007). The nuclear envelope and spindle pole body-associated Mps3 protein bind telomere regulators and function in telomere clustering. Cell Cycle 6, 75–79.10.4161/cc.6.1.3647Search in Google Scholar PubMed

Attali, R., Warwar, N., Israel, A., Gurt, I., McNally, E., Puckelwartz, M., Glick, B., Nevo, Y., Ben-Neriah, Z., and Melki, J. (2009). Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Hum. Mol. Genet. 18, 3462–3469.10.1093/hmg/ddp290Search in Google Scholar PubMed

Banerjee, I., Zhang, J., Moore-Morris, T., Pfeiffer, E., Buchholz, K.S., Liu, A., Ouyang, K., Stroud, M.J., Gerace, L., Evans, S.M., et al. (2014). Targeted ablation of nesprin 1 and nesprin 2 from murine myocardium results in cardiomyopathy, altered nuclear morphology and inhibition of the biomechanical gene response. PLoS Genet. 10, e1004114.10.1371/journal.pgen.1004114Search in Google Scholar PubMed PubMed Central

Behrens, T.W., Kearns, G.M., Rivard, J.J., Bernstein, H.D., Yewdell, J.W., and Staudt, L.M. (1996). Carboxyl-terminal targeting and novel post-translational processing of JAW1, a lymphoid protein of the endoplasmic reticulum. J. Biol. Chem. 271, 23528–23534.10.1074/jbc.271.38.23528Search in Google Scholar PubMed

Borrego-Pinto, J., Jegou, T., Osorio, D.S., Aurade, F., Gorjanacz, M., Koch, B., Mattaj, I.W., and Gomes, E.R. (2012). Samp1 is a component of TAN lines and is required for nuclear movement. J. Cell Sci. 125, 1099–1105.10.1242/jcs.087049Search in Google Scholar PubMed

Bupp, J.M., Martin, A.E., Stensrud, E.S., and Jaspersen, S.L. (2007). Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. J. Cell Biol. 179, 845–854.10.1083/jcb.200706040Search in Google Scholar PubMed PubMed Central

Chan, J.N., Poon, B.P., Salvi, J., Olsen, J.B., Emili, A., and Mekhail, K. (2011). Perinuclear cohibin complexes maintain replicative life span via roles at distinct silent chromatin domains. Dev. Cell 20, 867–879.10.1016/j.devcel.2011.05.014Search in Google Scholar PubMed

Chen, C.Y., Chi, Y.H., Mutalif, R.A., Starost, M.F., Myers, T.G., Anderson, S.A., Stewart, C.L., and Jeang, K.T. (2012). Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell 149, 565–577.10.1016/j.cell.2012.01.059Search in Google Scholar PubMed PubMed Central

Chi, Y.H., Haller, K., Peloponese, J.M., Jr., and Jeang, K.T. (2007). Histone acetyltransferase hALP and nuclear membrane protein hsSUN1 function in de-condensation of mitotic chromosomes. J. Biol. Chem. 282, 27447–27458.10.1074/jbc.M703098200Search in Google Scholar PubMed

Chikashige, Y., Tsutsumi, C., Yamane, M., Okamasa, K., Haraguchi, T., and Hiraoka, Y. (2006). Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125, 59–69.10.1016/j.cell.2006.01.048Search in Google Scholar PubMed

Conrad, M.N., Lee, C.Y., Wilkerson, J.L., and Dresser, M.E. (2007). MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 104, 8863–8868.10.1073/pnas.0606165104Search in Google Scholar PubMed PubMed Central

Conrad, M.N., Lee, C.Y., Chao, G., Shinohara, M., Kosaka, H., Shinohara, A., Conchello, J.A., and Dresser, M.E. (2008). Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3, and CSM4 and is modulated by recombination. Cell 133, 1175–1187.10.1016/j.cell.2008.04.047Search in Google Scholar PubMed

Crisp, M., Liu, Q., Roux, K., Rattner, J.B., Shanahan, C., Burke, B., Stahl, P.D., and Hodzic, D. (2006). Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172, 41–53.10.1083/jcb.200509124Search in Google Scholar PubMed PubMed Central

Ding, X., Xu, R., Yu, J., Xu, T., Zhuang, Y., and Han, M. (2007). SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev. Cell 12, 863–872.10.1016/j.devcel.2007.03.018Search in Google Scholar PubMed

Elhanany-Tamir, H., Yu, Y.V., Shnayder, M., Jain, A., Welte, M., and Volk, T. (2012). Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules. J. Cell Biol. 198, 833–846.10.1083/jcb.201204102Search in Google Scholar PubMed PubMed Central

Fischer-Vize, J.A. and Mosley, K.L. (1994). Marbles mutants: uncoupling cell determination and nuclear migration in the developing Drosophila eye. Development 120, 2609–2618.10.1242/dev.120.9.2609Search in Google Scholar PubMed

Fischer, J.A., Acosta, S., Kenny, A., Cater, C., Robinson, C., and Hook, J. (2004). Drosophila klarsicht has distinct subcellular localization domains for nuclear envelope and microtubule localization in the eye. Genetics 168, 1385–1393.10.1534/genetics.104.028662Search in Google Scholar PubMed PubMed Central

Fridolfsson, H.N., Ly, N., Meyerzon, M., and Starr, D.A. (2010). UNC-83 coordinates kinesin-1 and dynein activities at the nuclear envelope during nuclear migration. Dev. Biol. 338, 237–250.10.1016/j.ydbio.2009.12.004Search in Google Scholar PubMed PubMed Central

Friederichs, J.M., Ghosh, S., Smoyer, C.J., McCroskey, S., Miller, B.D., Weaver, K.J., Delventhal, K.M., Unruh, J., Slaughter, B.D., and Jaspersen, S.L. (2011). The SUN protein Mps3 is required for spindle pole body insertion into the nuclear membrane and nuclear envelope homeostasis. PLoS Genet. 7, e1002365.10.1371/journal.pgen.1002365Search in Google Scholar PubMed PubMed Central

Geerts, D., Fontao, L., Nievers, M.G., Schaapveld, R.Q., Purkis, P.E., Wheeler, G.N., Lane, E.B., Leigh, I.M., and Sonnenberg, A. (1999). Binding of integrin α6β4 to plectin prevents plectin association with F-actin but does not interfere with intermediate filament binding. J. Cell Biol. 147, 417–434.10.1083/jcb.147.2.417Search in Google Scholar PubMed PubMed Central

Ghosh, S., Gardner, J.M., Smoyer, C.J., Friederichs, J.M., Unruh, J.R., Slaughter, B.D., Alexander, R., Chisholm, R.D., Lee, K.K., Workman, J.L., et al. (2012). Acetylation of the SUN protein Mps3 by Eco1 regulates its function in nuclear organization. Mol. Biol. Cell 23, 2546–2559.10.1091/mbc.e11-07-0600Search in Google Scholar

Gob, E., Schmitt, J., Benavente, R., and Alsheimer, M. (2010). Mammalian sperm head formation involves different polarization of two novel LINC complexes. PLoS One 5, e12072.10.1371/journal.pone.0012072Search in Google Scholar PubMed PubMed Central

Gomes, E.R., Jani, S., and Gundersen, G.G. (2005). Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463.10.1016/j.cell.2005.02.022Search in Google Scholar PubMed

Gough, L.L., Fan, J., Chu, S., Winnick, S., and Beck, K.A. (2003). Golgi localization of Syne-1. Mol. Biol. Cell 14, 2410–2424.10.1091/mbc.e02-07-0446Search in Google Scholar PubMed PubMed Central

Graumann, K. (2014). Evidence for LINC1-SUN associations at the plant nuclear periphery. PLoS One 9, e93406.10.1371/journal.pone.0093406Search in Google Scholar PubMed PubMed Central

Graumann, K., Runions, J., and Evans, D.E. (2010). Characterization of SUN-domain proteins at the higher plant nuclear envelope. Plant J. 61, 134–144.10.1111/j.1365-313X.2009.04038.xSearch in Google Scholar PubMed

Gros-Louis, F., Dupre, N., Dion, P., Fox, M.A., Laurent, S., Verreault, S., Sanes, J.R., Bouchard, J.P., and Rouleau, G.A. (2007). Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat. Genet. 39, 80–85.10.1038/ng1927Search in Google Scholar PubMed

Guilluy, C., Osborne, L.D., Van Landeghem, L., Sharek, L., Superfine, R., Garcia-Mata, R., and Burridge, K. (2014). Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16, 376–381.10.1038/ncb2927Search in Google Scholar PubMed PubMed Central

Haas, J., Lemoncelli, A., Morozov, C., Franke, K., Dominder, J., and Antoniacci, L.M. (2012). Physical links between the nuclear envelope protein Mps3, three alternate replication factor C complexes, and a variant histone in Saccharomyces cerevisiae. DNA Cell Biol. 31, 917–924.10.1089/dna.2011.1493Search in Google Scholar PubMed PubMed Central

Haque, F., Lloyd, D.J., Smallwood, D.T., Dent, C.L., Shanahan, C.M., Fry, A.M., Trembath, R.C., and Shackleton, S. (2006). SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol. Cell Biol. 26, 3738–3751.10.1128/MCB.26.10.3738-3751.2006Search in Google Scholar PubMed PubMed Central

Haque, F., Mazzeo, D., Patel, J.T., Smallwood, D.T., Ellis, J.A., Shanahan, C.M., and Shackleton, S. (2010). Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J. Biol. Chem. 285, 3487–3498.10.1074/jbc.M109.071910Search in Google Scholar PubMed PubMed Central

Hiraoka, Y., Maekawa, H., Asakawa, H., Chikashige, Y., Kojidani, T., Osakada, H., Matsuda, A., and Haraguchi, T. (2011). Inner nuclear membrane protein Ima1 is dispensable for intranuclear positioning of centromeres. Genes Cells 16, 1000–1011.10.1111/j.1365-2443.2011.01544.xSearch in Google Scholar PubMed

Hodzic, D.M., Yeater, D.B., Bengtsson, L., Otto, H., and Stahl, P.D. (2004). Sun2 is a novel mammalian inner nuclear membrane protein. J. Biol. Chem. 279, 25805–25812.10.1074/jbc.M313157200Search in Google Scholar PubMed

Horigome, C., Okada, T., Shimazu, K., Gasser, S.M., and Mizuta, K. (2011). Ribosome biogenesis factors bind a nuclear envelope SUN domain protein to cluster yeast telomeres. EMBO J. 30, 3799–3811.10.1038/emboj.2011.267Search in Google Scholar PubMed PubMed Central

Horn, H.F., Brownstein, Z., Lenz, D.R., Shivatzki, S., Dror, A.A., Dagan-Rosenfeld, O., Friedman, L.M., Roux, K.J., Kozlov, S., Jeang, K.T., et al. (2013a). The LINC complex is essential for hearing. J. Clin. Invest. 123, 740–750.10.1172/JCI66911Search in Google Scholar PubMed PubMed Central

Horn, H.F., Kim, D.I., Wright, G.D., Wong, E.S., Stewart, C.L., Burke, B., and Roux, K.J. (2013b). A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. J. Cell Biol. 202, 1023–1039.10.1083/jcb.201304004Search in Google Scholar PubMed PubMed Central

Hou, H., Zhou, Z., Wang, Y., Wang, J., Kallgren, S.P., Kurchuk, T., Miller, E.A., Chang, F., and Jia, S. (2012). Csi1 links centromeres to the nuclear envelope for centromere clustering. J. Cell Biol. 199, 735–744.10.1083/jcb.201208001Search in Google Scholar PubMed PubMed Central

Jafferali, M.H., Vijayaraghavan, B., Figueroa, R.A., Crafoord, E., Gudise, S., Larsson, V.J., and Hallberg, E. (2014). MCLIP, an effective method to detect interactions of transmembrane proteins of the nuclear envelope in live cells. Biochim. Biophys. Acta 1838, 2399–2403.10.1016/j.bbamem.2014.06.008Search in Google Scholar PubMed

Jungwirth, M.T., Kumar, D., Jeong, D.Y., and Goodchild, R.E. (2011). The nuclear envelope localization of DYT1 dystonia torsinA-ΔE requires the SUN1 LINC complex component. BMC Cell Biol. 12, 24.10.1186/1471-2121-12-24Search in Google Scholar PubMed PubMed Central

Kennedy, C., Sebire, K., de Kretser, D.M., and O’Bryan, M.K. (2004). Human sperm associated antigen 4 (SPAG4) is a potential cancer marker. Cell Tissue Res. 315, 279–283.10.1007/s00441-003-0821-2Search in Google Scholar PubMed

Ketema, M., Wilhelmsen, K., Kuikman, I., Janssen, H., Hodzic, D., and Sonnenberg, A. (2007). Requirements for the localization of nesprin-3 at the nuclear envelope and its interaction with plectin. J. Cell Sci. 120, 3384–3394.10.1242/jcs.014191Search in Google Scholar PubMed

Ketema, M., Kreft, M., Secades, P., Janssen, H., and Sonnenberg, A. (2013). Nesprin-3 connects plectin and vimentin to the nuclear envelope of Sertoli cells but is not required for Sertoli cell function in spermatogenesis. Mol. Biol. Cell 24, 2454–2466.10.1091/mbc.e13-02-0100Search in Google Scholar PubMed PubMed Central

King, M.C., Drivas, T.G., and Blobel, G. (2008). A network of nuclear envelope membrane proteins linking centromeres to microtubules. Cell 134, 427–438.10.1016/j.cell.2008.06.022Search in Google Scholar PubMed PubMed Central

Kosaka, H., Shinohara, M., and Shinohara, A. (2008). Csm4-dependent telomere movement on nuclear envelope promotes meiotic recombination. PLoS Genet. 4, e1000196.10.1371/journal.pgen.1000196Search in Google Scholar PubMed PubMed Central

Koszul, R., Kim, K.P., Prentiss, M., Kleckner, N., and Kameoka, S. (2008). Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell 133, 1188–1201.10.1016/j.cell.2008.04.050Search in Google Scholar PubMed PubMed Central

Kracklauer, M.P., Banks, S.M., Xie, X., Wu, Y., and Fischer, J.A. (2007). Drosophila klaroid encodes a SUN domain protein required for Klarsicht localization to the nuclear envelope and nuclear migration in the eye. Fly (Austin) 1, 75–85.10.4161/fly.4254Search in Google Scholar PubMed

Kracklauer, M.P., Wiora, H.M., Deery, W.J., Chen, X., Bolival, B., Jr., Romanowicz, D., Simonette, R.A., Fuller, M.T., Fischer, J.A., and Beckingham, K.M. (2010). The Drosophila SUN protein Spag4 cooperates with the coiled-coil protein Yuri Gagarin to maintain association of the basal body and spermatid nucleus. J. Cell Sci. 123, 2763–2772.10.1242/jcs.066589Search in Google Scholar PubMed PubMed Central

Le Masson, I., Saveanu, C., Chevalier, A., Namane, A., Gobin, R., Fromont-Racine, M., Jacquier, A., and Mann, C. (2002). Spc24 interacts with Mps2 and is required for chromosome segregation, but is not implicated in spindle pole body duplication. Mol. Microbiol. 43, 1431–1443.10.1046/j.1365-2958.2002.02844.xSearch in Google Scholar PubMed

Lee, K.K., Starr, D., Cohen, M., Liu, J., Han, M., Wilson, K.L., and Gruenbaum, Y. (2002). Lamin-dependent localization of UNC-84, a protein required for nuclear migration in Caenorhabditis elegans. Mol. Biol. Cell. 13, 892–901.10.1091/mbc.01-06-0294Search in Google Scholar

Lei, K., Zhang, X., Ding, X., Guo, X., Chen, M., Zhu, B., Xu, T., Zhuang, Y., Xu, R., and Han, M. (2009). SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells in mice. Proc. Natl. Acad. Sci. USA 106, 10207–10212.10.1073/pnas.0812037106Search in Google Scholar

Lei, K., Zhu, X., Xu, R., Shao, C., Xu, T., Zhuang, Y., and Han, M. (2012). Inner nuclear envelope proteins SUN1 and SUN2 play a prominent role in the DNA damage response. Curr. Biol. 22, 1609–1615.10.1016/j.cub.2012.06.043Search in Google Scholar

Libotte, T., Zaim, H., Abraham, S., Padmakumar, V.C., Schneider, M., Lu, W., Munck, M., Hutchison, C., Wehnert, M., Fahrenkrog, B., et al. (2005). Lamin A/C-dependent localization of Nesprin-2, a giant scaffolder at the nuclear envelope. Mol. Biol. Cell. 16, 3411–3424.10.1091/mbc.e04-11-1009Search in Google Scholar

Lindeman, R.E. and Pelegri, F. (2012). Localized products of futile cycle/lrmp promote centrosome-nucleus attachment in the zebrafish zygote. Curr. Biol. 22, 843–851.10.1016/j.cub.2012.03.058Search in Google Scholar

Link, J., Leubner, M., Schmitt, J., Gob, E., Benavente, R., Jeang, K.T., Xu, R., and Alsheimer, M. (2014). Analysis of meiosis in SUN1 deficient mice reveals a distinct role of SUN2 in mammalian meiotic LINC complex formation and function. PLoS Genet. 10, e1004099.10.1371/journal.pgen.1004099Search in Google Scholar

Liu, Q., Pante, N., Misteli, T., Elsagga, M., Crisp, M., Hodzic, D., Burke, B., and Roux, K.J. (2007). Functional association of Sun1 with nuclear pore complexes. J. Cell Biol. 178, 785–798.10.1083/jcb.200704108Search in Google Scholar

Lombardi, M.L. and Lammerding, J. (2010). Altered mechanical properties of the nucleus in disease. Methods Cell Biol. 98, 121–141.10.1016/S0091-679X(10)98006-0Search in Google Scholar

Luxton, G.W., Gomes, E.R., Folker, E.S., Vintinner, E., and Gundersen, G.G. (2010). Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329, 956–959.10.1126/science.1189072Search in Google Scholar PubMed PubMed Central

MacQueen, A.J., Phillips, C.M., Bhalla, N., Weiser, P., Villeneuve, A.M., and Dernburg, A.F. (2005). Chromosome sites play dual roles to establish homologous synapsis during meiosis in C. elegans. Cell 123, 1037–1050.10.1016/j.cell.2005.09.034Search in Google Scholar PubMed PubMed Central

Malone, C.J., Fixsen, W.D., Horvitz, H.R., and Han, M. (1999). UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development 126, 3171–3181.10.1242/dev.126.14.3171Search in Google Scholar

Malone, C.J., Misner, L., Le Bot, N., Tsai, M.C., Campbell, J.M., Ahringer, J., and White, J.G. (2003). The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115, 825–836.10.1016/S0092-8674(03)00985-1Search in Google Scholar

Maniotis, A.J., Chen, C.S., and Ingber, D.E. (1997). Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. USA 94, 849–854.10.1073/pnas.94.3.849Search in Google Scholar

McGee, M.D., Stagljar, I., and Starr, D.A. (2009). KDP-1 is a nuclear envelope KASH protein required for cell-cycle progression. J. Cell Sci. 122, 2895–2905.10.1242/jcs.051607Search in Google Scholar

Meier, I., Zhou, X., Brkljacic, J., Rose, A., Zhao, Q., and Xu, X.M. (2010). Targeting proteins to the plant nuclear envelope. Biochem. Soc. Trans. 38, 733–740.10.1042/BST0380733Search in Google Scholar

Meinke, P., Mattioli, E., Haque, F., Antoku, S., Columbaro, M., Straatman, K.R., Worman, H.J., Gundersen, G.G., Lattanzi, G., Wehnert, M., et al. (2014). Muscular dystrophy-associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization. PLoS Genet. 10, e1004605.10.1371/journal.pgen.1004605Search in Google Scholar

Meyerzon, M., Fridolfsson, H.N., Ly, N., McNally, F.J., and Starr, D.A. (2009). UNC-83 is a nuclear-specific cargo adaptor for kinesin-1-mediated nuclear migration. Development 136, 2725–2733.10.1242/dev.038596Search in Google Scholar

Miki, F., Kurabayashi, A., Tange, Y., Okazaki, K., Shimanuki, M., and Niwa, O. (2004). Two-hybrid search for proteins that interact with Sad1 and Kms1, two membrane-bound components of the spindle pole body in fission yeast. Mol. Genet. Genomics 270, 449–461.10.1007/s00438-003-0938-8Search in Google Scholar

Mislow, J.M., Holaska, J.M., Kim, M.S., Lee, K.K., Segura-Totten, M., Wilson, K.L., and McNally, E.M. (2002). Nesprin-1α self-associates and binds directly to emerin and lamin A in vitro. FEBS Lett. 525, 135–140.10.1016/S0014-5793(02)03105-8Search in Google Scholar

Morimoto, A., Shibuya, H., Zhu, X., Kim, J., Ishiguro, K., Han, M., and Watanabe, Y. (2012). A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. J. Cell Biol. 198, 165–172.10.1083/jcb.201204085Search in Google Scholar PubMed PubMed Central

Mosley-Bishop, K.L., Li, Q., Patterson, L., and Fischer, J.A. (1999). Molecular analysis of the klarsicht gene and its role in nuclear migration within differentiating cells of the Drosophila eye. Curr. Biol. 9, 1211–1220.10.1016/S0960-9822(99)80501-6Search in Google Scholar

Murphy, S.P., Simmons, C.R., and Bass, H.W. (2010). Structure and expression of the maize (Zea mays L.) SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants. BMC Plant Biol. 10, 269.Search in Google Scholar

Nery, F.C., Zeng, J., Niland, B.P., Hewett, J., Farley, J., Irimia, D., Li, Y., Wiche, G., Sonnenberg, A., and Breakefield, X.O. (2008). TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton. J. Cell Sci. 121, 3476–3486.10.1242/jcs.029454Search in Google Scholar PubMed PubMed Central

Nikolova-Krstevski, V., Leimena, C., Xiao, X.H., Kesteven, S., Tan, J.C., Yeo, L.S., Yu, Z.Y., Zhang, Q., Carlton, A., Head, S., et al. (2011). Nesprin-1 and actin contribute to nuclear and cytoskeletal defects in lamin A/C-deficient cardiomyopathy. J Mol. Cell Cardiol. 50, 479–486.10.1016/j.yjmcc.2010.12.001Search in Google Scholar PubMed

Niwa, O., Shimanuki, M., and Miki, F. (2000). Telomere-led bouquet formation facilitates homologous chromosome pairing and restricts ectopic interaction in fission yeast meiosis. EMBO J. 19, 3831–3840.10.1093/emboj/19.14.3831Search in Google Scholar PubMed PubMed Central

Oza, P., Jaspersen, S.L., Miele, A., Dekker, J., and Peterson, C.L. (2009). Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 23, 912–927.10.1101/gad.1782209Search in Google Scholar PubMed PubMed Central

Padmakumar, V.C., Abraham, S., Braune, S., Noegel, A.A., Tunggal, B., Karakesisoglou, I., and Korenbaum, E. (2004). Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton. Exp. Cell Res. 295, 330–339.10.1016/j.yexcr.2004.01.014Search in Google Scholar PubMed

Patterson, K., Molofsky, A.B., Robinson, C., Acosta, S., Cater, C., and Fischer, J.A. (2004). The functions of Klarsicht and nuclear lamin in developmentally regulated nuclear migrations of photoreceptor cells in the Drosophila eye. Mol. Biol. Cell 15, 600–610.10.1091/mbc.e03-06-0374Search in Google Scholar PubMed PubMed Central

Phillips, C.M. and Dernburg, A.F. (2006). A family of zinc-finger proteins is required for chromosome-specific pairing and synapsis during meiosis in C. elegans. Dev. Cell 11, 817–829.10.1016/j.devcel.2006.09.020Search in Google Scholar PubMed

Postel, R., Ketema, M., Kuikman, I., de Pereda, J.M., and Sonnenberg, A. (2011). Nesprin-3 augments peripheral nuclear localization of intermediate filaments in zebrafish. J. Cell Sci. 124, 755–764.10.1242/jcs.081174Search in Google Scholar PubMed

Rajgor, D., Mellad, J.A., Autore, F., Zhang, Q., and Shanahan, C.M. (2012). Multiple novel nesprin-1 and nesprin-2 variants act as versatile tissue-specific intracellular scaffolds. PLoS One 7, e40098.10.1371/journal.pone.0040098Search in Google Scholar PubMed PubMed Central

Rosenberg-Hasson, Y., Renert-Pasca, M., and Volk, T. (1996). A Drosophila dystrophin-related protein, MSP-300, is required for embryonic muscle morphogenesis. Mech. Dev. 60, 83–94.10.1016/S0925-4773(96)00602-8Search in Google Scholar

Roux, K.J., Crisp, M.L., Liu, Q., Kim, D., Kozlov, S., Stewart, C.L., and Burke, B. (2009). Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc. Natl. Acad. Sci. USA 106, 2194–2199.10.1073/pnas.0808602106Search in Google Scholar PubMed PubMed Central

Sato, A., Isaac, B., Phillips, C.M., Rillo, R., Carlton, P.M., Wynne, D.J., Kasad, R.A., and Dernburg, A.F. (2009). Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell 139, 907–919.10.1016/j.cell.2009.10.039Search in Google Scholar PubMed PubMed Central

Scherthan, H., Wang, H., Adelfalk, C., White, E.J., Cowan, C., Cande, W.Z., and Kaback, D.B. (2007). Chromosome mobility during meiotic prophase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 104, 16934–16939.10.1073/pnas.0704860104Search in Google Scholar PubMed PubMed Central

Schneider, M., Lu, W., Neumann, S., Brachner, A., Gotzmann, J., Noegel, A.A., and Karakesisoglou, I. (2011). Molecular mechanisms of centrosome and cytoskeleton anchorage at the nuclear envelope. Cell Mol. Life Sci. 68, 1593–1610.10.1007/s00018-010-0535-zSearch in Google Scholar PubMed

Schober, H., Ferreira, H., Kalck, V., Gehlen, L.R., and Gasser, S.M. (2009). Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev. 23, 928–938.10.1101/gad.1787509Search in Google Scholar PubMed PubMed Central

Schramm, C., Elliott, S., Shevchenko, A., and Schiebel, E. (2000). The Bbp1p-Mps2p complex connects the SPB to the nuclear envelope and is essential for SPB duplication. EMBO J. 19, 421–433.10.1093/emboj/19.3.421Search in Google Scholar PubMed PubMed Central

Shao, X., Tarnasky, H.A., Lee, J.P., Oko, R., and van der Hoorn, F.A. (1999). Spag4, a novel sperm protein, binds outer dense-fiber protein Odf1 and localizes to microtubules of manchette and axoneme. Dev. Biol. 211, 109–123.10.1006/dbio.1999.9297Search in Google Scholar PubMed

Shimanuki, M., Miki, F., Ding, D.Q., Chikashige, Y., Hiraoka, Y., Horio, T., and Niwa, O. (1997). A novel fission yeast gene, kms1+, is required for the formation of meiotic prophase-specific nuclear architecture. Mol. Gen. Genet. 254, 238–249.10.1007/s004380050412Search in Google Scholar PubMed

Shindo, Y., Kim, M.R., Miura, H., Yuuki, T., Kanda, T., Hino, A., and Kusakabe, Y. (2010). Lrmp/Jaw1 is expressed in sweet, bitter, and umami receptor-expressing cells. Chem. Senses 35, 171–177.10.1093/chemse/bjp097Search in Google Scholar PubMed PubMed Central

Sohaskey, M.L., Jiang, Y., Zhao, J.J., Mohr, A., Roemer, F., and Harland, R.M. (2010). Osteopotentia regulates osteoblast maturation, bone formation, and skeletal integrity in mice. J. Cell Biol. 189, 511–525.10.1083/jcb.201003006Search in Google Scholar PubMed PubMed Central

Sosa, B.A., Rothballer, A., Kutay, U., and Schwartz, T.U. (2012). LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 149, 1035–1047.10.1016/j.cell.2012.03.046Search in Google Scholar PubMed PubMed Central

Starr, D.A. and Han, M. (2002). Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 298, 406–409.10.1126/science.1075119Search in Google Scholar PubMed

Starr, D.A., Hermann, G.J., Malone, C.J., Fixsen, W., Priess, J.R., Horvitz, H.R., and Han, M. (2001). unc-83 encodes a novel component of the nuclear envelope and is essential for proper nuclear migration. Development 128, 5039–5050.10.1242/dev.128.24.5039Search in Google Scholar PubMed

Stewart-Hutchinson, P.J., Hale, C.M., Wirtz, D., and Hodzic, D. (2008). Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp. Cell Res. 314, 1892–1905.10.1016/j.yexcr.2008.02.022Search in Google Scholar PubMed PubMed Central

Swan, A., Nguyen, T., and Suter, B. (1999). Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nat. Cell Biol. 1, 444–449.10.1038/15680Search in Google Scholar PubMed

Tamura, K., Iwabuchi, K., Fukao, Y., Kondo, M., Okamoto, K., Ueda, H., Nishimura, M., and Hara-Nishimura, I. (2013). Myosin XI-i links the nuclear membrane to the cytoskeleton to control nuclear movement and shape in Arabidopsis. Curr. Biol. 23, 1776–1781.10.1016/j.cub.2013.07.035Search in Google Scholar PubMed

Taranum, S., Sur, I., Muller, R., Lu, W., Rashmi, R.N., Munck, M., Neumann, S., Karakesisoglou, I., and Noegel, A.A. (2012). Cytoskeletal interactions at the nuclear envelope mediated by nesprins. Int. J. Cell Biol. 2012, 736524.10.1155/2012/736524Search in Google Scholar PubMed PubMed Central

Technau, M. and Roth, S. (2008). The Drosophila KASH domain proteins Msp-300 and Klarsicht and the SUN domain protein Klaroid have no essential function during oogenesis. Fly (Austin) 2, 82–91.10.4161/fly.6288Search in Google Scholar PubMed

Trelles-Sticken, E., Adelfalk, C., Loidl, J., and Scherthan, H. (2005). Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J. Cell Biol. 170, 213–223.10.1083/jcb.200501042Search in Google Scholar PubMed PubMed Central

Tulgren, E.D., Turgeon, S.M., Opperman, K.J., and Grill, B. (2014). The Nesprin family member ANC-1 regulates synapse formation and axon termination by functioning in a pathway with RPM-1 and β-catenin. PLoS Genet. 10, e1004481.10.1371/journal.pgen.1004481Search in Google Scholar PubMed PubMed Central

Tzur, Y.B., Margalit, A., Melamed-Book, N., and Gruenbaum, Y. (2006a). Matefin/SUN-1 is a nuclear envelope receptor for CED-4 during Caenorhabditis elegans apoptosis. Proc. Natl. Acad. Sci. USA 103, 13397–13402.10.1073/pnas.0604224103Search in Google Scholar PubMed PubMed Central

Tzur, Y.B., Wilson, K.L., and Gruenbaum, Y. (2006b). SUN-domain proteins: ‘Velcro’ that links the nucleoskeleton to the cytoskeleton. Nat. Rev. Mol. Cell Biol. 7, 782–788.10.1038/nrm2003Search in Google Scholar PubMed

Volk, T. (1992). A new member of the spectrin superfamily may participate in the formation of embryonic muscle attachments in Drosophila. Development 116, 721–730.10.1242/dev.116.3.721Search in Google Scholar PubMed

Volk, T. (2013). Positioning nuclei within the cytoplasm of striated muscle fiber: cooperation between microtubules and KASH proteins. Nucleus 4, 18–22.10.4161/nucl.23086Search in Google Scholar PubMed PubMed Central

Walde, S. and King, M.C. (2014). The KASH protein Kms2 coordinates mitotic remodeling of the spindle pole body. J. Cell Sci. 127, 3625–3640.10.1242/jcs.154997Search in Google Scholar PubMed PubMed Central

Wanat, J.J., Kim, K.P., Koszul, R., Zanders, S., Weiner, B., Kleckner, N., and Alani, E. (2008). Csm4, in collaboration with Ndj1, mediates telomere-led chromosome dynamics and recombination during yeast meiosis. PLoS Genet. 4, e1000188.10.1371/journal.pgen.1000188Search in Google Scholar PubMed PubMed Central

Wang, W., Shi, Z., Jiao, S., Chen, C., Wang, H., Liu, G., Wang, Q., Zhao, Y., Greene, M.I., and Zhou, Z. (2012). Structural insights into SUN-KASH complexes across the nuclear envelope. Cell Res. 22, 1440–1452.10.1038/cr.2012.126Search in Google Scholar PubMed PubMed Central

Wang, Z., Xue, W., Li, X., Lin, R., Cui, J., and Huang, J.D. (2013). Dissect Kif5b in nuclear positioning during myogenesis: the light chain binding domain and the autoinhibitory peptide are both indispensable. Biochem. Biophys. Res. Commun. 432, 242–247.10.1016/j.bbrc.2013.02.006Search in Google Scholar PubMed

Warren, D.T., Tajsic, T., Mellad, J.A., Searles, R., Zhang, Q., and Shanahan, C.M. (2010). Novel nuclear nesprin-2 variants tether active extracellular signal-regulated MAPK1 and MAPK2 at promyelocytic leukemia protein nuclear bodies and act to regulate smooth muscle cell proliferation. J. Biol. Chem. 285, 1311–1320.10.1074/jbc.M109.032557Search in Google Scholar PubMed PubMed Central

Welte, M.A. (2004). Bidirectional transport along microtubules. Curr. Biol. 14, R525–537.10.1016/j.cub.2004.06.045Search in Google Scholar PubMed

Wheeler, M.A., Davies, J.D., Zhang, Q., Emerson, L.J., Hunt, J., Shanahan, C.M., and Ellis, J.A. (2007). Distinct functional domains in nesprin-1α and nesprin-2β bind directly to emerin and both interactions are disrupted in X-linked Emery-Dreifuss muscular dystrophy. Exp. Cell Res. 313, 2845–2857.10.1016/j.yexcr.2007.03.025Search in Google Scholar PubMed

Wilhelmsen, K., Litjens, S.H., Kuikman, I., Tshimbalanga, N., Janssen, H., van den Bout, I., Raymond, K., and Sonnenberg, A. (2005). Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J. Cell Biol. 171, 799–810.10.1083/jcb.200506083Search in Google Scholar PubMed PubMed Central

Xie, X. and Fischer, J.A. (2008). On the roles of the Drosophila KASH domain proteins Msp-300 and Klarsicht. Fly (Austin) 2, 74–81.10.4161/fly.6108Search in Google Scholar PubMed

Xu, X.M., Meulia, T., and Meier, I. (2007). Anchorage of plant RanGAP to the nuclear envelope involves novel nuclear-pore-associated proteins. Curr. Biol. 17, 1157–1163.10.1016/j.cub.2007.05.076Search in Google Scholar PubMed

Yamamoto, A., West, R.R., McIntosh, J.R., and Hiraoka, Y. (1999). A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast. J. Cell Biol. 145, 1233–1249.10.1083/jcb.145.6.1233Search in Google Scholar PubMed PubMed Central

Yoshida, M., Katsuyama, S., Tateho, K., Nakamura, H., Miyoshi, J., Ohba, T., Matsuhara, H., Miki, F., Okazaki, K., Haraguchi, T., et al. (2013). Microtubule-organizing center formation at telomeres induces meiotic telomere clustering. J. Cell Biol. 200, 385–395.10.1083/jcb.201207168Search in Google Scholar PubMed PubMed Central

Yu, J., Starr, D.A., Wu, X., Parkhurst, S.M., Zhuang, Y., Xu, T., Xu, R., and Han, M. (2006). The KASH domain protein MSP-300 plays an essential role in nuclear anchoring during Drosophila oogenesis. Dev. Biol. 289, 336–345.10.1016/j.ydbio.2005.10.027Search in Google Scholar PubMed

Yu, J., Lei, K., Zhou, M., Craft, C.M., Xu, G., Xu, T., Zhuang, Y., Xu, R., and Han, M. (2011). KASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate nuclear migration during mammalian retinal development. Hum. Mol. Genet. 20, 1061–1073.10.1093/hmg/ddq549Search in Google Scholar PubMed PubMed Central

Zhang, Q., Skepper, J.N., Yang, F., Davies, J.D., Hegyi, L., Roberts, R.G., Weissberg, P.L., Ellis, J.A., and Shanahan, C.M. (2001). Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J. Cell Sci. 114, 4485–4498.10.1242/jcs.114.24.4485Search in Google Scholar PubMed

Zhang, Q., Ragnauth, C., Greener, M.J., Shanahan, C.M., and Roberts, R.G. (2002). The nesprins are giant actin-binding proteins, orthologous to Drosophila melanogaster muscle protein MSP-300. Genomics 80, 473–481.10.1006/geno.2002.6859Search in Google Scholar

Zhang, Q., Ragnauth, C.D., Skepper, J.N., Worth, N.F., Warren, D.T., Roberts, R.G., Weissberg, P.L., Ellis, J.A., and Shanahan, C.M. (2005). Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J. Cell Sci. 118, 673–687.10.1242/jcs.01642Search in Google Scholar PubMed

Zhang, Q., Bethmann, C., Worth, N.F., Davies, J.D., Wasner, C., Feuer, A., Ragnauth, C.D., Yi, Q., Mellad, J.A., Warren, D.T., et al. (2007a). Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum. Mol. Genet. 16, 2816–2833.10.1093/hmg/ddm238Search in Google Scholar PubMed

Zhang, X., Xu, R., Zhu, B., Yang, X., Ding, X., Duan, S., Xu, T., Zhuang, Y., and Han, M. (2007b). Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134, 901–908.10.1242/dev.02783Search in Google Scholar PubMed

Zhang, X., Lei, K., Yuan, X., Wu, X., Zhuang, Y., Xu, T., Xu, R., and Han, M. (2009). SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64, 173–187.10.1016/j.neuron.2009.08.018Search in Google Scholar PubMed PubMed Central

Zhao, Q., Brkljacic, J., and Meier, I. (2008). Two distinct interacting classes of nuclear envelope-associated coiled-coil proteins are required for the tissue-specific nuclear envelope targeting of Arabidopsis RanGAP. Plant Cell 20, 1639–1651.10.1105/tpc.108.059220Search in Google Scholar PubMed PubMed Central

Zhen, Y.Y., Libotte, T., Munck, M., Noegel, A.A., and Korenbaum, E. (2002). NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J. Cell Sci. 115, 3207–3222.10.1242/jcs.115.15.3207Search in Google Scholar PubMed

Zhou, K., Rolls, M.M., Hall, D.H., Malone, C.J., and Hanna-Rose, W. (2009). A ZYG-12-dynein interaction at the nuclear envelope defines cytoskeletal architecture in the C. elegans gonad. J. Cell Biol. 186, 229–241.10.1083/jcb.200902101Search in Google Scholar PubMed PubMed Central

Zhou, X., Graumann, K., Evans, D.E., and Meier, I. (2012a). Novel plant SUN-KASH bridges are involved in RanGAP anchoring and nuclear shape determination. J. Cell Biol. 196, 203–211.10.1083/jcb.201108098Search in Google Scholar PubMed PubMed Central

Zhou, Z., Du, X., Cai, Z., Song, X., Zhang, H., Mizuno, T., Suzuki, E., Yee, M.R., Berezov, A., Murali, R., et al. (2012b). Structure of Sad1-UNC84 homology (SUN) domain defines features of molecular bridge in nuclear envelope. J. Biol. Chem. 287, 5317–5326.10.1074/jbc.M111.304543Search in Google Scholar PubMed PubMed Central

Zhou, X., Graumann, K., Wirthmueller, L., Jones, J.D., and Meier, I. (2014). Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants. J. Cell Biol. 205, 677–692.10.1083/jcb.201401138Search in Google Scholar PubMed PubMed Central

Received: 2014-11-3
Accepted: 2015-1-20
Published Online: 2015-1-24
Published in Print: 2015-4-1

©2015 by De Gruyter

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2014-0267/html
Scroll to top button