Skip to main content

Advertisement

Log in

KAP1 Is Associated With Peritoneal Carcinomatosis in Gastric Cancer

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

KRAB-associated protein 1 (KAP1) is a universal corepressor for Kruppel-associated box zinc finger proteins. Here we demonstrate the biological function and clinical significance of KAP1 expression in gastric cancer.

Methods

Knockdown of the KAP1 gene by siRNA transfection was performed to evaluate KAP1 function in gastric cancer cells. Real-time polymerase chain reaction was performed in 91 samples obtained from gastric cancer patients.

Results

The proliferation rate was impaired and resistance to anoikis was decreased after knockdown of KAP1 in the gastric cancer cell lines AZ521 and KATO III. Expression of the KAP1 gene was significantly higher in cancerous tissues than in noncancerous tissues (P < .05). Patients with high KAP1 expression showed a higher incidence of peritoneal carcinomatosis (P < .05) and significantly poorer overall survival compared to patients with low KAP1 expression (5-year overall survival rates, 35.4% and 50.5%, respectively; P < .05). Multivariate analysis revealed that high KAP1 expression was an independent prognostic factor (risk ratio, 1.44; 95% confidence interval, 1.03–1.99; P < .05). Intriguingly, high KAP1 expression was also an independent factor for peritoneal carcinomatosis (odds ratio, 4.53; 95% confidence interval, 1.27–18.5; P < .05).

Conclusions

KAP1 provides a survival advantage to gastric cancer cells and is an independent factor for peritoneal dissemination in patients with gastric cancer. These results suggest that KAP1 plays an important role in progression to peritoneal carcinomatosis in gastric cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.

    Article  PubMed  Google Scholar 

  2. Macdonald JS, Smalley SR, Benedetti J, et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med. 2001;345:725–30.

    Article  CAS  PubMed  Google Scholar 

  3. Cunningham D, Allum WH, Stenning SP, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355:11–20.

    Article  CAS  PubMed  Google Scholar 

  4. Sakuramoto S, Sasako M, Yamaguchi T, et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N Engl J Med. 2007;357:1810–20.

    Article  CAS  PubMed  Google Scholar 

  5. Maehara Y, Moriguchi S, Kakeji Y, et al. Pertinent risk factors and gastric carcinoma with synchronous peritoneal dissemination or liver metastasis. Surgery. 1991;110:820–3.

    CAS  PubMed  Google Scholar 

  6. Duarte I, Llanos O. Patterns of metastases in intestinal and diffuse types of carcinoma of the stomach. Hum Pathol. 1981;12:237–42.

    Article  CAS  PubMed  Google Scholar 

  7. Friedman JR, Fredericks WJ, Jensen DE, et al. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 1996;10:2067–78.

    Article  CAS  PubMed  Google Scholar 

  8. Kim SS, Chen YM, O’Leary E, et al. A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins. Proc Natl Acad Sci USA. 1996;93:15299–304.

    Article  CAS  PubMed  Google Scholar 

  9. Moosmann P, Georgiev O, Le Douarin B, Bourquin JP, Schaffner W. Transcriptional repression by RING finger protein TIF1 beta that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res. 1996;24:4859–67.

    Article  CAS  PubMed  Google Scholar 

  10. Ryan RF, Schultz DC, Ayyanathan K, et al. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Kruppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol Cell Biol. 1999;19:4366–78.

    CAS  PubMed  Google Scholar 

  11. Lechner MS, Begg GE, Speicher DW, Rauscher FJ 3rd. Molecular determinants for targeting heterochromatin protein 1-mediated gene silencing: direct chromoshadow domain-KAP-1 corepressor interaction is essential. Mol Cell Biol. 2000;20:6449–65.

    Article  CAS  PubMed  Google Scholar 

  12. Ziv Y, Bielopolski D, Galanty Y, et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol. 2006;8:870–6.

    Article  CAS  PubMed  Google Scholar 

  13. Wang C, Ivanov A, Chen L, et al. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J. 2005;24:3279–90.

    Article  CAS  PubMed  Google Scholar 

  14. Lee YK, Thomas SN, Yang AJ, Ann DK. Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells. J Biol Chem. 2007;282:1595–606.

    Article  CAS  PubMed  Google Scholar 

  15. Venkov CD, Link AJ, Jennings JL, et al. A proximal activator of transcription in epithelial-mesenchymal transition. J Clin Invest. 2007;117:482–91.

    Article  CAS  PubMed  Google Scholar 

  16. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–81.

    Article  CAS  PubMed  Google Scholar 

  17. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007;39:305–18.

    Article  CAS  PubMed  Google Scholar 

  18. Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98:1512–20.

    Article  CAS  PubMed  Google Scholar 

  19. Eccles SA, Welch DR. Metastasis: recent discoveries and novel treatment strategies. Lancet. 2007;369:1742–57.

    Article  CAS  PubMed  Google Scholar 

  20. Glehen O, Schreiber V, Cotte E, et al. Cytoreductive surgery and intraperitoneal chemohyperthermia for peritoneal carcinomatosis arising from gastric cancer. Arch Surg. 2004;139:20–6.

    Article  CAS  PubMed  Google Scholar 

  21. Inoue M, Matsumoto S, Saito H, Tsujitani S, Ikeguchi M. Intraperitoneal administration of a small interfering RNA targeting nuclear factor-kappa B with paclitaxel successfully prolongs the survival of xenograft model mice with peritoneal metastasis of gastric cancer. Int J Cancer. 2008;123:2696–701.

    Article  CAS  PubMed  Google Scholar 

  22. Okamoto K, Kitabayashi I, Taya Y. KAP1 dictates p53 response induced by chemotherapeutic agents via Mdm2 interaction. Biochem Biophys Res Commun. 2006;351:216–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Y. Kato and M. Ue-eda for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Yokoe MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoe, T., Toiyama, Y., Okugawa, Y. et al. KAP1 Is Associated With Peritoneal Carcinomatosis in Gastric Cancer. Ann Surg Oncol 17, 821–828 (2010). https://doi.org/10.1245/s10434-009-0795-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-009-0795-8

Keywords

Navigation