Skip to main content
Log in

Telomeres, Reproductive Aging, and Genomic Instability During Early Development

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Implantation rate decreases and miscarriage rate increases with advancing maternal age. The oocyte must be the locus of reproductive aging because donation of oocytes from younger to older women abrogates the effects of aging on fecundity. Nuclear transfer experiments in a mouse model of reproductive aging show that the reproductive aging phenotype segregates with the nucleus rather than the cytoplasm. A number of factors within the nucleus have been hypothesized to mediate reproductive aging, including disruption of cohesions, reduced chiasma, aneuploidy, disrupted meiotic spindles, and DNA damage caused by chronic exposure to reactive oxygen species. We have proposed telomere attrition as a parsimonious way to explain these diverse effects of aging on oocyte function. Telomeres are repetitive sequences of DNA and associated proteins, which form a loop (t loop) at chromosome ends. Telomeres prevent the blunt end of DNA from triggering a DNA damage response. Previously, we showed that experimental telomere shortening phenocopies reproductive aging in mice. Telomere shortening causes reduced synapsis and chiasma, chromosome fusions, embryo arrest and fragmentation, and abnormal meiotic spindles. Telomere length of polar bodies predicts the fragmentation of human embryos. Telomerase, the reverse transcriptase capable of reconstituting shortened telomeres, is only minimally active in oocytes and preimplantation embryos. Intriguingly, during the first cell cycles following activation, telomeres robustly elongate via a DNA double-strand break mechanism called alternative lengthening of telomeres (ALTs). Alternative lengthening of telomere takes place even in telomerase-null mice. This mechanism of telomere elongation previously had been found only in cancer cells lacking telomerase activity. We propose that ALT elongates telomeres across generations but does so at the cost of extensive genomic instability in preimplantation embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sauer MV. Reproduction at an advanced maternal age and maternal health. Fertil steril. 2015;103(5):1136–1143. doi:10.1016/j. fertnstert.2015.03.004.

    Article  PubMed  Google Scholar 

  2. Soderberg M, Christensson K, Lundgren I, Hildingsson I. Women’s attitudes towards fertility and childbearing - A study based on a national sample of Swedish women validating the Attitudes to Fertility and Childbearing Scale (AFCS). Sex Reprod Healthc. 2015;6(2):54–58. doi:10.1016/j.srhc.2015.01.002.

    Article  PubMed  Google Scholar 

  3. Forman EJ, Treff NR, Scott R. Jr. Fertility after age 45: From natural conception to Assisted Reproductive Technology and beyond. Maturitas. 2011;70(3):216–221. doi:10.1016/j.maturitas. 2011.07.003.

    Article  PubMed  Google Scholar 

  4. Liu L, Keefe DL. Nuclear origin of aging-associated meiotic defects in senescence-accelerated mice. Biol Reprod. 2004; 71(5):1724–1729. doi:10.1095/biolreprod.l04.028985.

    Article  CAS  PubMed  Google Scholar 

  5. Keefe DL, Liu L. Telomeres and reproductive aging. Reprod Fertil Dev. 2009;21(1):10–14.

    Article  CAS  PubMed  Google Scholar 

  6. Forsyth NR, Wright WE, Shay JW. Telomerase and differentiation in multicellular organisms: turn it off, turn it on, turn it off again. Differentiation. 2002;69(4-5):188–197. doi:10.1046/j.1432-0436.2002.690412.X.

    Article  CAS  PubMed  Google Scholar 

  7. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. Cellular senescence in aging primates. Science. 2006;311(5765):1257.

    Google Scholar 

  8. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIPl), but not p16(INK4a). Mol Cell. 2004;14(4):501–513.

    Article  CAS  PubMed  Google Scholar 

  9. Blackburn EH. Structure and function of telomeres. Nature. 1991; 350(6319):569–573. doi: 10.1038/350569a0.

    Article  CAS  PubMed  Google Scholar 

  10. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19(18):2100–2110. doi:10.1101/gad.l346005.

    Article  PubMed  CAS  Google Scholar 

  11. de Lange T. Telomere biology and DNA repair: enemies with benefits. FEBS Lett. 2010;584(17):3673–3674. doi:10.1016/j.febslet.2010.07.030.

    Article  PubMed  CAS  Google Scholar 

  12. de Lange T. Protection of mammalian telomeres. Oncogene. 2002;21(4):532–540.doi: 10.1038/sj.onc.1205080.

    Article  PubMed  Google Scholar 

  13. Collerton J. Martin-Ruiz C, Kenny A, et al. Newcastle 85+ Core Study, Telomere length is associated with left ventricular function in the oldest old: the Newcastle 85+ study. Eur Heart J. 2007;28(2):172–176. doi:10.1093/eurheartj/eh1437.

    Article  CAS  PubMed  Google Scholar 

  14. Richter T, von Zglinicki T. A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol. 2007;42(11):1039–1042. doi: 10.1016/j.exger.2007.08.005.

    Article  CAS  PubMed  Google Scholar 

  15. Jurk D, Wang C, Miwa S, et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell. 2012;11(6):996–1004. doi:10.1111/j.1474-9726.2012.00870.X.

    Article  CAS  PubMed  Google Scholar 

  16. Herbig U, Sedivy JM. Regulation of growth arrest in senescence: telomere damage is not the end of the story. Mech Ageing Dev. 2006;127(1):16–24. doi:10.1016/j.mad.2005.09.002.

    Article  CAS  PubMed  Google Scholar 

  17. Keefe DL. Telomeres and meiosis in health and disease. Cell Mol Life Sci. 2007;64(2):115–116. doi:10.1007/s00018-006-6462-3.

    Article  CAS  PubMed  Google Scholar 

  18. Keefe DL, Marquard K, Liu L. The telomere theory of reproductive senescence in women. Curr Opin Obstet Gynecol. 2006; 18(3):280–285. doi:10.1097/01.gco.0000193019.05686.49.

    Article  PubMed  Google Scholar 

  19. Felicio LS, Nelson JF, Gosden RG, Finch CE. Restoration of ovulatory cycles by young ovarian grafts in aging mice: potentiation by long-term ovariectomy decreases with age. Proc Natl Acad Sci U S A. 1983;80(19):6076–6080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Keefe DL, Michelson DS, Lee SH, Naftolin F. Astrocytes within the hypothalamic arcuate nucleus contain estrogen-sensitive peroxidase, bind fluorescein-conjugated estradiol, and may mediate synaptic plasticity in the rat. Am J Obstet Gynecol. 1991;164(4):959–966.

    CAS  PubMed  Google Scholar 

  21. Liu L, Blasco MA, Keefe DL. Requirement of functional telomeres for metaphase chromosome alignments and integrity of meiotic spindles. EMBO Rep. 2002;3(3):230–234. doi:10.1093/embo-reports/kvf055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keefe DL, Franco S, Liu L, et al. Telomere length predicts embryo fragmentation after in vitro fertilization in women— toward a telomere theory of reproductive aging in women. Am J Obstet Gynecol. 2005;192(4):1256–1260. discussion 1260-1261.doi:10.1016/j.ajog.2005.01.036.

    Article  CAS  PubMed  Google Scholar 

  23. Liu L, Franco S, Spyropoulos B, Moens PB, Blasco MA, Keefe DL. Irregular telomeres impair meiotic synapsis and recombination in mice. Proc Natl Acad Sci USA. 2004;101(17):6496–6501. doi:10.1073/pnas.0400755101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee HW, Blasco MA, Gottlieb GJ, Horner J. II, Greider CW, DePinho RA. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998;392(6676):569–574.

    Article  CAS  PubMed  Google Scholar 

  25. Gray KE, Schiff MA, Fitzpatrick AL, Kimura M, Aviv A, Starr JR. Leukocyte telomere length and age at menopause. Epidemiology. 2014;25(1):139–146. doi:10.1097/EDE.0000000000000017.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hanna CW, Bretherick KL, Gair JL, Fluker MR, Stephenson MD, Robinson WP. Telomere length and reproductive aging. Hum Reprod. 2009;24(5):1206–1211. doi:10.1093/humrep/dep007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghosh S, Feingold E, Chakraborty S, Dey SK. Telomere length is associated with types of chromosome 21 nondisjunction: a new insight into the maternal age effect on Down syndrome birth. Hum Genet. 2010;127(4):403–409. doi:10.1007/s00439-009-0785-8.

    Article  PubMed  Google Scholar 

  28. Ray A, Hong CS, Feingold E, et al. Maternal telomere length and risk of Down syndrome: epidemiological impact of smokeless chewing tobacco and oral contraceptive on segregation of chromosome 21. Public Health Genomics. 2016;19(1):11–18. doi:10. 1159/000439245.

    Article  PubMed  Google Scholar 

  29. Keefe DL, Liu L, Marquard K. Telomeres and aging-related meiotic dysfunction in women. Cell Mol Life Sci. 2007; 64(2)139–143. doi:10.1007/s00018-006-6466-z.

    Article  CAS  PubMed  Google Scholar 

  30. Treff NR, Su J, Taylor D, Scott R. Jr. Telomere DNA deficiency is associated with development of human embryonic aneuploidy. PLoS Genet. 2011;7(6):e1002161. doi:10.1371/journal.pgen.1002161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Henderson SA, Edwards RG. Chiasma frequency and maternal age in mammals. Nature. 1968;218(5136):22–28.

    Article  CAS  PubMed  Google Scholar 

  32. Polani PE, Crolla JA. A test of the production line hypothesis of mammalian oogenesis. Hum Genet. 1991;88(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  33. Abizaid A, Horvath B, Keefe DL, Leranth C, Horvath TL. Direct visual and circadian pathways target neuroendocrine cells in primates. Eur J Neurosci. 2004;20(10):2767–2776. doi:10.1111/j.1460-9568.2004.03737.X.

    Article  PubMed  Google Scholar 

  34. Liu J, Liu M, Ye X, et al. Delay in oocyte aging in mice by the antioxidant N-acetyl-L-cysteine (NAC). Hum Reprod. 2012;27(5):1411–1420. doi:10.1093/humrep/des019.

    Article  CAS  PubMed  Google Scholar 

  35. Antunes DM, Kalmbach KH, Wang F, et al. A single-cell assay for telomere DNA content shows increasing telomere length heterogeneity, as well as increasing mean telomere length in human spermatozoa with advancing age. J Assist Reprod Genet. 2015; 32(11):1685–1690. doi:10.1007/sl0815-015-0574-3.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu L, Di Girolamo CM, Navarro PA, Blasco MA, Keefe DL. Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res. 2004;294(1):1-8. doi:10.1016/j.yexcr.2003.10.031.

    Google Scholar 

  37. Huang J, Wang F, Okuka M, et al. Association of telomere length with authentic pluripotency of ES/iPS cells. Cell Res. 2011;21(5):779–792. doi:10.1038/cr.2011.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang J, Okuka M, Lu W, et al. Telomere shortening and DNA damage of embryonic stem cells induced by cigarette smoke. Reprod Toxicol. 2013;35:89–95. doi:10.1016/j.reprotox.2012.07. 003.

    Article  CAS  PubMed  Google Scholar 

  39. Huang J, Okuka M, Wang F, et al. Generation of pluripotent stem cells from eggs of aging mice. Aging Cell. 2010;9(2):113–125. doi: 10.1111/J.1474-9726.2009.00539.X.

    Article  CAS  PubMed  Google Scholar 

  40. Agarwal S, Loh YH, McLoughlin EM, et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature. 2010;464(7286):292–296. doi:10.1038/ nature08792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu L, Bailey SM, Okuka M, et al. Telomere lengthening early in development. Nat Cell Biol. 2007;9(12):1436–1441. doi:10.1038/ncb 1664.

    Article  CAS  PubMed  Google Scholar 

  42. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev genet. 1996;18(2):173–179.

    Article  CAS  PubMed  Google Scholar 

  43. Adjaye J, Daniels R, Bolton V, Monk M. cDNA libraries from single human preimplantation embryos. Genomics. 1997;46(3):337–344. doi:10.1006/geno.1997.5117.

    Article  CAS  PubMed  Google Scholar 

  44. Draskovic I, Londono Vallejo A. Telomere recombination and alternative telomere lengthening mechanisms. Front Biosci (Landmark ed). 2013;18:1–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Keefe MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keefe, D.L. Telomeres, Reproductive Aging, and Genomic Instability During Early Development. Reprod. Sci. 23, 1612–1615 (2016). https://doi.org/10.1177/1933719116676397

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116676397

Keywords

Navigation