1932

Abstract

Beyond coding for proteins, RNA molecules have well-established functions in the posttranscriptional regulation of gene expression. Less clear are the upstream roles of RNA in regulating transcription and chromatin-based processes in the nucleus. RNA is transcribed in the nucleus, so it is logical that RNA could play diverse and broad roles that would impact human physiology. Indeed, this idea is supported by well-established examples of noncoding RNAs that affect chromatin structure and function. There has been dramatic growth in studies focused on the nuclear roles of long noncoding RNAs (lncRNAs). Although little is known about the biochemical mechanisms of these lncRNAs, there is a developing consensus regarding the challenges of defining lncRNA function and mechanism. In this review, we examine the definition, discovery, functions, and mechanisms of lncRNAs. We emphasize areas where challenges remain and where consensus among laboratories has underscored the exciting ways in which human lncRNAs may affect chromatin biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-090314-024939
2016-08-31
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/genom/17/1/annurev-genom-090314-024939.html?itemId=/content/journals/10.1146/annurev-genom-090314-024939&mimeType=html&fmt=ahah

Literature Cited

  1. Arab K, Park YJ, Lindroth AM, Schafer A, Oakes C. 1.  et al. 2014. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol. Cell 55:604–14 [Google Scholar]
  2. Baltz AG, Munschauer M, Schwanhäusser B, Vasile A, Murakawa Y. 2.  et al. 2012. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46:674–90 [Google Scholar]
  3. Barlow DP, Bartolomei MS. 3.  2014. Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6:a018383 [Google Scholar]
  4. Bassett AR, Akhtar A, Barlow DP, Bird AP, Brockdorff N. 4.  et al. 2014. Considerations when investigating lncRNA function in vivo. eLife 3:e03058 [Google Scholar]
  5. Battich N, Stoeger T, Pelkmans L. 5.  2013. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat. Methods 10:1127–33 [Google Scholar]
  6. Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B. 6.  et al. 2014. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. 33:981–93 [Google Scholar]
  7. Belote JM, Lucchesi JC. 7.  1980. Male-specific lethal mutations of Drosophila melanogaster. Genetics 96:165–86 [Google Scholar]
  8. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE. 8.  et al. 2004. Global identification of human transcribed sequences with genome tiling arrays. Science 306:2242–46 [Google Scholar]
  9. Biggin MD. 9.  2011. Animal transcription networks as highly connected, quantitative continua. Dev. Cell 21:611–26 [Google Scholar]
  10. Blum M, De Robertis EM, Wallingford JB, Niehrs C. 10.  2015. Morpholinos: antisense and sensibility. Dev. Cell 35:145–49 [Google Scholar]
  11. Boettcher M, McManus MT. 11.  2015. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol. Cell 58:575–85 [Google Scholar]
  12. Bonasio R, Shiekhattar R. 12.  2014. Regulation of transcription by long noncoding RNAs. Annu. Rev. Genet. 48:433–55 [Google Scholar]
  13. Brannan CI, Dees EC, Ingram RS, Tilghman SM. 13.  1990. The product of the H19 gene may function as an RNA. Mol. Cell. Biol. 10:28–36 [Google Scholar]
  14. Bray N, Pimentel H, Melsted P, Pachter L. 14.  2015. Near-optimal RNA-Seq quantification. arXiv:1505.02710
  15. Brockdorff N. 15.  2013. Noncoding RNA and Polycomb recruitment. RNA 19:429–42 [Google Scholar]
  16. Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP. 16.  et al. 1992. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71:515–26 [Google Scholar]
  17. Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M. 17.  et al. 1991. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44 [Google Scholar]
  18. Brown JA, Valenstein ML, Yario TA, Tycowski KT, Steitz JA. 18.  2012. Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs. PNAS 109:19202–7 [Google Scholar]
  19. Buske FA, Bauer DC, Mattick JS, Bailey TL. 19.  2012. Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res. 22:1372–81 [Google Scholar]
  20. Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O. 20.  et al. 2015. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol. 16:20 [Google Scholar]
  21. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B. 21.  et al. 2011. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25:1915–27 [Google Scholar]
  22. 22. Cancer Genome Atlas Res. Netw Weinstein JN, Collisson EA, Mills GB, Shaw KR et al. 2013. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45:1113–20 [Google Scholar]
  23. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. 23.  2014. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–46 [Google Scholar]
  24. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC. 24.  et al. 2005. The transcriptional landscape of the mammalian genome. Science 309:1559–63 [Google Scholar]
  25. Cech TR, Steitz JA. 25.  2014. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157:77–94 [Google Scholar]
  26. Chadwick BP, Willard HF. 26.  2004. Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. PNAS 101:17450–55 [Google Scholar]
  27. Chalei V, Sansom SN, Kong L, Lee S, Montiel JF. 27.  et al. 2014. The long non-coding RNA Dali is an epigenetic regulator of neural differentiation. eLife 3:e04530 [Google Scholar]
  28. Chen PB, Chen HV, Acharya D, Rando OJ, Fazzio TG. 28.  2015. R loops regulate promoter-proximal chromatin architecture and cellular differentiation. Nat. Struct. Mol. Biol. 22:999–1007 [Google Scholar]
  29. Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. 29.  2011. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44:667–78 [Google Scholar]
  30. Chu C, Zhang QC, da Rocha STT, Flynn RA, Bharadwaj M. 30.  et al. 2015. Systematic discovery of Xist RNA binding proteins. Cell 161:404–16 [Google Scholar]
  31. Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E. 31.  et al. 2012. Genome-wide analysis of long noncoding RNA stability. Genome Res. 22:885–98 [Google Scholar]
  32. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. 32.  2009. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4:265–70 [Google Scholar]
  33. Conrad NK, Mili S, Marshall EL, Shu MD, Steitz JA. 33.  2006. Identification of a rapid mammalian deadenylation-dependent decay pathway and its inhibition by a viral RNA element. Mol. Cell 24:943–53 [Google Scholar]
  34. Conrad NK, Shu MD, Uyhazi KE, Steitz JA. 34.  2007. Mutational analysis of a viral RNA element that counteracts rapid RNA decay by interaction with the polyadenylate tail. PNAS 104:10412–17 [Google Scholar]
  35. Conrad T, Akhtar A. 35.  2011. Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat. Rev. Genet. 13:123–34 [Google Scholar]
  36. Crosetto N, Bienko M, van Oudenaarden A. 36.  2015. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16:57–66 [Google Scholar]
  37. Cunningham F, Amode MR, Barrell D, Beal K, Billis K. 37.  et al. 2015. Ensembl 2015. Nucleic Acids Res. 43:D662–69 [Google Scholar]
  38. Davidovich C, Cech TR. 38.  2015. The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. RNA 21:2007–22 [Google Scholar]
  39. Davidovich C, Wang X, Cifuentes-Rojas C, Goodrich KJ, Gooding AR. 39.  et al. 2015. Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell 57:552–58 [Google Scholar]
  40. Davidovich C, Zheng L, Goodrich KJ, Cech TR. 40.  2013. Promiscuous RNA binding by Polycomb repressive complex 2. Nat. Struct. Mol. Biol. 20:1250–57 [Google Scholar]
  41. de Hoon M, Shin JW, Carninci P. 41.  2015. Paradigm shifts in genomics through the FANTOM projects. Mamm. Genome 26:391–402 [Google Scholar]
  42. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S. 42.  et al. 2012. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22:1775–89 [Google Scholar]
  43. Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R. 43.  et al. 2014. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol. Cell 54:777–90 [Google Scholar]
  44. Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, Assmann SM. 44.  2014. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505:696–700 [Google Scholar]
  45. Dinger ME, Pang KC, Mercer TR, Mattick JS. 45.  2008. Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLOS Comput. Biol. 4:e1000176 [Google Scholar]
  46. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T. 46.  et al. 2012. Landscape of transcription in human cells. Nature 489:101–8 [Google Scholar]
  47. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L. 47.  et al. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–6 [Google Scholar]
  48. Donley N, Smith L, Thayer MJ. 48.  2015. ASAR15, a cis-acting locus that controls chromosome-wide replication timing and stability of human chromosome 15. PLOS Genet. 11:e1004923 [Google Scholar]
  49. Duffy EE, Rutenberg-Schoenberg M, Stark CD, Kitchen RR, Gerstein MB, Simon MD. 49.  2015. Tracking distinct RNA populations using efficient and reversible covalent chemistry. Mol. Cell 59:858–66 [Google Scholar]
  50. Dunagin M, Cabili MN, Rinn J, Raj A. 50.  2015. Visualization of lncRNA by single-molecule fluorescence in situ hybridization. Methods Mol. Biol. 1262:3–19 [Google Scholar]
  51. Eid J, Fehr A, Gray J, Luong K, Lyle J. 51.  et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323:133–38 [Google Scholar]
  52. 52. ENCODE Proj. Consort 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74 [Google Scholar]
  53. Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K. 53.  et al. 2013. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973 [Google Scholar]
  54. Fang R, Moss WN, Rutenberg-Schoenberg M, Simon MD. 54.  2015. Probing Xist RNA structure in cells using Targeted Structure-Seq. PLOS Genet. 11:e1005668 [Google Scholar]
  55. Fitzpatrick GV, Soloway PD, Higgins MJ. 55.  2002. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet. 32:426–31 [Google Scholar]
  56. Fukunaga A, Tanaka A, Oishi K. 56.  1975. Maleless, a recessive autosomal mutant of Drosophila melanogaster that specifically kills male zygotes. Genetics 81:135–41 [Google Scholar]
  57. Gall JG, Pardue ML. 57.  1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. PNAS 63:378–83 [Google Scholar]
  58. Gardner EJ, Nizami ZF, Talbot CC Jr., Gall JG. 58.  2012. Stable intronic sequence RNA (sisRNA), a new class of noncoding RNA from the oocyte nucleus of Xenopus tropicalis. Genes Dev. 26:2550–59 [Google Scholar]
  59. Gelbart ME, Kuroda MI. 59.  2009. Drosophila dosage compensation: a complex voyage to the X chromosome. Development 136:1399–410 [Google Scholar]
  60. Gendrel AV, Heard E. 60.  2014. Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Annu. Rev. Cell Dev. Biol. 30:561–80 [Google Scholar]
  61. Goff LA, Rinn JL. 61.  2015. Linking RNA biology to lncRNAs. Genome Res. 25:1456–65 [Google Scholar]
  62. Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S. 62.  et al. 2013. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell 24:206–14 [Google Scholar]
  63. Gu W, Lee HC, Chaves D, Youngman EM, Pazour GJ. 63.  et al. 2012. CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell 151:1488–500 [Google Scholar]
  64. Guttman M, Amit I, Garber M, French C, Lin MF. 64.  et al. 2009. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–27 [Google Scholar]
  65. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK. 65.  et al. 2011. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300 [Google Scholar]
  66. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J. 66.  et al. 2010. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol. 28:503–10 [Google Scholar]
  67. Guttman M, Rinn JL. 67.  2012. Modular regulatory principles of large non-coding RNAs. Nature 482:339–46 [Google Scholar]
  68. Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. 68.  2013. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154:240–51 [Google Scholar]
  69. Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J. 69.  et al. 2014. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol. 21:198–206 [Google Scholar]
  70. Housman G, Ulitsky I. 70.  2016. Methods for distinguishing between protein-coding and long noncoding RNAs and the elusive biological purpose of translation of long noncoding RNAs. Biochim. Biophys. Acta 1859:31–40 [Google Scholar]
  71. Hsu PD, Lander ES, Zhang F. 71.  2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78 [Google Scholar]
  72. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ. 72.  et al. 2010. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–19 [Google Scholar]
  73. Hube F, Guo J, Chooniedass-Kothari S, Cooper C, Hamedani MK. 73.  et al. 2006. Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines. DNA Cell Biol. 25:418–28 [Google Scholar]
  74. Kanduri C, Thakur N, Pandey RR. 74.  2006. The length of the transcript encoded from the Kcnq1ot1 antisense promoter determines the degree of silencing. EMBO J. 25:2096–106 [Google Scholar]
  75. Kaneko S, Son J, Bonasio R, Shen SS, Reinberg D. 75.  2014. Nascent RNA interaction keeps PRC2 activity poised and in check. Genes Dev. 28:1983–88 [Google Scholar]
  76. Kaneko S, Son J, Shen SS, Reinberg D, Bonasio R. 76.  2013. PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat. Struct. Mol. Biol. 20:1258–64 [Google Scholar]
  77. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R. 77.  et al. 2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–88 [Google Scholar]
  78. Kelley RL, Meller VH, Gordadze PR, Roman G, Davis RL, Kuroda MI. 78.  1999. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98:513–22 [Google Scholar]
  79. Kharchenko PV, Tolstorukov MY, Park PJ. 79.  2008. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat. Biotechnol. 26:1351–59 [Google Scholar]
  80. Kim TK, Hemberg M, Gray JM. 80.  2015. Enhancer RNAs: a class of long noncoding RNAs synthesized at enhancers. Cold Spring Harb. Perspect. Biol. 7:a018622 [Google Scholar]
  81. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM. 81.  et al. 2010. Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–87 [Google Scholar]
  82. Kok FO, Shin M, Ni CW, Gupta A, Grosse AS. 82.  et al. 2015. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev. Cell 32:97–108 [Google Scholar]
  83. Kwok CK, Ding Y, Tang Y, Assmann SM, Bevilacqua PC. 83.  2013. Determination of in vivo RNA structure in low-abundance transcripts. Nat. Commun. 4:2971 [Google Scholar]
  84. Lai F, Gardini A, Zhang A, Shiekhattar R. 84.  2015. Integrator mediates the biogenesis of enhancer RNAs. Nature 525:399–403 [Google Scholar]
  85. Latos PA, Pauler FM, Koerner MV, Senergin HB, Hudson QJ. 85.  et al. 2012. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338:1469–72 [Google Scholar]
  86. Lee JT. 86.  2009. Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev. 23:1831–42 [Google Scholar]
  87. Lee JT, Bartolomei MS. 87.  2013. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152:1308–23 [Google Scholar]
  88. Lee MP, DeBaun MR, Mitsuya K, Galonek HL, Brandenburg S. 88.  et al. 1999. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. PNAS 96:5203–8 [Google Scholar]
  89. Lee N, Moss WN, Yario TA, Steitz JA. 89.  2015. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 160:607–18 [Google Scholar]
  90. Lee RC, Feinbaum RL, Ambros V. 90.  1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–54 [Google Scholar]
  91. Li B, Dewey CN. 91.  2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12:323 [Google Scholar]
  92. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW. 92.  2008. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–69 [Google Scholar]
  93. Lin MF, Jungreis I, Kellis M. 93.  2011. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27:i275–82 [Google Scholar]
  94. Lin N, Chang KY, Li Z, Gates K, Rana ZA. 94.  et al. 2014. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol. Cell 53:1005–19 [Google Scholar]
  95. Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC. 95.  et al. 2008. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–36 [Google Scholar]
  96. Lyon MF. 96.  1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–73 [Google Scholar]
  97. Maenner S, Muller M, Becker PB. 97.  2012. Roles of long, non-coding RNA in chromosome-wide transcription regulation: lessons from two dosage compensation systems. Biochimie 94:1490–98 [Google Scholar]
  98. Mancini-Dinardo D, Steele SJ, Levorse JM, Ingram RS, Tilghman SM. 98.  2006. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 20:1268–82 [Google Scholar]
  99. Mao YS, Sunwoo H, Zhang B, Spector DL. 99.  2011. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat. Cell Biol. 13:95–101 [Google Scholar]
  100. Margueron R, Reinberg D. 100.  2011. The Polycomb complex PRC2 and its mark in life. Nature 469:343–49 [Google Scholar]
  101. Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD. 101.  et al. 2008. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol. Cell 29:499–509 [Google Scholar]
  102. Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J. 102.  et al. 2014. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24:496–510 [Google Scholar]
  103. Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A. 103.  2007. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445:666–70 [Google Scholar]
  104. Martin JA, Wang Z. 104.  2011. Next-generation transcriptome assembly. Nat. Rev. Genet. 12:671–82 [Google Scholar]
  105. Mayer C, Schmitz KM, Li J, Grummt I, Santoro R. 105.  2006. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol. Cell 22:351–61 [Google Scholar]
  106. McHugh CA, Chen C-KK, Chow A, Surka CF, Tran C. 106.  et al. 2015. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521:232–36 [Google Scholar]
  107. Melé M, Ferreira PG, Reverter F, DeLuca DS, Monlong J. 107.  et al. 2015. The human transcriptome across tissues and individuals. Science 348:660–65 [Google Scholar]
  108. Meller VH, Rattner BP. 108.  2002. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J. 21:1084–91 [Google Scholar]
  109. Meller VH, Wu KH, Roman G, Kuroda MI, Davis RL. 109.  1997. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88:445–57 [Google Scholar]
  110. Minajigi A, Froberg JE, Wei C, Sunwoo H, Kesner B. 110.  et al. 2015. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349:aab2276 [Google Scholar]
  111. Mitsuya K, Meguro M, Lee MP, Katoh M, Schulz TC. 111.  et al. 1999. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum. Mol. Genet. 8:1209–17 [Google Scholar]
  112. Mitton-Fry RM, DeGregorio SJ, Wang J, Steitz TA, Steitz JA. 112.  2010. Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science 330:1244–47 [Google Scholar]
  113. Mohammad F, Mondal T, Guseva N, Pandey GK, Kanduri C. 113.  2010. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137:2493–99 [Google Scholar]
  114. Moore PB, Steitz TA. 114.  2002. The involvement of RNA in ribosome function. Nature 418:229–35 [Google Scholar]
  115. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 115.  2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5:621–28 [Google Scholar]
  116. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D. 116.  et al. 2008. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–49 [Google Scholar]
  117. Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC. 117.  et al. 2008. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322:1717–20 [Google Scholar]
  118. Nakagawa S. 118.  2016. Lessons from reverse-genetic studies of lncRNAs. Biochim. Biophys. Acta 1859:177–83 [Google Scholar]
  119. Neilson JR, Sharp PA. 119.  2008. Small RNA regulators of gene expression. Cell 134:899–902 [Google Scholar]
  120. Novikova IV, Hennelly SP, Sanbonmatsu KY. 120.  2012. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res. 40:5034–51 [Google Scholar]
  121. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H. 121.  et al. 2002. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–73 [Google Scholar]
  122. Oliver PL, Chodroff RA, Gosal A, Edwards B, Cheung AF. 122.  et al. 2015. Disruption of Visc-2, a brain-expressed conserved long noncoding RNA, does not elicit an overt anatomical or behavioral phenotype. Cereb. Cortex 25:3572–85 [Google Scholar]
  123. Orom UA, Shiekhattar R. 123.  2013. Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 154:1190–93 [Google Scholar]
  124. Pachter L. 124.  2014. Estimating number of transcripts from RNA-Seq measurements (and why I believe in paywall). Bits of DNA Apr. 4. https://liorpachter.wordpress.com/2014/04/30/estimating-number-of-transcripts-from-rna-seq-measurements-and-why-i-believe-in-paywall
  125. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L. 125.  et al. 2008. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32:232–46 [Google Scholar]
  126. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA. 126.  et al. 2003. Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–35 [Google Scholar]
  127. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. 127.  2010. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–38 [Google Scholar]
  128. Ponjavic J, Ponting CP, Lunter G. 128.  2007. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 17:556–65 [Google Scholar]
  129. Postepska-Igielska A, Giwojna A, Gasri-Plotnitsky L, Schmitt N, Dold A. 129.  et al. 2015. LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol. Cell 60:626–36 [Google Scholar]
  130. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q. 130.  et al. 2011. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat. Biotechnol. 29:742–49 [Google Scholar]
  131. Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A. 131.  et al. 2014. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 42:D756–63 [Google Scholar]
  132. Qian L, Vu MN, Carter M, Wilkinson MF. 132.  1992. A spliced intron accumulates as a lariat in the nucleus of T cells. Nucleic Acids Res. 20:5345–50 [Google Scholar]
  133. Quek XC, Thomson DW, Maag JL, Bartonicek N, Signal B. 133.  et al. 2015. lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res. 43:D168–73 [Google Scholar]
  134. Rabani M, Raychowdhury R, Jovanovic M, Rooney M, Stumpo DJ. 134.  et al. 2014. High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell 159:1698–710 [Google Scholar]
  135. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. 135.  2008. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5:877–79 [Google Scholar]
  136. Ramaswami G, Lin W, Piskol R, Tan MH, Davis C, Li JB. 136.  2012. Accurate identification of human Alu and non-Alu RNA editing sites. Nat. Methods 9:579–81 [Google Scholar]
  137. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X. 137.  et al. 2007. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–23 [Google Scholar]
  138. Rossi A, Kontarakis Z, Gerri C, Nolte H, Holper S. 138.  et al. 2015. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524:230–33 [Google Scholar]
  139. Roth A, Breaker RR. 139.  2009. The structural and functional diversity of metabolite-binding riboswitches. Annu. Rev. Biochem. 78:305–34 [Google Scholar]
  140. Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS. 140.  2014. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701–5 [Google Scholar]
  141. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF. 141.  et al. 2013. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2:e01749 [Google Scholar]
  142. Schmitz KM, Mayer C, Postepska A, Grummt I. 142.  2010. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 24:2264–69 [Google Scholar]
  143. Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH. 143.  et al. 2014. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–62 [Google Scholar]
  144. Sharon D, Tilgner H, Grubert F, Snyder M. 144.  2013. A single-molecule long-read survey of the human transcriptome. Nat. Biotechnol. 31:1009–14 [Google Scholar]
  145. Shechner DM, Hacisuleyman E, Younger ST, Rinn JL. 145.  2015. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat. Methods 12:664–70 [Google Scholar]
  146. Sheik Mohamed J, Gaughwin PM, Lim B, Robson P, Lipovich L. 146.  2010. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 16:324–37 [Google Scholar]
  147. Sigova AA, Abraham BJ, Ji X, Molinie B, Hannett NM. 147.  et al. 2015. Transcription factor trapping by RNA in gene regulatory elements. Science 350:978–81 [Google Scholar]
  148. Silverman IM, Li F, Alexander A, Goff L, Trapnell C. 148.  et al. 2014. RNase-mediated protein footprint sequencing reveals protein-binding sites throughout the human transcriptome. Genome Biol. 15:R3 [Google Scholar]
  149. Simon JA, Kingston RE. 149.  2013. Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol. Cell 49:808–24 [Google Scholar]
  150. Simon MD. 150.  2016. Insight into lncRNA biology using hybridization capture analyses. Biochim. Biophys. Acta 1859:121–27 [Google Scholar]
  151. Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M. 151.  et al. 2013. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504:465–69 [Google Scholar]
  152. 152.  Deleted in proof
  153. Simon MD, Wang CI, Kharchenko PV, West JA, Chapman BA. 153.  et al. 2011. The genomic binding sites of a noncoding RNA. PNAS 108:20497–502 [Google Scholar]
  154. Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J. 154.  et al. 2013. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat. Chem. Biol. 9:59–64 [Google Scholar]
  155. Smilinich NJ, Day CD, Fitzpatrick GV, Caldwell GM, Lossie AC. 155.  et al. 1999. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. PNAS 96:8064–69 [Google Scholar]
  156. Somarowthu S, Legiewicz M, Chillón I, Marcia M, Liu F, Pyle AM. 156.  2015. HOTAIR forms an intricate and modular secondary structure. Mol. Cell 58:353–61 [Google Scholar]
  157. Soruco MM, Chery J, Bishop EP, Siggers T, Tolstorukov MY. 157.  et al. 2013. The CLAMP protein links the MSL complex to the X chromosome during Drosophila dosage compensation. Genes Dev. 27:1551–56 [Google Scholar]
  158. Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B. 158.  et al. 2015. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519:486–90 [Google Scholar]
  159. Stoffregen EP, Donley N, Stauffer D, Smith L, Thayer MJ. 159.  2011. An autosomal locus that controls chromosome-wide replication timing and mono-allelic expression. Hum. Mol. Genet. 20:2366–78 [Google Scholar]
  160. Stricker SH, Steenpass L, Pauler FM, Santoro F, Latos PA. 160.  et al. 2008. Silencing and transcriptional properties of the imprinted Airn ncRNA are independent of the endogenous promoter. EMBO J. 27:3116–28 [Google Scholar]
  161. Sun L, Goff LA, Trapnell C, Alexander R, Lo KA. 161.  et al. 2013. Long noncoding RNAs regulate adipogenesis. PNAS 110:3387–92 [Google Scholar]
  162. Tan JY, Sirey T, Honti F, Graham B, Piovesan A. 162.  et al. 2015. Extensive microRNA-mediated crosstalk between lncRNAs and mRNAs in mouse embryonic stem cells.. Genome Res. 25:655–66 [Google Scholar]
  163. Tani H, Mizutani R, Salam KA, Tano K, Ijiri K. 163.  et al. 2012. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. 22:947–56 [Google Scholar]
  164. Tay Y, Rinn J, Pandolfi PP. 164.  2014. The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–52 [Google Scholar]
  165. Tilgner H, Jahanbani F, Blauwkamp T, Moshrefi A, Jaeger E. 165.  et al. 2015. Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events. Nat. Biotechnol. 33:736–42 [Google Scholar]
  166. Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S. 166.  et al. 2012. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 22:1616–25 [Google Scholar]
  167. Tome JM, Ozer A, Pagano JM, Gheba D, Schroth GP, Lis JT. 167.  2014. Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling. Nat. Methods 11:683–88 [Google Scholar]
  168. Toor N, Keating KS, Taylor SD, Pyle AM. 168.  2008. Crystal structure of a self-spliced group II intron. Science 320:77–82 [Google Scholar]
  169. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G. 169.  et al. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28:511–15 [Google Scholar]
  170. Uchida K, Takinami Y. 170.  1981. The trans-cis isomerization of potassium diaquabis(oxalato)chromate(III) in various organic solvent-water mixtures. Bull. Chem. Soc. Jpn. 54:2298–301 [Google Scholar]
  171. Ulitsky I, Bartel DP. 171.  2013. lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46 [Google Scholar]
  172. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. 172.  2011. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147:1537–50 [Google Scholar]
  173. 173. UniProt Consort 2015. UniProt: a hub for protein information. Nucleic Acids Res. 43:D204–12 [Google Scholar]
  174. Vance KW, Ponting CP. 174.  2014. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet. 30:348–55 [Google Scholar]
  175. Vance KW, Sansom SN, Lee S, Chalei V, Kong L. 175.  et al. 2014. The long non-coding RNA Paupar regulates the expression of both local and distal genes. EMBO J. 33:296–311 [Google Scholar]
  176. Volders PJ, Verheggen K, Menschaert G, Vandepoele K, Martens L. 176.  et al. 2015. An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res 8:4363–64 [Google Scholar]
  177. Wagner GP, Kin K, Lynch VJ. 177.  2012. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131:281–85 [Google Scholar]
  178. Walsh AL, Tuzova AV, Bolton EM, Lynch TH, Perry AS. 178.  2014. Long noncoding RNAs and prostate carcinogenesis: the missing ‘linc’?. Trends Mol. Med. 20:428–36 [Google Scholar]
  179. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R. 179.  et al. 2011. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–24 [Google Scholar]
  180. Wang X, Lu Z, Gomez A, Hon GC, Yue Y. 180.  et al. 2014. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–20 [Google Scholar]
  181. Washietl S, Findeiss S, Muller SA, Kalkhof S, von Bergen M. 181.  et al. 2011. RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data. RNA 17:578–94 [Google Scholar]
  182. Werner MS, Ruthenburg AJ. 182.  2015. Nuclear fractionation reveals thousands of chromatin-tethered noncoding RNAs adjacent to active genes. Cell Rep. 12:1089–98 [Google Scholar]
  183. West JA, Davis CP, Sunwoo H, Simon MD, Sadreyev RI. 183.  et al. 2014. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell 55:791–802 [Google Scholar]
  184. Wightman B, Ha I, Ruvkun G. 184.  1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–62 [Google Scholar]
  185. Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG. 185.  et al. 2005. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309:1570–73 [Google Scholar]
  186. Wilusz JE. 186.  2016. Long noncoding RNAs: re-writing dogmas of RNA processing and stability. Biochim. Biophys. Acta 1859:128–38 [Google Scholar]
  187. Wilusz JE, JnBaptiste CK, Lu LY, Kuhn C-D, Joshua-Tor L, Sharp PA. 187.  2012. A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev. 26:2392–407 [Google Scholar]
  188. Wright AV, Nuñez JK, Doudna JA. 188.  2016. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164:29–44 [Google Scholar]
  189. Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP. 189.  1997. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389:745–49 [Google Scholar]
  190. Xie C, Yuan J, Li H, Li M, Zhao G. 190.  et al. 2014. NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res. 42:D98–103 [Google Scholar]
  191. Yang Z, Bielawski JP. 191.  2000. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 15:496–503 [Google Scholar]
  192. Yin Q-FF, Yang L, Zhang Y, Xiang J-FF, Wu Y-WW. 192.  et al. 2012. Long noncoding RNAs with snoRNA ends. Mol. Cell 48:219–30 [Google Scholar]
  193. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF. 193.  et al. 2013. Circular intronic long noncoding RNAs. Mol. Cell 51:792–806 [Google Scholar]
  194. Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ. 194.  et al. 2010. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 40:939–53 [Google Scholar]
  195. Zhao J, Sun BK, Erwin JA, Song J-JJ, Lee JT. 195.  2008. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–56 [Google Scholar]
/content/journals/10.1146/annurev-genom-090314-024939
Loading
/content/journals/10.1146/annurev-genom-090314-024939
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error