1932

Abstract

Autophagy is the major cellular pathway to degrade dysfunctional organelles and protein aggregates. Autophagy is particularly important in neurons, which are terminally differentiated cells that must last the lifetime of the organism. There are both constitutive and stress-induced pathways for autophagy in neurons, which catalyze the turnover of aged or damaged mitochondria, endoplasmic reticulum, other cellular organelles, and aggregated proteins. These pathways are required in neurodevelopment as well as in the maintenance of neuronal homeostasis. Here we review the core components of the pathway for autophagosome biogenesis, as well as the cell biology of bulk and selective autophagy in neurons. Finally, we discuss the role of autophagy in neuronal development, homeostasis, and aging and the links between deficits in autophagy and neurodegeneration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100818-125242
2019-10-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/35/1/annurev-cellbio-100818-125242.html?itemId=/content/journals/10.1146/annurev-cellbio-100818-125242&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmed I, Liang Y, Schools S, Dawson VL, Dawson TM, Savitt JM 2012. Development and characterization of a new Parkinson's disease model resulting from impaired autophagy. J. Neurosci. 32:4616503–9
    [Google Scholar]
  2. Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL 2014. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J. Cell Biol. 206:5655–70
    [Google Scholar]
  3. Ban B-K, Jun M-H, Ryu H-H, Jang D-J, Ahmad ST, Lee J-A 2013. Autophagy negatively regulates early axon growth in cortical neurons. Mol. Cell. Biol. 33:193907–19
    [Google Scholar]
  4. Bingol B, Sheng M. 2011. Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 69:122–32
    [Google Scholar]
  5. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M et al. 2005. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171:4603–14
    [Google Scholar]
  6. Boland B, Yu WH, Corti O, Mollereau B, Henriques A et al. 2018. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 17:9660–88
    [Google Scholar]
  7. Bunge MB. 1973. Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J. Cell Biol. 56:3713–35
    [Google Scholar]
  8. Cai Q, Zakaria HM, Simone A, Sheng ZH 2012. Spatial Parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr. Biol. 22:6545–52
    [Google Scholar]
  9. Cebollero E, Van Der Vaart A, Zhao M, Rieter E, Klionsky DJ et al. 2012. Phosphatidylinositol-3-phosphate clearance plays a key role in autophagosome completion. Curr. Biol. 22:171545–53
    [Google Scholar]
  10. Chang JT, Kumsta C, Hellman AB, Adams LM, Hansen M 2017. Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging. eLife 6:e18459
    [Google Scholar]
  11. Chano T, Okabe H, Hulette CM 2007. RB1CC1 insufficiency causes neuronal atrophy through mTOR signaling alteration and involved in the pathology of Alzheimer's diseases. Brain Res 1168:97–105
    [Google Scholar]
  12. Chen JX, Sun YJ, Wang P, Long DX, Li W et al. 2013. Induction of autophagy by TOCP in differentiated human neuroblastoma cells lead to degradation of cytoskeletal components and inhibition of neurite outgrowth. Toxicology 310:92–97
    [Google Scholar]
  13. Chen ZW, Chang CS, Leil TA, Olsen RW 2007. C-terminal modification is required for GABARAP-mediated GABAA receptor trafficking. J. Neurosci. 27:256655–63
    [Google Scholar]
  14. Cheng XT, Xie YX, Zhou B, Huang N, Farfel-Becker T, Sheng ZH 2018. Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons. J. Cell Biol. 217:93127–39
    [Google Scholar]
  15. Cheng XT, Zhou B, Lin MY, Cai Q, Sheng ZH 2015. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes. J. Cell Biol. 209:3377–86
    [Google Scholar]
  16. Chu CT. 2018. Mechanisms of selective autophagy and mitophagy: implications for neurodegenerative diseases. Neurobiol. Dis. 122:23–34
    [Google Scholar]
  17. Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA et al. 2015. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347:1436–41
    [Google Scholar]
  18. Clark SG, Graybeal LL, Bhattacharjee S, Thomas C, Bhattacharya S, Cox DN 2018. Basal autophagy is required for promoting dendritic terminal branching in Drosophila sensory neurons. PLOS ONE 13:11e0206743
    [Google Scholar]
  19. Cornelissen T, Vilain S, Vints K, Gounko N, Verstreken P, Vandenberghe W 2018. Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila. eLife 7:e35878
    [Google Scholar]
  20. Danieli A, Martens S. 2018. p62-mediated phase separation at the intersection of the ubiquitin-proteasome system and autophagy. J. Cell Sci. 131:19jcs214304
    [Google Scholar]
  21. De Pace R, Skirzewski M, Damme M, Mattera R, Mercurio J et al. 2018. Altered distribution of ATG9A and accumulation of axonal aggregates in neurons from a mouse model of AP-4 deficiency syndrome. PLOS Genet 14:4e1007363
    [Google Scholar]
  22. Devireddy S, Liu A, Lampe T, Hollenbeck PJ 2015. The organization of mitochondrial quality control and life cycle in the nervous system in vivo in the absence of PINK1. J. Neurosci. 35:259391–401
    [Google Scholar]
  23. Dooley HC, Razi M, Polson HEJ, Girardin SE, Wilson MI, Tooze SA 2014. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 55:2238–52
    [Google Scholar]
  24. Dragich JM, Kuwajima T, Hirose-Ikeda M, Yoon MS, Eenjes E et al. 2016. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. eLife 5:e14810
    [Google Scholar]
  25. Fecto F, Yan J, Vemula SP, Liu E, Yang Y et al. 2011. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch. Neurol. 68:111440–46
    [Google Scholar]
  26. Feng Y, He D, Yao Z, Klionsky DJ 2014. The machinery of macroautophagy. Cell Res 24:124–41
    [Google Scholar]
  27. Finley KD, Edeen PT, Cumming RC, Mardahl-Dumesnil MD, Taylor BJ et al. 2003. Blue cheese mutations define a novel, conserved gene involved in progressive neural degeneration. J. Neurosci. 23:41254–64
    [Google Scholar]
  28. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V et al. 2015. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18:5631–36
    [Google Scholar]
  29. Friedman LG, Lachenmayer ML, Wang J, He L, Poulose SM et al. 2012. Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain. J. Neurosci. 32:227585–93
    [Google Scholar]
  30. Fu MM, Nirschl JJ, Holzbaur ELF 2014. LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. Dev. Cell 29:5577–90
    [Google Scholar]
  31. Fumagalli F, Noack J, Bergmann TJ, Presmanes EC, Pisoni GB et al. 2016. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat. Cell Biol. 18:111173–84
    [Google Scholar]
  32. George AA, Hayden S, Stanton GR, Brockerhoff SE 2016. Arf6 and the 5′phosphatase of synaptojanin 1 regulate autophagy in cone photoreceptors. BioEssays 38:Suppl. 1119–35
    [Google Scholar]
  33. Glatigny M, Moriceau S, Rivagorda M, Ramos-Brossier M, Nascimbeni AC et al. 2019. Autophagy is required for memory formation and reverses age-related memory decline. Curr. Biol. 29:3435–48
    [Google Scholar]
  34. Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA et al. 2003. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 278:4443628–35
    [Google Scholar]
  35. Gómez-Sánchez R, Rose J, Guimarães R, Mari M, Papinski D et al. 2018. Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. J. Cell Biol. 217:82743–63
    [Google Scholar]
  36. Gopaldass N, Fauvet B, Lashuel H, Roux A, Mayer A 2017. Membrane scission driven by the PROPPIN Atg18. EMBO J 36:223274–91
    [Google Scholar]
  37. Gowrishankar S, Yuan P, Wu Y, Schrag M, Paradise S et al. 2015. Massive accumulation of luminal protease–deficient axonal lysosomes at Alzheimer's disease amyloid plaques. PNAS 112:28E3699–708
    [Google Scholar]
  38. Grumati P, Dikic I, Stolz A 2018. ER-phagy at a glance. J. Cell Sci. 131:17jcs217364
    [Google Scholar]
  39. Gulsuner S, Tekinay AB, Doerschner K, Boyaci H, Bilguvar K et al. 2011. Homozygosity mapping and targeted genomic sequencing reveal the gene responsible for cerebellar hypoplasia and quadrupedal locomotion in a consanguineous kindred. Genome Res 21:121995–2003
    [Google Scholar]
  40. Haack TBB, Iuso A, Kremer LSS, Hartig M, Strom TMM et al. 2016. Absence of the autophagy adaptor SQSTM1/p62 causes childhood-onset neurodegeneration with ataxia, dystonia, and gaze palsy. Am. J. Hum. Genet. 99:3735–43
    [Google Scholar]
  41. Haidar M, Asselbergh B, Adriaenssens E, De Winter V, Timmermans J-P et al. 2019. Neuropathy-causing mutations in HSPB1 impair autophagy by disturbing the formation of p62/SQSTM1 bodies. Autophagy 15:61051–68
    [Google Scholar]
  42. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R et al. 2010. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:4656–67
    [Google Scholar]
  43. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A et al. 2013. Autophagosomes form at ER-mitochondria contact sites. Nature 495:7441389–93
    [Google Scholar]
  44. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y et al. 2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:7095885–89
    [Google Scholar]
  45. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A 2009. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11:121433–37
    [Google Scholar]
  46. Hernandez D, Torres CA, Setlik W, Cebrián C, Mosharov EV et al. 2012. Regulation of presynaptic neurotransmission by macroautophagy. Neuron 74:2277–84
    [Google Scholar]
  47. Hill SE, Kauffman KJ, Krout M, Richmond JE, Melia TJ, Colón-Ramos DA 2019. Maturation and clearance of autophagosomes in neurons depends on a specific cysteine protease isoform, ATG-4.2. Dev. Cell 49:2251–66
    [Google Scholar]
  48. Hollenbeck PJ. 1993. Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport. J. Cell Biol. 121:2305–15
    [Google Scholar]
  49. Hollenbeck PJ, Bray D. 1987. Rapidly transported organelles containing membrane and cytoskeletal components: their relation to axonal growth. J. Cell Biol. 105:2827–35
    [Google Scholar]
  50. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y et al. 2000. A ubiquitin-like system mediates protein lipidation. Nature 408:6811488–92
    [Google Scholar]
  51. Itakura E, Kishi C, Inoue K, Mizushima N 2008. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19:125360–72
    [Google Scholar]
  52. Itakura E, Mizushima N. 2010. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:6764–76
    [Google Scholar]
  53. Jordens I, Fernandez-Borja M, Marsman M, Dusseljee S, Janssen L et al. 2001. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr. Biol. 11:211680–85
    [Google Scholar]
  54. Ka M, Smith AL, Kim WY 2017. MTOR controls genesis and autophagy of GABAergic interneurons during brain development. Autophagy 13:81348–63
    [Google Scholar]
  55. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y 2000. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150:61507–13
    [Google Scholar]
  56. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K et al. 2014. PINK1 phosphorylates ubiquitin to activate parkin E3 ubiquitin ligase activity. J. Cell Biol. 205:2143–53
    [Google Scholar]
  57. Katsumata K, Nishiyama J, Inoue T, Mizushima N, Takeda J, Yuzaki M 2010. Dynein- and activity-dependent retrograde transport of autophagosomes in neuronal axons. Autophagy 6:3378–85
    [Google Scholar]
  58. Kauffman KJ, Yu S, Jin J, Mugo B, Nguyen N et al. 2018. Delipidation of mammalian Atg8-family proteins by each of the four ATG4 proteases. Autophagy 14:6992–1010
    [Google Scholar]
  59. Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK et al. 2015. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522:7556354–58
    [Google Scholar]
  60. Kihara A, Noda T, Ishihara N, Ohsumi Y 2001. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol 153:3519–30
    [Google Scholar]
  61. Kitada T, Pisani A, Porter DR, Yamaguchi H, Tscherter A et al. 2007. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. PNAS 104:2711441–46
    [Google Scholar]
  62. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J et al. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:7095880–84
    [Google Scholar]
  63. Komatsu M, Waguri S, Koike M, Sou Y-s, Ueno T et al. 2007a. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:61149–63
    [Google Scholar]
  64. Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Iwata J et al. 2007b. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. PNAS 104:3614489–94
    [Google Scholar]
  65. Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG et al. 2012. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65. Open Biol 2:5120080
    [Google Scholar]
  66. Koyama-Honda I, Itakura E, Fujiwara TK, Mizushima N 2013. Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy 9:101491–99
    [Google Scholar]
  67. Kumar N, Leonzino M, Hancock-Cerutti W, Horenkamp FA, Li PQ et al. 2018. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217:103625–39
    [Google Scholar]
  68. Kurth I, Pamminger T, Hennings JC, Soehendra D, Huebner AK et al. 2009. Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat. Genet. 41:111179–81
    [Google Scholar]
  69. Lang T, Reiche S, Straub M, Bredschneider M, Thumm M 2000. Autophagy and the cvt pathway both depend on AUT9. J. Bacteriol. 182:82125–33
    [Google Scholar]
  70. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C et al. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:7565309–14
    [Google Scholar]
  71. Lee S, Sato Y, Nixon RA 2011. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. J. Neurosci. 31:217817–30
    [Google Scholar]
  72. Leil TA. 2004. GABAA receptor–associated protein traffics GABAA receptors to the plasma membrane in neurons. J. Neurosci. 24:5011429–38
    [Google Scholar]
  73. Liang C, Lee JS, Inn KS, Gack MU, Li Q et al. 2008. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat. Cell Biol. 10:7776–87
    [Google Scholar]
  74. Liang CC, Wang C, Peng X, Gan B, Guan JL 2010. Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J. Biol. Chem. 285:53499–3509
    [Google Scholar]
  75. Liang JR, Lingeman E, Ahmed S, Corn JE 2018. Atlastins remodel the endoplasmic reticulum for selective autophagy. J. Cell Biol. 217:103354–67
    [Google Scholar]
  76. Lie PPY, Nixon RA. 2018. Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiol. Dis. 122:94–105
    [Google Scholar]
  77. Lin MY, Cheng XT, Tammineni P, Xie Y, Zhou B et al. 2017. Releasing syntaphilin removes stressed mitochondria from axons independent of mitophagy under pathophysiological conditions. Neuron 94:3595–610
    [Google Scholar]
  78. Lindmo K, Stenmark H. 2006. Regulation of membrane traffic by phosphoinositide 3-kinases. J. Cell Sci. 119:4605–14
    [Google Scholar]
  79. Lipinski MM, Zheng B, Lu T, Yan Z, Py BF et al. 2010. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease. PNAS 107:3214164–69
    [Google Scholar]
  80. Liu X, Li Y, Wang X, Xing R, Liu K et al. 2017. The BEACH-containing protein WDR81 coordinates p62 and LC3C to promote aggrephagy. J. Cell Biol. 216:51301–20
    [Google Scholar]
  81. Longatti A, Lamb CA, Razi M, Yoshimura SI, Barr FA, Tooze SA 2012. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J. Cell Biol. 197:5659–75
    [Google Scholar]
  82. Lu Q, Yang P, Huang X, Hu W, Guo B et al. 2011. The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev. Cell 21:2343–57
    [Google Scholar]
  83. Lystad AH, Ichimura Y, Takagi K, Yang Y, Pankiv S et al. 2014. Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3B-positive structures. EMBO Rep 15:5557–65
    [Google Scholar]
  84. Maday S, Holzbaur ELF. 2014. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev. Cell 30:171–85
    [Google Scholar]
  85. Maday S, Holzbaur ELF. 2016. Compartment-specific regulation of autophagy in primary neurons. J. Neurosci. 36:225933–45
    [Google Scholar]
  86. Maday S, Wallace KE, Holzbaur ELF 2012. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 196:4407–17
    [Google Scholar]
  87. Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H et al. 2010. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 13:5567–76
    [Google Scholar]
  88. Maruyama H, Morino H, Ito H, Izumi Y, Kato H et al. 2010. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465:7295223–26
    [Google Scholar]
  89. Matsunaga K, Morita E, Saitoh T, Akira S, Ktistakis NT et al. 2010. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J. Cell Biol. 190:4511–21
    [Google Scholar]
  90. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T et al. 2009. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11:4385–96
    [Google Scholar]
  91. McWilliams TG, Prescott AR, Allen GFG, Tamjar J, Munson MJ et al. 2016. Mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol. 214:3333–45
    [Google Scholar]
  92. McWilliams TG, Prescott AR, Montava-Garriga L, Ball G, Singh F et al. 2018. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab 27:2439–49
    [Google Scholar]
  93. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M et al. 2003. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J. Cell Sci. 116:91679–88
    [Google Scholar]
  94. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T et al. 1998. A protein conjugation system essential for autophagy. Nature 395:6700395–98
    [Google Scholar]
  95. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabey Y et al. 2001. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol. 152:4657–68
    [Google Scholar]
  96. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y 2004. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15:31101–11
    [Google Scholar]
  97. Moore AS, Holzbaur ELF. 2016. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. PNAS 113:24E3349–58
    [Google Scholar]
  98. Moretti F, Bergman P, Dodgson S, Marcellin D, Claerr I et al. 2018. TMEM41B is a novel regulator of autophagy and lipid mobilization. EMBO Rep 19:9e45889
    [Google Scholar]
  99. Morita K, Hama Y, Izume T, Tamura N, Ueno T et al. 2018. Genome-wide CRISPR screen identifies TMEM41B as a gene required for autophagosome formation. J. Cell Biol. 217:113817–28
    [Google Scholar]
  100. Nair U, Yen WL, Mari M, Cao Y, Xie Z et al. 2012. A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8:5780–93
    [Google Scholar]
  101. Namekawa M, Muriel MP, Janer A, Latouche M, Dauphin A et al. 2007. Mutations in the SPG3A gene encoding the GTPase atlastin interfere with vesicle trafficking in the ER/Golgi interface and Golgi morphogenesis. Mol. Cell. Neurosci. 35:11–13
    [Google Scholar]
  102. Narendra D, Tanaka A, Suen DF, Youle RJ 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183:5795–803
    [Google Scholar]
  103. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA et al. 2010a. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLOS Biol 8:1e1000298
    [Google Scholar]
  104. Narendra DP, Kane LA, Hauser DN, Fearnley IM, Youle RJ 2010b. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6:81090–1106
    [Google Scholar]
  105. Neisch AL, Neufeld TP, Hays TS 2017. A STRIPAK complex mediates axonal transport of autophagosomes and dense core vesicles through PP2A regulation. J. Cell Biol. 216:2441–61
    [Google Scholar]
  106. Nicolas A, Kenna KP, Renton AE, Ticozzi N, Faghri F et al. 2018. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97:61268–83
    [Google Scholar]
  107. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C et al. 2005. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64:2113–22
    [Google Scholar]
  108. Noda T, Kim J, Huang WP, Baba M, Tokunaga C et al. 2000. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J. Cell Biol. 148:3465–80
    [Google Scholar]
  109. Obara K, Sekito T, Niimi K, Ohsumi Y 2008. The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J. Biol. Chem. 283:3523972–80
    [Google Scholar]
  110. Obara K, Sekito T, Ohsumi Y 2006. Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol. Biol. Cell 17:April1527–39
    [Google Scholar]
  111. Ohsumi Y. 2014. Historical landmarks of autophagy research. Cell Res 24:19–23
    [Google Scholar]
  112. Okerlund ND, Reimer RJ, Schneider K, Leal-Ortiz S, Montenegro-Venegas C et al. 2017. Bassoon controls presynaptic autophagy through Atg5. Neuron 93:4897–913
    [Google Scholar]
  113. Ori A, Toyama BH, Harris MS, Bock T, Iskar M et al. 2015. Integrated transcriptome and proteome analyses reveal organ-specific proteome deterioration in old rats. Cell Syst 1:3224–37
    [Google Scholar]
  114. Orsi A, Razi M, Dooley HC, Robinson D, Weston AE et al. 2012. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 23:101860–73
    [Google Scholar]
  115. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA et al. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:3324131–45
    [Google Scholar]
  116. Perez FA, Palmiter RD. 2005. Parkin-deficient mice are not a robust model of parkinsonism. PNAS 102:62174–79
    [Google Scholar]
  117. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R et al. 2008. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J. Clin. Investig. 118:62190–99
    [Google Scholar]
  118. Polson HEJ, De Lartigue J, Rigden DJ, Reedijk M, Urbé S et al. 2010. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6:4506–22
    [Google Scholar]
  119. Popovic D, Dikic I. 2014. TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep 15:4392–401
    [Google Scholar]
  120. Puri C, Vicinanza M, Ashkenazi A, Gratian MJ, Zhang Q et al. 2018. The RAB11A-positive compartment is a primary platform for autophagosome assembly mediated by WIPI2 recognition of PI3P-RAB11A. Dev. Cell 45:1114–31
    [Google Scholar]
  121. Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC 2010. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12:8747–57
    [Google Scholar]
  122. Richter B, Sliter DA, Herhaus L, Stolz A, Wang C et al. 2016. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. PNAS 113:154039–44
    [Google Scholar]
  123. Rogov V, Dötsch V, Johansen T, Kirkin V 2014. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 53:2167–78
    [Google Scholar]
  124. Rowland AM. 2006. Presynaptic terminals independently regulate synaptic clustering and autophagy of GABAA receptors in Caenorhabditis elegans. J. Neurosci 26:61711–20
    [Google Scholar]
  125. Ruan L, Zhou C, Jin E, Kucharavy A, Zhang Y et al. 2017. Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543:7645443–46
    [Google Scholar]
  126. Rudnick ND, Griffey CJ, Guarnieri P, Gerbino V, Wang X et al. 2017. Distinct roles for motor neuron autophagy early and late in the SOD1G93A mouse model of ALS. PNAS 114:39E8294–303
    [Google Scholar]
  127. Rui YN, Xu Z, Patel B, Chen Z, Chen D et al. 2015. Huntingtin functions as a scaffold for selective macroautophagy. Nat. Cell Biol. 17:3262–75
    [Google Scholar]
  128. Russell RC, Tian Y, Yuan H, Park HW, Chang YY et al. 2013. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15:7741–50
    [Google Scholar]
  129. Sato S, Uchihara T, Fukuda T, Noda S, Kondo H et al. 2018. Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice. Sci. Rep. 8:12813
    [Google Scholar]
  130. Scacioc A, Schmidt C, Hofmann T, Urlaub H, Kühnel K, Pérez-Lara Á 2017. Structure based biophysical characterization of the PROPPIN Atg18 shows Atg18 oligomerization upon membrane binding. Sci. Rep. 7:114008
    [Google Scholar]
  131. Scrivo A, Bourdenx M, Pampliega O, Cuervo AM 2018. Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol 17:9802–15
    [Google Scholar]
  132. Shehata M, Matsumura H, Okubo-Suzuki R, Ohkawa N, Inokuchi K 2012. Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J. Neurosci. 32:3010413–22
    [Google Scholar]
  133. Shen W, Ganetzky B. 2009. Autophagy promotes synapse development in Drosophila. J. Cell Biol 187:171–79
    [Google Scholar]
  134. Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T et al. 2012. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep. 2:1002
    [Google Scholar]
  135. Shibata M, Lu T, Furuya T, Degterev A, Mizushima N et al. 2006. Regulation of intracellular accumulation of mutant huntingtin by beclin 1. J. Biol. Chem. 281:2014474–85
    [Google Scholar]
  136. Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD 2008. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4:2176–84
    [Google Scholar]
  137. Sliter DA, Martinez J, Hao L, Chen X, Sun N et al. 2018. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561:7722258–62
    [Google Scholar]
  138. Smith MD, Harley ME, Kemp AJ, Wills J, Lee M et al. 2018. CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis. Dev. Cell 44:2217–32
    [Google Scholar]
  139. Soukup SF, Kuenen S, Vanhauwaert R, Manetsberger J, Hernández-Díaz S et al. 2016. A LRRK2-dependent EndophilinA phosphoswitch is critical for macroautophagy at presynaptic terminals. Neuron 92:4829–44
    [Google Scholar]
  140. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C et al. 2009. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases. J. Neurosci. 29:4313578–88
    [Google Scholar]
  141. Stavoe AKH, Gopal PP, Gubas A, Tooze SA, Holzbaur ELF 2019. Expression of WIPI2B counteracts age-related decline in autophagosome biogenesis in neurons. eLife 8:e44219
    [Google Scholar]
  142. Stavoe AKH, Hill SE, Hall DH, Colón-Ramos DA 2016. KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses. Dev. Cell 38:2171–85
    [Google Scholar]
  143. Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q 2008. Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. PNAS 105:4919211–16
    [Google Scholar]
  144. Sung H, Tandarich LC, Nguyen K, Hollenbeck PJ 2016. Compartmentalized regulation of Parkin-mediated mitochondrial quality control in the Drosophila nervous system in vivo. J. Neurosci. 36:287375–91
    [Google Scholar]
  145. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y 2001. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20:215971–81
    [Google Scholar]
  146. Takahashi Y, Meyerkord CL, Hori T, Runkle K, Fox TE et al. 2011. Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy 7:161–73
    [Google Scholar]
  147. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G et al. 2014. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:51131–43
    [Google Scholar]
  148. Tanida I, Sou YS, Ezaki J, Minematsu-Ikeguchi N, Ueno T, Kominami E 2004. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3– and GABAA receptor–associated protein-phospholipid conjugates. J. Biol. Chem. 279:3536268–76
    [Google Scholar]
  149. Tekirdag K, Cuervo AM. 2018. Chaperone-mediated autophagy and endosomal microautophagy: joint by a chaperone. J. Biol. Chem. 293:155414–24
    [Google Scholar]
  150. Tian Y, Li Z, Hu W, Ren H, Tian E et al. 2010. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141:61042–55
    [Google Scholar]
  151. Traka M, Millen KJ, Collins D, Elbaz B, Kidd GJ et al. 2013. WDR81 is necessary for Purkinje and photoreceptor cell survival. J. Neurosci. 33:166834–44
    [Google Scholar]
  152. Tsuboyama K, Koyama-Honda I, Sakamaki Y, Koike M, Morishita H, Mizushima N 2016. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354:63151036–41
    [Google Scholar]
  153. van der Vaart A, Griffith J, Reggiori F 2010. Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol. Biol. Cell 21:132270–84
    [Google Scholar]
  154. Vanhauwaert R, Kuenen S, Masius R, Bademosi A, Manetsberger J et al. 2017. The SAC1 domain in synaptojanin is required for autophagosome maturation at presynaptic terminals. EMBO J 36:101392–411
    [Google Scholar]
  155. Velikkakath AKG, Nishimura T, Oita E, Ishihara N, Mizushima N 2012. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell 23:5896–909
    [Google Scholar]
  156. Wairkar YP, Toda H, Mochizuki H, Furukubo-Tokunaga K, Tomoda T, DiAntonio A 2009. Unc-51 controls active zone density and protein composition by downregulating ERK signaling. J. Neurosci. 29:2517–28
    [Google Scholar]
  157. Wang CW, Kim J, Huang WP, Abeliovich H, Stromhaug PE et al. 2001. Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J. Biol. Chem. 276:3230442–51
    [Google Scholar]
  158. Wang H, Bedford FK, Brandon NJ, Moss SJ, Olsen RW 1999. GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature 397:671469–72
    [Google Scholar]
  159. Wang T, Martin S, Papadopulos A, Harper CB, Mavlyutov TA et al. 2015. Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type A. J. Neurosci. 35:156179–94
    [Google Scholar]
  160. Watanabe Y, Kobayashi T, Yamamoto H, Hoshida H, Akada R et al. 2012. Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J. Biol. Chem. 287:3831681–90
    [Google Scholar]
  161. Wijdeven RH, Janssen H, Nahidiazar L, Janssen L, Jalink K et al. 2016. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway. Nat. Commun. 7:11808
    [Google Scholar]
  162. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV et al. 2011. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:6039228–33
    [Google Scholar]
  163. Wilhelm T, Byrne J, Medina R, Kolundžic E, Geisinger J et al. 2017. Neuronal inhibition of the autophagy nucleation complex extends life span in post-reproductive C. elegans. Genes Dev 31:151561–72
    [Google Scholar]
  164. Winckler B, Faundez V, Maday S, Cai Q, Guimas Almeida C, Zhang H 2018. The endolysosomal system and proteostasis: from development to degeneration. J. Neurosci. 38:449364–74
    [Google Scholar]
  165. Wong YC, Holzbaur EL. 2014a. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. PNAS 111:42E4439–48
    [Google Scholar]
  166. Wong YC, Holzbaur ELF. 2014b. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J. Neurosci. 34:41293–305
    [Google Scholar]
  167. Wu Y, Whiteus C, Xu CS, Hayworth KJ, Weinberg RJ et al. 2017. Contacts between the endoplasmic reticulum and other membranes in neurons. PNAS 114:24E4859–67
    [Google Scholar]
  168. Yan Y, Flinn RJ, Wu H, Schnur RS, Backer JM 2009. hVps15, but not Ca2+/CaM, is required for the activity and regulation of hVps34 in mammalian cells. Biochem. J. 417:3747–55
    [Google Scholar]
  169. Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL 2009. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5:81180–85
    [Google Scholar]
  170. Young ARJ, Chan EYW, Hu XW, Köchl R, Crawshaw SG et al. 2006. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119:Pt 183888–900
    [Google Scholar]
  171. Yu WH, Dorado B, Figueroa HY, Wang L, Planel E et al. 2009. Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric α-synuclein. Am. J. Pathol. 175:2736–47
    [Google Scholar]
  172. Yu ZQ, Ni T, Hong B, Wang HY, Jiang FJ et al. 2012. Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8:6883–92
    [Google Scholar]
  173. Yun J, Puri R, Yang H, Lizzio MA, Wu C et al. 2014. MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. eLife 3:e01958
    [Google Scholar]
  174. Zaffagnini G, Savova A, Danieli A, Romanov J, Tremel S et al. 2018. p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J 37:5e98308
    [Google Scholar]
  175. Zhao H, Zhao YG, Wang X, Xu L, Miao L et al. 2013. Mice deficient in Epg5 exhibit selective neuronal vulnerability to degeneration. J. Cell Biol. 200:6731–41
    [Google Scholar]
  176. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM et al. 2009. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11:4468–76
    [Google Scholar]
  177. Zhou C, Ma K, Gao R, Mu C, Chen L et al. 2017. Regulation of mATG9 trafficking by Src- and ULK1-mediated phosphorylation in basal and starvation-induced autophagy. Cell Res 27:2184–201
    [Google Scholar]
  178. Zhu Y, Runwal G, Obrocki P, Rubinsztein DC 2019. Autophagy in childhood neurological disorders. Dev. Med. Child Neurol. 61:6639–45
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100818-125242
Loading
/content/journals/10.1146/annurev-cellbio-100818-125242
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error