1932

Abstract

Cell surface transmembrane receptors often form nanometer- to micrometer-scale clusters to initiate signal transduction in response to environmental cues. Extracellular ligand oligomerization, domain-domain interactions, and binding to multivalent proteins all contribute to cluster formation. Here we review the current understanding of mechanisms driving cluster formation in a series of representative receptor systems: glycosylated receptors, immune receptors, cell adhesion receptors, Wnt receptors, and receptor tyrosine kinases. We suggest that these clusters share properties of systems that undergo liquid–liquid phase separation and could be investigated in this light.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-052118-115534
2019-05-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biophys/48/1/annurev-biophys-052118-115534.html?itemId=/content/journals/10.1146/annurev-biophys-052118-115534&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ahmad N, Gabius H-J, André S, Kaltner H, Sabesan S et al. 2004. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J. Biol. Chem. 279:1210841–47
    [Google Scholar]
  2. 2.
    Asherie N, Pande J, Lomakin A, Ogun O, Hanson SRA et al. 1998. Oligomerization and phase separation in globular protein solutions. Biophys. Chem. 75:3213–27
    [Google Scholar]
  3. 3.
    Atanasova M, Whitty A 2012. Understanding cytokine and growth factor receptor activation mechanisms. Crit. Rev. Biochem. Mol. Biol. 47:6502–30
    [Google Scholar]
  4. 4.
    Balagopalan L, Kortum RL, Coussens NP, Barr VA, Samelson LE 2015. The linker for activation of T cells (LAT) signaling hub: from signaling complexes to microclusters. J. Biol. Chem. 290:4426422–29
    [Google Scholar]
  5. 5.
    Banani SF, Lee HO, Hyman AA, Rosen MK 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18:5285–98
    [Google Scholar]
  6. 6.
    Banjade S, Rosen MK 2014. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 3:e04123
    [Google Scholar]
  7. 7.
    Banjade S, Wu Q, Mittal A, Peeples WB, Pappu RV, Rosen MK 2015. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck. PNAS 112:47E6426–35
    [Google Scholar]
  8. 8.
    Barabasi AL, Stanley HE 1995. Fractal Concepts in Surface Growth Cambridge, UK: Cambridge Univ. Press
  9. 9.
    Barda-Saad M, Braiman A, Titerence R, Bunnell SC, Barr VA, Samelson LE 2005. Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nat. Immunol. 6:80–89
    [Google Scholar]
  10. 10.
    Baron MK, Boeckers TM, Vaida B, Faham S, Gingery M et al. 2006. An architectural framework that may lie at the core of the postsynaptic density. Science 311:5760531–35
    [Google Scholar]
  11. 11.
    Barrett A, Pellet-Many C, Zachary IC, Evans IM, Frankel P 2013. p130Cas: a key signalling node in health and disease. Cell. Signal. 25:4766–77
    [Google Scholar]
  12. 12.
    Baumgart T, Hammond AT, Sengupta P, Hess ST, Holowka DA et al. 2007. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. PNAS 104:93165–70
    [Google Scholar]
  13. 12a.
    Beutel O, Maraspini R, Pombo-Garcia K, Martin-Lemaitre C, Honigmann A 2019. Phase separation of zona occludens proteins drives formation of tight junctions. bioRxiv. https://doi.org/10.1101/589580
    [Crossref]
  14. 13.
    Bienz M 2014. Signalosome assembly by domains undergoing dynamic head-to-tail polymerization. Trends Biochem. Sci. 39:10487–95
    [Google Scholar]
  15. 14.
    Blasutig IM, New LA, Thanabalasuriar A, Dayarathna TK, Goudreault M et al. 2008. Phosphorylated YDXV motifs and Nck SH2/SH3 adaptors act cooperatively to induce actin reorganization. Mol. Cell. Biol. 28:62035–46
    [Google Scholar]
  16. 15.
    Boscher C, Zheng YZ, Lakshminarayan R, Johannes L, Dennis JW et al. 2012. Galectin-3 protein regulates mobility of N-cadherin and GM1 ganglioside at cell-cell junctions of mammary carcinoma cells. J. Biol. Chem. 287:3932940–52
    [Google Scholar]
  17. 16.
    Brewer CF, Miceli MC, Baum LG 2002. Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr. Opin. Struct. Biol. 12:5616–23
    [Google Scholar]
  18. 17.
    Brooks SR, Kirkham PM, Freeberg L, Carter RH 2004. Binding of cytoplasmic proteins to the CD19 intracellular domain is high affinity, competitive, and multimeric. J. Immunol. 172:127556–64
    [Google Scholar]
  19. 18.
    Bunnell SC, Hong DI, Kardon JR, Yamazaki T, McGlade CJ et al. 2002. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158:71263–75
    [Google Scholar]
  20. 19.
    Bunnell SC, Singer AL, Hong DI, Jacque BH, Jordan MS et al. 2006. Persistence of cooperatively stabilized signaling clusters drives T-cell activation. Mol. Cell. Biol. 26:197155–66
    [Google Scholar]
  21. 20.
    Carquin M, D'Auria L, Pollet H, Bongarzone ER, Tyteca D 2016. Recent progress on lipid lateral heterogeneity in plasma membranes: from rafts to submicrometric domains. Prog. Lipid Res. 62:1–24
    [Google Scholar]
  22. 21.
    Carroll JS, Munchel SE, Weis K 2011. The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. J. Cell Biol. 194:4527–37
    [Google Scholar]
  23. 22.
    Case LB, Baird MA, Shtengel G, Campbell SL, Hess HF et al. 2015. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat. Cell Biol. 17:7880–92
    [Google Scholar]
  24. 23.
    Case LB, Waterman CM 2015. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat. Cell Biol. 17:8955–63
    [Google Scholar]
  25. 24.
    Case LB, Zhang X, Ditlev JA, Rosen MK 2019. Stoichiometry controls activity of phase separated clusters of actin signaling proteins. Science 363:64311093–97
    [Google Scholar]
  26. 25.
    Castello A, Gaya M, Tucholski J, Oellerich T, Lu K-H et al. 2013. Nck-mediated recruitment of BCAP to the BCR regulates the PI(3)K-Akt pathway in B cells. Nat. Immunol. 14:966
    [Google Scholar]
  27. 26.
    Chakraborty AK, Weiss A 2014. Insights into the initiation of TCR signaling. Nat. Immunol. 15:798
    [Google Scholar]
  28. 27.
    Chamma I, Letellier M, Butler C, Tessier B, Lim K-H et al. 2016. Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nat. Commun. 7:10773
    [Google Scholar]
  29. 28.
    Cluzel C, Saltel F, Lussi J, Paulhe F, Imhof BA, Wehrle-Haller B 2005. The mechanisms and dynamics of αvβ3 integrin clustering in living cells. J Cell Biol 171:2383–92
    [Google Scholar]
  30. 29.
    Cohen RJ, Benedek GB 1982. Equilibrium and kinetic theory of polymerization and the sol-gel transition. J. Phys. Chem. 86:193696–714
    [Google Scholar]
  31. 30.
    Cong F, Schweizer L, Varmus H 2004. Wnt signals across the plasma membrane to activate the β-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development 131:205103–15
    [Google Scholar]
  32. 31.
    Dam TK, Oscarson S, Roy R, Das SK, Page D et al. 2005. Thermodynamic, kinetic, and electron microscopy studies of concanavalin A and Dioclea grandiflora lectin cross-linked with synthetic divalent carbohydrates. J. Biol. Chem. 280:108640–46
    [Google Scholar]
  33. 32.
    DeFranco AL 1992. Tyrosine phosphorylation and the mechanism of signal transduction by the B‐lymphocyte antigen receptor. Eur. J. Biochem. 210:2381–88
    [Google Scholar]
  34. 33.
    del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP 2009. Stretching single talin rod molecules activates vinculin binding. Science 323:5914638–41
    [Google Scholar]
  35. 34.
    Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M et al. 2001. Lipid rafts reconstituted in model membranes. Biophys. J. 80:31417–28
    [Google Scholar]
  36. 35.
    Dill KA, Bromberg S 2003. Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology New York: Garland Sci.
  37. 36.
    Ditlev JA, Vega AR, Köster DV, Su X, Lakoduk A et al. 2018. A composition-dependent molecular clutch between T cell signaling clusters and actin. bioRxiv 316414 . https://doi.org/10.1101/316414
    [Crossref]
  38. 37.
    Douglass AD, Vale RD 2005. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121:6937–50
    [Google Scholar]
  39. 38.
    Dustin ML, Choudhuri K 2016. Signaling and polarized communication across the T cell immunological synapse. Annu. Rev. Cell Dev. Biol. 32:303–25
    [Google Scholar]
  40. 39.
    Dustin ML, Groves JT 2012. Receptor signaling clusters in the immune synapse. Annu. Rev. Biophys. 41:543–56
    [Google Scholar]
  41. 40.
    Earl LA, Bi S, Baum LG 2011. Galectin multimerization and lattice formation are regulated by linker region structure. Glycobiology 21:6–12
    [Google Scholar]
  42. 41.
    Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K et al. 2009. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:72331159–62
    [Google Scholar]
  43. 42.
    Eilon S, Valarie B, Samelson LE 2012. Super-resolution characterization of TCR-dependent signaling clusters. Immunol. Rev. 251:21–35
    [Google Scholar]
  44. 43.
    Fanning AS, Anderson JM 2009. Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann. N.Y. Acad. Sci. 1165:113–20
    [Google Scholar]
  45. 44.
    Feric M, Brangwynne CP 2013. A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. Nat. Cell Biol. 15:101253–59
    [Google Scholar]
  46. 45.
    Fiedler M, Mendoza-Topaz C, Rutherford TJ, Mieszczanek J, Bienz M 2011. Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating β-catenin. PNAS 108:51937–42
    [Google Scholar]
  47. 46.
    Flory PJ 1942. Thermodynamics of high polymer solutions. J. Chem. Phys. 10:51–61
    [Google Scholar]
  48. 47.
    Flory PJ 1953. Principles of Polymer Chemistry Ithaca, NY: Cornell Univ. Press
  49. 48.
    Flory PJ, Krigbaum WR 1951. Thermodynamics of high polymer solutions. Annu. Rev. Phys. Chem. 2:383–402
    [Google Scholar]
  50. 49.
    Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M et al. 2017. The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell 171:148–62.e19
    [Google Scholar]
  51. 50.
    Freeman SA, Vega A, Riedl M, Collins RF, Ostrowski PP et al. 2018. Transmembrane pickets connect cyto- and pericellular skeletons forming barriers to receptor engagement. Cell 172:305–17.e10
    [Google Scholar]
  52. 51.
    Fujiwara TK, Iwasawa K, Kalay Z, Tsunoyama TA, Watanabe Y et al. 2016. Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane. Mol. Biol. Cell 27:71101–19
    [Google Scholar]
  53. 52.
    Gammons MV, Renko M, Johnson CM, Rutherford TJ, Bienz M 2016. Wnt signalosome assembly by DEP domain swapping of Dishevelled. Mol. Cell 64:92–104
    [Google Scholar]
  54. 53.
    Garcia MA, Nelson WJ, Chavez N 2018. Cell-cell junctions organize structural and signaling networks. Cold Spring Harb. Perspect. Biol. 10:4a029181
    [Google Scholar]
  55. 54.
    Germain RN 1997. T-cell signaling: the importance of receptor clustering. Curr. Biol. 7:10R640–44
    [Google Scholar]
  56. 55.
    Gestwicki JE, Cairo CW, Strong LE, Oetjen KA, Kiessling LL 2002. Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 124:5014922–33
    [Google Scholar]
  57. 56.
    Goswami D, Gowrishankar K, Bilgrami S, Ghosh S, Raghupathy R et al. 2008. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135:61085–97
    [Google Scholar]
  58. 57.
    Gowrishankar K, Ghosh S, Saha S, C R, Mayor S, Rao M 2012. Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149:61353–67
    [Google Scholar]
  59. 58.
    Hagemann AIH, Kurz J, Kauffeld S, Chen Q, Reeves PM et al. 2014. In vivo analysis of formation and endocytosis of the Wnt/β-catenin signaling complex in zebrafish embryos. J. Cell Sci. 127:Pt. 183970–82
    [Google Scholar]
  60. 59.
    Harmon TS, Holehouse AS, Rosen MK, Pappu RV 2017. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6:e30294
    [Google Scholar]
  61. 60.
    Harte MT, Hildebrand JD, Burnham MR, Bouton AH, Parsons JT 1996. p130Cas, a substrate associated with v-Src and v-Crk, localizes to focal adhesions and binds to focal adhesion kinase. J. Biol. Chem. 271:2313649–55
    [Google Scholar]
  62. 61.
    Heberle FA, Feigenson GW 2011. Phase separation in lipid membranes. Cold Spring Harb. Perspect. Biol. 3:4a004630
    [Google Scholar]
  63. 62.
    Heldin CH 1995. Dimerization of cell surface receptors in signal transduction. Cell 80:2213–23
    [Google Scholar]
  64. 63.
    Himanen J-P, Saha N, Nikolov DB 2007. Cell-cell signaling via Eph receptors and ephrins. Curr. Opin. Cell Biol. 19:5534–42
    [Google Scholar]
  65. 64.
    Himanen JP, Yermekbayeva L, Janes PW, Walker JR, Xu K et al. 2010. Architecture of Eph receptor clusters. PNAS 107:2410860
    [Google Scholar]
  66. 65.
    Hoffmann J-E, Fermin Y, Stricker RLO, Ickstadt K, Zamir E 2014. Symmetric exchange of multi-protein building blocks between stationary focal adhesions and the cytosol. eLife 3:e02257
    [Google Scholar]
  67. 66.
    Honerkamp-Smith AR, Cicuta P, Collins MD, Veatch SL, den Nijs M et al. 2008. Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophys. J. 95:236–46
    [Google Scholar]
  68. 67.
    Honerkamp-Smith AR, Veatch SL, Keller SL 2009. An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim. Biophys. Acta 1788:53–63
    [Google Scholar]
  69. 68.
    Hopfield JJ 1974. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. PNAS 71:104135–39
    [Google Scholar]
  70. 69.
    Houtman JCD, Yamaguchi H, Barda-Saad M, Braiman A, Bowden B et al. 2006. Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat. Struct. Mol. Biol. 13:9798–805
    [Google Scholar]
  71. 70.
    Huang WYC, Alvarez S, Kondo Y, Lee YK, Chung JK et al. 2019. A molecular assembly phase transition and kinetic proofreading modulate Ras activity by SOS. Science 363:64311098–103
    [Google Scholar]
  72. 71.
    Huang WYC, Ditlev JA, Chiang H-K, Rosen MK, Groves JT 2017. Allosteric modulation of Grb2 recruitment to the intrinsically disordered scaffold protein, LAT, by remote site phosphorylation. J. Am. Chem. Soc. 139:4918009–15
    [Google Scholar]
  73. 72.
    Huang WYC, Yan Q, Lin W-C, Chung JK, Hansen SD et al. 2016. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS. PNAS 113:298218–23
    [Google Scholar]
  74. 73.
    Hui E, Cheung J, Zhu J, Su X, Taylor MJ et al. 2017. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355:63321428–33
    [Google Scholar]
  75. 74.
    Huse M 2017. Mechanical forces in the immune system. Nat. Rev. Immunol. 17:679
    [Google Scholar]
  76. 75.
    Hyman AA, Weber CA, Jülicher F 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58
    [Google Scholar]
  77. 76.
    Hynes RO 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110:6673–87
    [Google Scholar]
  78. 77.
    Iversen L, Tu H-LL, Lin W-CC, Christensen SM, Abel SM et al. 2014. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics. Science 345:619250–54
    [Google Scholar]
  79. 78.
    Jadwin JA, Oh D, Curran TG, Ogiue-Ikeda M, Jia L et al. 2016. Time-resolved multimodal analysis of Src homology 2 (SH2) domain binding in signaling by receptor tyrosine kinases. eLife 5:e11835
    [Google Scholar]
  80. 79.
    Janes PW, Nievergall E, Lackmann M 2012. Concepts and consequences of Eph receptor clustering. Semin. Cell Dev. Biol. 23:43–50
    [Google Scholar]
  81. 80.
    Jones N, Blasutig IM, Eremina V, Ruston JM, Bladt F et al. 2006. Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature 440:7085818–23
    [Google Scholar]
  82. 81.
    Jones N, New LA, Fortino MA, Eremina V, Ruston J et al. 2009. Nck proteins maintain the adult glomerular filtration barrier. J. Am. Soc. Nephrol. 20:71533–43
    [Google Scholar]
  83. 82.
    Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW et al. 2010. Nanoscale architecture of integrin-based cell adhesions. Nature 468:7323580–84
    [Google Scholar]
  84. 83.
    Kiessling LL, Gestwicki JE, Strong LE 2000. Synthetic multivalent ligands in the exploration of cell-surface interactions. Curr. Opin. Chem. Biol. 4:6696–703
    [Google Scholar]
  85. 84.
    Kim S, Kalappurakki JM, Mayor S, Rosen MK 2019. Phosphorylation of Nephrin induces phase separated domains that move through actomyosin contraction. bioRxiv 558965. https://doi.org/10.1101/558965
    [Crossref]
  86. 85.
    Kortum RL, Balagopalan L, Alexander CP, Garcia J, Pinski JM et al. 2013. The ability of Sos1 to oligomerize the adaptor protein LAT is separable from its guanine nucleotide exchange activity in vivo. Sci. Signal. 6:301ra99
    [Google Scholar]
  87. 86.
    Köster DV, Mayor S 2016. Cortical actin and the plasma membrane: inextricably intertwined. Curr. Opin. Cell Biol. 38:81–89
    [Google Scholar]
  88. 87.
    Krauss RS 2010. Regulation of promyogenic signal transduction by cell-cell contact and adhesion. Exp. Cell Res. 316:183042–49
    [Google Scholar]
  89. 88.
    Kumari S, Depoil D, Martinelli R, Judokusumo E, Carmona G et al. 2015. Actin foci facilitate activation of the phospholipase C-γ in primary T lymphocytes via the WASP pathway. eLife 4:e04953
    [Google Scholar]
  90. 89.
    Lackmann M, Boyd AW 2008. Eph, a protein family coming of age: more confusion, insight, or complexity. ? Sci. Signal. 1:15re2
    [Google Scholar]
  91. 90.
    Leonard C, Conrard L, Guthmann M, Pollet H, Carquin M et al. 2017. Contribution of plasma membrane lipid domains to red blood cell (re)shaping. Sci. Rep. 7:4264
    [Google Scholar]
  92. 91.
    Levental I, Grzybek M, Simons K 2011. Raft domains of variable properties and compositions in plasma membrane vesicles. PNAS 108:2811411–16
    [Google Scholar]
  93. 92.
    Levental I, Veatch SL 2016. The continuing mystery of lipid rafts. J. Mol. Biol. 428:244749–64
    [Google Scholar]
  94. 93.
    Li P, Banjade S, Cheng H-C, Kim S, Chen B et al. 2012. Phase transitions in the assembly of multivalent signalling proteins. Nature 483:7389336–40
    [Google Scholar]
  95. 94.
    Lin Y-H, Qiu D-C, Chang W-H, Yeh Y-Q, Jeng U-S et al. 2017. The intrinsically disordered N-terminal domain of galectin-3 dynamically mediates multisite self-association of the protein through fuzzy interactions. J. Biol. Chem. 292:17845–56
    [Google Scholar]
  96. 95.
    Lingwood D, Simons K 2010. Lipid rafts as a membrane-organizing principle. Science 327:596146–50
    [Google Scholar]
  97. 96.
    Liu J, Wang Y, Goh WI, Goh H, Baird MA et al. 2015. Talin determines the nanoscale architecture of focal adhesions. PNAS 112:35E4864–73
    [Google Scholar]
  98. 97.
    Lorent JH, Diaz-Rohrer B, Lin X, Spring K, Gorfe AA et al. 2017. Structural determinants and functional consequences of protein affinity for membrane rafts. Nat. Commun. 8:1219
    [Google Scholar]
  99. 98.
    Mammen M, Choi S, Whitesides GM 1998. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37:2754–94
    [Google Scholar]
  100. 99.
    Mao J, Wang J, Liu B, Pan W, Farr GH et al. 2001. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol. Cell 7:4801–9
    [Google Scholar]
  101. 100.
    Martin CE, Jones N 2018. Nephrin signaling in the podocyte: an updated view of signal regulation at the slit diaphragm and beyond. Front. Endocrinol. 9:302
    [Google Scholar]
  102. 101.
    Mayer BJ, Yu J 2018. Protein clusters in phosphotyrosine signal transduction. J. Mol. Biol. 430:224547–56
    [Google Scholar]
  103. 102.
    McKeithan TW 1995. Kinetic proofreading in T-cell receptor signal transduction. PNAS 92:115042–46
    [Google Scholar]
  104. 103.
    Mi K, Dolan PJ, Johnson GVW 2006. The low density lipoprotein receptor-related protein 6 interacts with glycogen synthase kinase 3 and attenuates activity. J. Biol. Chem. 281:84787–94
    [Google Scholar]
  105. 104.
    Miyamoto S, Akiyama SK, Yamada KM 1995. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267:5199883–85
    [Google Scholar]
  106. 105.
    Mohamed AM, Boudreau JR, Yu FP, Liu J, Chin-Sang ID 2012. The Caenorhabditis elegans Eph receptor activates NCK and N-WASP, and inhibits Ena/VASP to regulate growth cone dynamics during axon guidance. PLOS Genet 8:2e1002513
    [Google Scholar]
  107. 106.
    Mulyasasmita W, Lee JS, Heilshorn SC 2011. Molecular-level engineering of protein physical hydrogels for predictive sol-gel phase behavior. Biomacromolecules 12:103406–11
    [Google Scholar]
  108. 107.
    Muschol M, Rosenberger F 1998. Liquid-liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization. J. Chem. Phys. 107:61953
    [Google Scholar]
  109. 108.
    Nabi IR, Shankar J, Dennis JW 2015. The galectin lattice at a glance. J. Cell Sci. 128:132213–19
    [Google Scholar]
  110. 109.
    Nag A, Monine M, Perelson AS, Goldstein B 2012. Modeling and simulation of aggregation of membrane protein LAT with molecular variability in the number of binding sites for cytosolic Grb2-SOS1-Grb2. PLOS ONE 7:3e28758
    [Google Scholar]
  111. 110.
    New LA, Martin CE, Scott RP, Platt MJ, Keyvani Chahi A et al. 2016. Nephrin tyrosine phosphorylation is required to stabilize and restore podocyte foot process architecture. J. Am. Soc. Nephrol. 27:82422–35
    [Google Scholar]
  112. 111.
    Nievergall E, Lackmann M, Janes PW 2012. Eph-dependent cell-cell adhesion and segregation in development and cancer. Cell. Mol. Life Sci. 69:111813–42
    [Google Scholar]
  113. 112.
    Nikolov DB, Xu K, Himanen JP 2013. Eph/ephrin recognition and the role of Eph/ephrin clusters in signaling initiation. Biochim. Biophys. Acta 1834:102160–65
    [Google Scholar]
  114. 113.
    Nomme J, Antanasijevic A, Caffrey M, Van Itallie CM, Anderson JM et al. 2015. Structural basis of a key factor regulating the affinity between the zonula occludens first PDZ domain and claudins. J. Biol. Chem. 290:2716595–606
    [Google Scholar]
  115. 114.
    Oh D, Ogiue-Ikeda M, Jadwin JA, Machida K, Mayer BJ, Yu J 2012. Fast rebinding increases dwell time of Src homology 2 (SH2)-containing proteins near the plasma membrane. PNAS 109:3514024–29
    [Google Scholar]
  116. 115.
    Ojosnegros S, Cutrale F, Rodríguez D, Otterstrom JJ, Chiu CL et al. 2017. Eph-ephrin signaling modulated by polymerization and condensation of receptors. PNAS 114:5013188–93
    [Google Scholar]
  117. 116.
    Opdenakker G, Rudd PM, Wormald M, Dwek RA, Van Damme J 1995. Cells regulate the activities of cytokines by glycosylation. FASEB J 9:5453–57
    [Google Scholar]
  118. 117.
    Owen DM, Williamson DJ, Magenau A, Gaus K 2012. Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat. Commun. 3:1256
    [Google Scholar]
  119. 118.
    Özkan E, Chia PH, Wang RR, Goriatcheva N, Borek D et al. 2014. Extracellular architecture of the SYG-1/SYG-2 adhesion complex instructs synaptogenesis. Cell 156:3482–94
    [Google Scholar]
  120. 119.
    Raghupathy R, Anilkumar AA, Polley A, Singh PP, Yadav M et al. 2015. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161:3581–94
    [Google Scholar]
  121. 120.
    Raut AS, Kalonia DS 2016. Pharmaceutical perspective on opalescence and liquid-liquid phase separation in protein solutions. Mol. Pharm. 13:51431–44
    [Google Scholar]
  122. 121.
    Rayermann SP, Rayermann GE, Cornell CE, Merz AJ, Keller SL 2017. Hallmarks of reversible separation of living, unperturbed cell membranes into two liquid phases. Biophys. J. 113:112425–32
    [Google Scholar]
  123. 122.
    Roca-Cusachs P, Iskratsch T, Sheetz MP 2012. Finding the weakest link—exploring integrin-mediated mechanical molecular pathways. J. Cell Sci. 125:133025–38
    [Google Scholar]
  124. 123.
    Rogacki MK, Ottavia G, Tobin SJ, Tianyi L, Sunetra B et al. 2018. Dynamic lateral organization of opi-oid receptors (kappa, muwt and muN40D) in the plasma membrane at the nanoscale level. Traffic 19:9690–709
    [Google Scholar]
  125. 124.
    Samelson LE 2002. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20:371–94
    [Google Scholar]
  126. 125.
    San Miguel M, Grant M Gunton JD 1985. Phase separation in two-dimensional binary fluids. Phys. Rev. A 31:21001–5
    [Google Scholar]
  127. 126.
    Scheswohl DM, Harrell JR, Rajfur Z, Gao G, Campbell SL, Schaller MD 2008. Multiple paxillin binding sites regulate FAK function. J. Mol. Signal. 3:1
    [Google Scholar]
  128. 127.
    Schumacher C, Knudsen BS, Ohuchi T, Di Fiore PP, Glassman RH, Hanafusa H 1995. The SH3 domain of Crk binds specifically to a conserved proline-rich motif in Eps15 and Eps15R. J. Biol. Chem. 270:2515341–47
    [Google Scholar]
  129. 128.
    Schwarz-Romond T, Fiedler M, Shibata N, Butler PJG, Kikuchi A et al. 2007. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat. Struct. Mol. Biol. 14:6484–92
    [Google Scholar]
  130. 129.
    Schwarz-Romond T, Metcalfe C, Bienz M 2007. Dynamic recruitment of axin by Dishevelled protein assemblies. J. Cell Sci. 120:Pt. 142402–12
    [Google Scholar]
  131. 130.
    Sciortino F, Mossa S, Zaccarelli E, Tartaglia P 2004. Equilibrium cluster phases and low-density arrested disordered states: the role of short-range attraction and long-range repulsion. Phys. Rev. Lett. 93:555701
    [Google Scholar]
  132. 131.
    Seiradake E, Harlos K, Sutton G, Aricescu AR, Jones EY 2010. An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat. Struct. Mol. Biol. 17:398
    [Google Scholar]
  133. 132.
    Semenov AN, Rubinstein M 1998. Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules 31:41373–85
    [Google Scholar]
  134. 133.
    Sezgin E, Kaiser H-J, Baumgart T, Schwille P, Simons K, Levental I 2012. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 7:61042–51
    [Google Scholar]
  135. 134.
    Sezgin E, Levental I, Mayor S, Eggeling C 2017. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18:361–74
    [Google Scholar]
  136. 135.
    Shen L, Weber CR, Raleigh DR, Yu D, Turner JR 2011. Tight junction pore and leak pathways: a dynamic duo. Annu. Rev. Physiol. 73:283–309
    [Google Scholar]
  137. 136.
    Shen L, Weber CR, Turner JR 2008. The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J. Cell Biol. 181:4683–95
    [Google Scholar]
  138. 137.
    Shin Y, Brangwynne CP 2017. Liquid phase condensation in cell physiology and disease. Science 357:6357eaaf4382
    [Google Scholar]
  139. 138.
    Smalley MJ, Signoret N, Robertson D, Tilley A, Hann A et al. 2005. Dishevelled (Dvl-2) activates canonical Wnt signalling in the absence of cytoplasmic puncta. J. Cell Sci. 118:Pt. 225279–89
    [Google Scholar]
  140. 139.
    Steinhart Z, Angers S 2018. Wnt signaling in development and tissue homeostasis. Development 145:11dev146589
    [Google Scholar]
  141. 140.
    Stradner A, Sedgwick H, Cardinaux F, Poon WCK, Egelhaaf SU, Schurtenberger P 2004. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432:492
    [Google Scholar]
  142. 141.
    Stutchbury B, Atherton P, Tsang R, Wang D-Y, Ballestrem C 2017. Distinct focal adhesion protein modules control different aspects of mechanotransduction. J. Cell Sci. 130:91612–24
    [Google Scholar]
  143. 142.
    Su X, Ditlev JA, Hui E, Xing W, Banjade S et al. 2016. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352:6285595–99
    [Google Scholar]
  144. 143.
    Swaminathan V, Fischer RS, Waterman CM 2016. The FAK-Arp2/3 interaction promotes leading edge advance and haptosensing by coupling nascent adhesions to lamellipodia actin. Mol. Biol. Cell 27:71085–1100
    [Google Scholar]
  145. 144.
    Swaminathan V, Kalappurakkal JM, Mehta SB, Nordenfelt P, Moore TI et al. 2017. Actin retrograde flow actively aligns and orients ligand-engaged integrins in focal adhesions. PNAS 114:4010648–53
    [Google Scholar]
  146. 145.
    Tauriello DVF, Jordens I, Kirchner K, Slootstra JW, Kruitwagen T et al. 2012. Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. PNAS 109:14E812–20
    [Google Scholar]
  147. 146.
    Taylor MJ, Husain K, Gartner ZJ, Mayor S, Vale RD 2017. A DNA-based T cell receptor reveals a role for receptor clustering in ligand discrimination. Cell 169:108–19.e20
    [Google Scholar]
  148. 147.
    Theodosiou M, Widmaier M, Böttcher RT, Rognoni E, Veelders M et al. 2016. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. eLife 5:e10130
    [Google Scholar]
  149. 148.
    Thievessen I, Thompson PM, Berlemont S, Plevock KM, Plotnikov SV et al. 2013. Vinculin-actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth. J. Cell Biol. 202:163–77
    [Google Scholar]
  150. 149.
    Tolar P, Spillane KM 2014. Force generation in B-cell synapses: mechanisms coupling B-cell receptor binding to antigen internalization and affinity discrimination. Adv. Immunol. 123:69–100
    [Google Scholar]
  151. 150.
    Toulmay A, Prinz WA 2013. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J. Cell Biol. 202:35–44
    [Google Scholar]
  152. 151.
    Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H et al. 2006. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126:4741–54
    [Google Scholar]
  153. 152.
    Van Itallie CM, Anderson JM 2014. Architecture of tight junctions and principles of molecular composition. Semin. Cell Dev. Biol. 36:157–65
    [Google Scholar]
  154. 153.
    Van Itallie CM, Mitic LL, Anderson JM 2011. Claudin-2 forms homodimers and is a component of a high molecular weight protein complex. J. Biol. Chem. 286:53442–50
    [Google Scholar]
  155. 154.
    Vanshylla K, Bartsch C, Hitzing C, Krümpelmann L, Wienands J, Engels N 2018. Grb2 and GRAP connect the B cell antigen receptor to Erk MAP kinase activation in human B cells. Sci. Rep. 8:14244
    [Google Scholar]
  156. 155.
    Veatch SL, Cicuta P, Sengupta P, Honerkamp-Smith A, Holowka D, Baird B 2008. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3:5287–93
    [Google Scholar]
  157. 156.
    Verma R, Kovari I, Soofi A, Nihalani D, Patrie K, Holzman LB 2006. Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. J. Clin. Invest. 116:51346–59
    [Google Scholar]
  158. 157.
    Verma R, Venkatareddy M, Kalinowski A, Patel SR, Garg P 2016. Integrin ligation results in nephrin tyrosine phosphorylation in vitro. PLOS ONE 11:2e0148906
    [Google Scholar]
  159. 158.
    Wang C-W, Miao Y-H, Chang Y-S 2014. A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J. Cell Biol. 206:3357–66
    [Google Scholar]
  160. 159.
    Wang Y, Annunziata O 2008. Liquid-liquid phase transition of protein aqueous solutions isothermally induced by protein cross-linking. Langmuir 24:62799–807
    [Google Scholar]
  161. 160.
    Watanabe Y, Nakayama T, Nagakubo D, Hieshima K, Jin Z et al. 2006. Dopamine selectively induces migration and homing of naive CD8+ T cells via dopamine receptor D3. J. Immunol. 176:2848–56
    [Google Scholar]
  162. 161.
    Weidtkamp-Peters S, Lenser T, Negorev D, Gerstner N, Hofmann TG et al. 2008. Dynamics of component exchange at PML nuclear bodies. J. Cell Sci. 121:162731–43
    [Google Scholar]
  163. 162.
    Weiss A 1991. Molecular and genetic insights into T cell antigen receptor structure and function. Annu. Rev. Genet. 25:487–510
    [Google Scholar]
  164. 163.
    Weisswange I, Newsome TP, Schleich S, Way M 2009. The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility. Nature 458:723487–91
    [Google Scholar]
  165. 164.
    Wesołowska O, Michalak K, Maniewska J, Hendrich AB 2009. Giant unilamellar vesicles—a perfect tool to visualize phase separation and lipid rafts in model systems. Acta Biochim. Pol. 56:33–39
    [Google Scholar]
  166. 165.
    Wong Po Foo CTS, Lee JS, Mulyasasmita W, Parisi-Amon A, Heilshorn SC 2009. Two-component protein-engineered physical hydrogels for cell encapsulation. PNAS 106:5222067–72
    [Google Scholar]
  167. 166.
    Wu C 2007. Focal adhesion: a focal point in current cell biology and molecular medicine. Cell Adh. Migr. 1:13–18
    [Google Scholar]
  168. 167.
    Wu H 2013. Higher-order assemblies in a new paradigm of signal transduction. Cell 153:2287–92
    [Google Scholar]
  169. 168.
    Wurtz JD, Lee CF 2018. Chemical-reaction-controlled phase separated drops: formation, size selection, and coarsening. Phys. Rev. Lett. 120:778102
    [Google Scholar]
  170. 169.
    Yang T, Baryshnikova OK, Mao H, Holden MA, Cremer PS 2003. Investigations of bivalent antibody binding on fluid-supported phospholipid membranes: the effect of hapten density. J. Am. Chem. Soc. 125:164779–84
    [Google Scholar]
  171. 170.
    Yokoyama WM, Shevach EM 1989. T cell activation via cell-surface antigens other than the CD3/T cell receptor complex. Year Immunol 4:110–46
    [Google Scholar]
  172. 171.
    Yu D, Marchiando AM, Weber CR, Raleigh DR, Wang Y et al. 2010. MLCK-dependent exchange and actin binding region-dependent anchoring of ZO-1 regulate tight junction barrier function. PNAS 107:188237–41
    [Google Scholar]
  173. 172.
    Zacharchenko T, Qian X, Goult BT, Critchley DR, Lowy DR et al. 2016. LD motif recognition by talin: structure of the talin-DLC1 complex. Struct. Des. 24:1130–41
    [Google Scholar]
  174. 173.
    Zeng M, Chen X, Guan D, Xu J, Wu H et al. 2018. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell 174:51172–87.e16
    [Google Scholar]
  175. 174.
    Zeng M, Shang Y, Araki Y, Guo T, Huganir RL, Zhang M 2016. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166:51163–75.e12
    [Google Scholar]
  176. 175.
    Zhang C, Miller DJ, Guibao CD, Donato DM, Hanks SK, Zheng JJ 2017. Structural and functional insights into the interaction between the Cas family scaffolding protein p130Cas and the focal adhesion-associated protein paxillin. J. Biol. Chem. 292:4418281–89
    [Google Scholar]
  177. 176.
    Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P et al. 2015. RNA controls PolyQ protein phase transitions. Mol. Cell. 60:2220–30
    [Google Scholar]
  178. 177.
    Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE 1998. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92:183–92
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-052118-115534
Loading
/content/journals/10.1146/annurev-biophys-052118-115534
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error