1932

Abstract

Small proteins, here defined as proteins of 50 amino acids or fewer in the absence of processing, have traditionally been overlooked due to challenges in their annotation and biochemical detection. In the past several years, however, increasing numbers of small proteins have been identified either through the realization that mutations in intergenic regions are actually within unannotated small protein genes or through the discovery that some small, regulatory RNAs encode small proteins. These insights, together with comparative sequence analysis, indicate that tens if not hundreds of small proteins are synthesized in a given organism. This review summarizes what has been learned about the functions of several of these bacterial small proteins, most of which act at the membrane, illustrating the astonishing range of processes in which these small proteins act and suggesting several general conclusions. Important questions for future studies of these overlooked proteins are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-070611-102400
2014-06-02
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/biochem/83/1/annurev-biochem-070611-102400.html?itemId=/content/journals/10.1146/annurev-biochem-070611-102400&mimeType=html&fmt=ahah

Literature Cited

  1. Harrison PM, Kumar A, Lang N, Snyder M, Gerstein M. 1.  2002. A question of size: the eukaryotic proteome and the problems in defining it. Nucleic Acids Res. 30:1083–90 [Google Scholar]
  2. Basrai MA, Hieter P, Boeke JD. 2.  1997. Small open reading frames: beautiful needles in the haystack. Genome Res. 7:768–71 [Google Scholar]
  3. Natl. Cent. Biotechnol 2011. What kind of data can be submitted to GenBank?. GenBank Submissions Handbook Natl. Cent. Biotechnol., Bethesda, Md. http://www.ncbi.nlm.nih.gov/books/NBK53707/
  4. Yutin N, Puigbò P, Koonin EV, Wolf YI. 4.  2012. Phylogenomics of prokaryotic ribosomal proteins. PLoS ONE 7:e36972 [Google Scholar]
  5. Fozo EM, Hemm MR, Storz G. 5.  2008. Small toxic proteins and the antisense RNAs that repress them. Microbiol. Mol. Biol. Rev. 72:579–89 [Google Scholar]
  6. Liu X, Jiang H, Gu Z, Roberts JW. 6.  2013. High-resolution view of bacteriophage λ gene expression by ribosome profiling. Proc. Natl. Acad. Sci. USA 110:11928–33 [Google Scholar]
  7. Ansaldi M, Théraulaz L, Méjean V. 7.  2004. TorI, a response regulator inhibitor of phage origin in Escherichia coli. Proc. Natl. Acad. Sci. USA 101:9423–28 [Google Scholar]
  8. Stragier P, Losick R. 8.  1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30:297–341 [Google Scholar]
  9. Setlow P.9.  2007. I will survive: DNA protection in bacterial spores. Trends Microbiol. 15:172–80 [Google Scholar]
  10. Sandman K, Losick R, Youngman P. 10.  1987. Genetic analysis of Bacillus subtilis spo mutations generated by Tn917-mediated insertional mutagenesis. Genetics 117603–17
  11. Levin PA, Fan N, Ricca E, Driks A, Losick R, Cutting S. 11.  1993. An unusually small gene required for sporulation by Bacillus subtilis. Mol. Microbiol. 9:761–71 [Google Scholar]
  12. Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. 12.  2012. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ. Microbiol. 14:2870–90 [Google Scholar]
  13. Hemm MR, Paul BJ, Schneider TD, Storz G, Rudd KE. 13.  2008. Small membrane proteins found by comparative genomics and ribosome binding site models. Mol. Microbiol. 70:1487–501 [Google Scholar]
  14. van Ooij C, Losick R. 14.  2003. Subcellular localization of a small sporulation protein in Bacillus subtilis. J. Bacteriol. 185:1391–98 [Google Scholar]
  15. Prajapati RS, Ogura T, Cutting SM. 15.  2000. Structural and functional studies on an FtsH inhibitor from Bacillus subtilis. Biochim. Biophys. Acta 1475:353–59 [Google Scholar]
  16. Ramamurthi KS, Clapham KR, Losick R. 16.  2006. Peptide anchoring spore coat assembly to the outer forespore membrane in Bacillus subtilis. Mol. Microbiol. 62:1547–57 [Google Scholar]
  17. Ramamurthi KS, Lecuyer S, Stone HA, Losick R. 17.  2009. Geometric cue for protein localization in a bacterium. Science 323:1354–57 [Google Scholar]
  18. Roels S, Driks A, Losick R. 18.  1992. Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis. J. Bacteriol. 174:575–85 [Google Scholar]
  19. Ramamurthi KS, Losick R. 19.  2008. ATP-driven self-assembly of a morphogenetic protein in Bacillus subtilis. Mol. Cell 31:406–14 [Google Scholar]
  20. Castaing JP, Nagy A, Anantharaman V, Aravind L, Ramamurthi KS. 20.  2013. ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein. Proc. Natl. Acad. Sci. USA 110:E151–60 [Google Scholar]
  21. Cutting S, Anderson M, Lysenko E, Page A, Tomoyasu T. 21.  et al. 1997. SpoVM, a small protein essential to development in Bacillus subtilis, interacts with the ATP-dependent protease FtsH. J. Bacteriol. 179:5534–42 [Google Scholar]
  22. Kobiler O, Rokney A, Oppenheim AB. 22.  2007. Phage lambda CIII: a protease inhibitor regulating the lysis-lysogeny decision. PLoS ONE 2:e363 [Google Scholar]
  23. Halder S, Banerjee S, Parrack P. 23.  2008. Direct CIII-HflB interaction is responsible for the inhibition of the HflB (FtsH)-mediated proteolysis of Escherichia coli σ32 by λCIII. FEBS J. 275:4767–72 [Google Scholar]
  24. Le AT, Schumann W. 24.  2009. The Spo0E phosphatase of Bacillus subtilis is a substrate of the FtsH metalloprotease. Microbiology 155:1122–32 [Google Scholar]
  25. Yepes A, Schneider J, Mielich B, Koch G, García-Betancur JC. 25.  et al. 2012. The biofilm formation defect of a Bacillus subtilis flotillin-defective mutant involves the protease FtsH. Mol. Microbiol. 86:457–71 [Google Scholar]
  26. Coote JG.26.  1972. Sporulation in Bacillus subtilis. Characterization of oligosporogenous mutants and comparison of their phenotypes with those of asporogenous mutants. J. Gen. Microbiol. 71:1–15 [Google Scholar]
  27. Ebmeier SE, Tan IS, Clapham KR, Ramamurthi KS. 27.  2012. Small proteins link coat and cortex assembly during sporulation in Bacillus subtilis. Mol. Microbiol. 84:682–96 [Google Scholar]
  28. Schmalisch M, Maiques E, Nikolov L, Camp AH, Chevreux B. 28.  et al. 2010. Small genes under sporulation control in the Bacillus subtilis genome. J. Bacteriol. 192:5402–12 [Google Scholar]
  29. Putnam EE, Nock AM, Lawley TD, Shen A. 29.  2013. SpoIVA and SipL are Clostridium difficile spore morphogenetic proteins. J. Bacteriol. 195:1214–25 [Google Scholar]
  30. Lutkenhaus J, Pichoff S, Du S. 30.  2012. Bacterial cytokinesis: from Z ring to divisome. Cytoskeleton 69:778–90 [Google Scholar]
  31. Erickson HP, Anderson DE, Osawa M. 31.  2010. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 74:504–28 [Google Scholar]
  32. Kirkpatrick CL, Viollier PH. 32.  2011. New(s) to the (Z-)ring. Curr. Opin. Microbiol. 14:691–97 [Google Scholar]
  33. Ben-Yehuda S, Losick R. 33.  2002. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109:257–66 [Google Scholar]
  34. Levin PA, Losick R. 34.  1996. Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev. 10:478–88 [Google Scholar]
  35. Handler AA, Lim JE, Losick R. 35.  2008. Peptide inhibitor of cytokinesis during sporulation in Bacillus subtilis. Mol. Microbiol. 68:588–99 [Google Scholar]
  36. Wortinger M, Sackett MJ, Brun YV. 36.  2000. CtrA mediates a DNA replication checkpoint that prevents cell division in Caulobacter crescentus. EMBO J. 19:4503–12 [Google Scholar]
  37. Modell JW, Hopkins AC, Laub MT. 37.  2011. A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW. Genes Dev. 25:1328–43 [Google Scholar]
  38. Chen Y, Milam SL, Erickson HP. 38.  2012. SulA inhibits assembly of FtsZ by a simple sequestration mechanism. Biochemistry 51:3100–9 [Google Scholar]
  39. Mohammadi T, van Dam V, Sijbrandi R, Vernet T, Zapun A. 39.  et al. 2011. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30:1425–32 [Google Scholar]
  40. Shapiro L, McAdams HH, Losick R. 40.  2009. Why and how bacteria localize proteins. Science 326:1225–28 [Google Scholar]
  41. Wong RS, McMurry LM, Levy SB. 41.  2000. “Intergenic” blr gene in Escherichia coli encodes a 41-residue membrane protein affecting intrinsic susceptibility to certain inhibitors of peptidoglycan synthesis. Mol. Microbiol. 37:364–70 [Google Scholar]
  42. Hobbs EC, Astarita JL, Storz G. 42.  2010. Small RNAs and small proteins involved in resistance to cell envelope stress and acid shock in Escherichia coli: analysis of a bar-coded mutant collection. J. Bacteriol. 192:59–67 [Google Scholar]
  43. Karimova G, Davi M, Ladant D. 43.  2012. The β-lactam resistance protein Blr, a small membrane polypeptide, is a component of the Escherichia coli cell division machinery. J. Bacteriol. 194:5576–88 [Google Scholar]
  44. Gaßel M, Möllenkamp T, Puppe W, Altendorf K. 44.  1999. The KdpF subunit is part of the K+-translocating Kdp complex of Escherichia coli and is responsible for stabilization of the complex in vitro. J. Biol. Chem. 274:37901–7 [Google Scholar]
  45. Hamann K, Zimmann P, Altendorf K. 45.  2008. Reduction of turgor is not the stimulus for the sensor kinase KdpD of Escherichia coli. J. Bacteriol. 190:2360–67 [Google Scholar]
  46. Gannoun-Zaki L, Alibaud L, Carrère-Kremer S, Kremer L, Blanc-Potard AB. 46.  2013. Overexpression of the KdpF membrane peptide in Mycobacterium bovis BCG results in reduced intramacrophage growth and altered coding morphology. PLoS ONE 8:e60379 [Google Scholar]
  47. Hobbs EC, Yin X, Paul BJ, Astarita JL, Storz G. 47.  2012. Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc. Natl. Acad. Sci. USA 109:16696–701 [Google Scholar]
  48. Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M. 48.  et al. 2011. Phenotypic landscape of a bacterial cell. Cell 144:143–56 [Google Scholar]
  49. Vanderpool CK, Gottesman S. 49.  2004. Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phophotransferase system. Mol. Microbiol. 54:1076–89 [Google Scholar]
  50. Wadler CS, Vanderpool CK. 50.  2007. A dual function for a bacterial small RNA: SgrS performs base pairing–dependent regulation and encodes a functional polypeptide. Proc. Natl. Acad. Sci. USA 104:20454–59 [Google Scholar]
  51. Vanderpool CK, Gottesman S. 51.  2007. The novel transcription factor SgrR coordinates the response to glucose-phosphate stress. J. Bacteriol. 189:2238–48 [Google Scholar]
  52. Kosfeld A, Jahreis K. 52.  2012. Characterization of the interaction between the small regulatory peptide SgrT and the EIICBGlu of the glucose-phosphotransferase system of E. coli K-12. Metabolites 2:756–74 [Google Scholar]
  53. Shi LX, Schröder WP. 53.  2004. The low molecular mass subunits of the photosynthetic supracomplex, photosystem II. Biochim. Biophys. Acta 1608:75–96 [Google Scholar]
  54. Schneider D, Volkmer T, Rögner M. 54.  2007. PetG and PetN, but not PetL, are essential subunits of the cytochrome b6f complex from Synechocystis PCC 6803. Res. Microbiol. 158:45–50 [Google Scholar]
  55. Nelson N, Yocum CF. 55.  2006. Structure and function of photosystems I and II. Annu. Rev. Plant Biol. 57:521–65 [Google Scholar]
  56. Vanorsdel CE, Bhatt S, Allen RJ, Brenner EP, Hobson JJ. 56.  et al. 2013. The Escherichia coli CydX protein is a member of the CydAB cytochrome bd oxidase complex and is required for cytochrome bd oxidase activity. J. Bacteriol. 195:3640–50 [Google Scholar]
  57. Sun Y-H, de Jong MF, den Hartigh AB, Roux CM, Rolán HG, Tsolis RM. 57.  2012. The small protein CydX is required for function of cytochrome bd oxidase in Brucella abortus. Front. Cell. Infect. Microbiol. 2:47 [Google Scholar]
  58. Kato A, Chen HD, Latifi T, Groisman EA. 58.  2012. Reciprocal control between a bacterium's regulatory system and the modification status of its lipopolysaccharide. Mol. Cell 47:897–908 [Google Scholar]
  59. Alix E, Blanc-Potard AB. 59.  2009. Hydrophobic peptides: novel regulators within bacterial membrane. Mol. Microbiol. 72:5–11 [Google Scholar]
  60. Herrera CM, Hankins JV, Trent MS. 60.  2010. Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides. Mol. Microbiol. 76:1444–60 [Google Scholar]
  61. Alix E, Blanc-Potard AB. 61.  2008. Peptide-assisted degradation of the Salmonella MgtC virulence factor. EMBO J. 27:546–57 [Google Scholar]
  62. Miyashiro T, Goulian M. 62.  2007. Stimulus-dependent differential regulation in the Escherichia coli PhoQ-PhoP system. Proc. Natl. Acad. Sci. USA 104:16305–10 [Google Scholar]
  63. Moon K, Gottesman S. 63.  2009. A PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides. Mol. Microbiol. 74:1314–30 [Google Scholar]
  64. Moncrief MB, Maguire ME. 64.  1998. Magnesium and the role of MgtC in growth of Salmonella typhimurium. Infect. Immun. 66:3802–9 [Google Scholar]
  65. Lee EJ, Pontes MH, Groisman EA. 65.  2013. A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium's own F1F0 ATP synthase. Cell 154:146–56 [Google Scholar]
  66. Choi E, Lee KY, Shin D. 66.  2012. The MgtR regulatory peptide negatively controls expression of the MgtA Mg2+ transporter in Salmonella enterica serovar Typhimurium. Biochem. Biophys. Res. Commun. 417:318–23 [Google Scholar]
  67. Lippa AM, Goulian M. 67.  2009. Feedback inhibition in the PhoQ/PhoP signaling system by a membrane peptide. PLoS Genet. 5:e1000788 [Google Scholar]
  68. Lippa AM, Goulian M. 68.  2012. Perturbation of the oxidizing environment of the periplasm stimulates the PhoQ/PhoP system in Escherichia coli. J. Bacteriol. 194:1457–63 [Google Scholar]
  69. Cardenal-Muñoz E, Ramos-Morales F. 69.  2013. DsbA and MgrB regulate steA expression through the two-component system PhoQ/PhoP in Salmonella enterica. J. Bacteriol. 195:2368–78 [Google Scholar]
  70. Burkholder WF, Kurtser I, Grossman AD. 70.  2001. Replication initiation proteins regulate a developmental checkpoint in Bacillus subtilis. Cell 104:269–79 [Google Scholar]
  71. Rowland SL, Burkholder WF, Cunningham KA, Maciejewski MW, Grossman AD, King GF. 71.  2004. Structure and mechanism of action of Sda, an inhibitor of the histidine kinases that regulate initiation of sporulation in Bacillus subtilis. Mol. Cell 13:689–701 [Google Scholar]
  72. Whitten AE, Jacques DA, Hammouda B, Hanley T, King GF. 72.  et al. 2007. The structure of the KinA-Sda complex suggests an allosteric mechanism of histidine kinase inhibition. J. Mol. Biol. 368:407–20 [Google Scholar]
  73. Cunningham KA, Burkholder WF. 73.  2009. The histidine kinase inhibitor Sda binds near the site of autophosphorylation and may sterically hinder autophosphorylation and phosphotransfer to Spo0F. Mol. Microbiol. 71:659–77 [Google Scholar]
  74. Bick MJ, Lamour V, Rajashankar KR, Gordiyenko Y, Robinson CV, Darst SA. 74.  2009. How to switch off a histidine kinase: crystal structure of Geobacillus stearothermophilus KinB with the inhibitor Sda. J. Mol. Biol. 386:163–77 [Google Scholar]
  75. Jacques DA, Streamer M, Rowland SL, King GF, Guss JM. 75.  et al. 2009. Structure of the sporulation histidine kinase inhibitor Sda from Bacillus subtilis and insights into its solution state. Acta Crystallogr. D 65:574–81 [Google Scholar]
  76. Haslbeck M, Franzmann T, Weinfurtner D, Buchner J. 76.  2005. Some like it hot: the structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12:842–46 [Google Scholar]
  77. Robinson NJ, Winge DR. 77.  2010. Copper metallochaperones. Annu. Rev. Biochem. 79:537–62 [Google Scholar]
  78. Waters LS, Sandoval M, Storz G. 78.  2011. The Escherichia coli MntR miniregulon includes genes encoding a small protein and an efflux pump required for manganese homeostasis. J. Bacteriol. 193:5887–97 [Google Scholar]
  79. Gaballa A, Antelmann H, Aguilar C, Khakh SK, Song KB. 79.  et al. 2008. The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc. Natl. Acad. Sci. USA 105:11927–32 [Google Scholar]
  80. Chen L, James LP, Helmann JD. 80.  1993. Metalloregulation in Bacillus subtilis: isolation and characterization of two genes differentially repressed by metal ions. J. Bacteriol. 175:5428–37 [Google Scholar]
  81. Baichoo N, Wang T, Ye R, Helmann JD. 81.  2002. Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol. Microbiol. 45:1613–29 [Google Scholar]
  82. Smaldone GT, Antelmann H, Gaballa A, Helmann JD. 82.  2012. The FsrA sRNA and FbpB protein mediate the iron-dependent induction of the Bacillus subtilis lutABC iron-sulfur-containing oxidases. J. Bacteriol. 194:2586–93 [Google Scholar]
  83. Samayoa J, Yildiz FH, Karplus K. 83.  2011. Identification of prokaryotic small proteins using a comparative genomic approach. Bioinformatics 27:1756–71 [Google Scholar]
  84. Ibrahim M, Nicolas P, Bessières P, Bolotin A, Monnet V, Gardan R. 84.  2007. A genome-wide survey of short coding sequences in streptococci. Microbiology 153:3631–44 [Google Scholar]
  85. Skovgaard M, Jensen LJ, Brunak S, Ussery D, Krogh A. 85.  2001. On the total number of genes and their length distribution in complete microbial genomes. Trends Genet. 17:425–28 [Google Scholar]
  86. Li GW, Oh E, Weissman JS. 86.  2012. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484:538–41 [Google Scholar]
  87. Guan Z, Wang X, Raetz CRH. 87.  2011. Identification of a chloroform-soluble membrane miniprotein in Escherichia coli and its homolog in Salmonella typhimurium. Anal. Biochem. 409:284–89 [Google Scholar]
  88. Balasubramanian D, Vanderpool CK. 88.  2013. Deciphering the interplay between two independent functions of the small RNA regulator SgrS in Salmonella. J. Bacteriol. 195:4620–30 [Google Scholar]
  89. Storz G, Vogel J, Wassarman KM. 89.  2011. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43:880–91 [Google Scholar]
  90. Otto M.90.  2010. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu. Rev. Microbiol. 64:143–62 [Google Scholar]
  91. Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G. 91.  2010. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res. 38:3743–59 [Google Scholar]
  92. Konkol MA, Blair KM, Kearns DB. 92.  2013. Plasmid-encoded ComI inhibits competence in the ancestral strain of Bacillus subtilis. J. Bacteriol. 195:4085–93 [Google Scholar]
  93. Jaud S, Fernández-Vidal M, Nilsson I, Meindl-Beinker NM, Hübner NC. 93.  et al. 2009. Insertion of short transmembrane helices by the Sec61 translocon. Proc. Natl. Acad. Sci. USA 106:11588–93 [Google Scholar]
  94. Karimova G, Robichon C, Ladant D. 94.  2009. Characterization of YmgF, a 72-residue inner membrane protein that associates with the Escherichia coli cell division machinery. J. Bacteriol. 191:333–46 [Google Scholar]
  95. Eguchi Y, Itou J, Yamane M, Demizu R, Yamato F. 95.  et al. 2007. B1500, a small membrane protein, connects the two-component systems EvgS/EvgA and PhoQ/PhoP in Escherichia coli. Proc. Natl. Acad. Sci. USA 104:18712–17 [Google Scholar]
  96. Törnroth-Horsefield S, Gourdon P, Horsefield R, Brive L, Yamamoto N. 96.  et al. 2007. Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist. Structure 15:1663–73 [Google Scholar]
  97. Ramu H, Mankin A, Vazquez-Laslop N. 97.  2009. Programmed drug-dependent ribosome stalling. Mol. Microbiol. 71:811–24 [Google Scholar]
  98. Fontaine F, Fuchs RT, Storz G. 98.  2011. Membrane localization of small proteins in Escherichia coli. J. Biol. Chem. 286:32464–74 [Google Scholar]
  99. Xie K, Dalbey RE. 99.  2008. Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat. Rev. Microbiol. 6:234–44 [Google Scholar]
  100. Horler RS, Vanderpool CK. 100.  2009. Homologs of the small RNA SgrS are broadly distributed in enteric bacteria but have diverged in size and sequence. Nucleic Acids Res. 37:5465–76 [Google Scholar]
  101. Carvunis AR, Rolland T, Wapinski I, Calderwood MA, Yildirim MA. 101.  et al. 2012. Proto-genes and de novo gene birth. Nature 487:370–74 [Google Scholar]
  102. Andrews SJ, Rothnagel JA. 102.  2014. Emerging evidence for functional peptides encoded by small open reading frames. Nat. Rev. Genet. 15193–204
  103. Hanada K, Higuchi-Takeuchi M, Okamoto M, Yoshizumi T, Shimizu M. 103.  et al. 2013. Small open reading frames associated with morphogenesis are hidden in plant genomes. Proc. Natl. Acad. Sci. USA 110:2395–400 [Google Scholar]
  104. Kondo T, Hashimoto Y, Kato K, Inagaki S, Hayashi S, Kageyama Y. 104.  2007. Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA. Nat. Cell Biol. 9:660–65 [Google Scholar]
  105. Galindo MI, Pueyo JI, Fouix S, Bishop SA, Couso JP. 105.  2007. Peptides encoded by short ORFs control development and define a new eukaryotic gene family. PLoS Biol. 5:e106 [Google Scholar]
  106. Magny EG, Pueyo JI, Pearl FM, Cespedes MA, Niven JE. 106.  et al. 2013. Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science 341:1116–20 [Google Scholar]
  107. Kondo T, Plaza S, Zanet J, Benrabah E, Valenti P. 107.  et al. 2010. Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis. Science 329:336–39 [Google Scholar]
  108. Nelson KE, Paulsen IT, Heidelberg JF, Fraser CM. 108.  2000. Status of genome projects for nonpathogenic bacteria and archaea. Nat. Biotechnol. 18:1049–54 [Google Scholar]
/content/journals/10.1146/annurev-biochem-070611-102400
Loading
/content/journals/10.1146/annurev-biochem-070611-102400
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error