1932

Abstract

Transcription factor IIH (TFIIH) is a multiprotein complex involved in both transcription and DNA repair, revealing a striking functional link between these two processes. Some of its subunits also belong to complexes involved in other cellular processes, such as chromosome segregation and cell cycle regulation, emphasizing the multitasking capabilities of this factor. This review aims to depict the structure of TFIIH and to dissect the roles of its subunits in different cellular mechanisms. Our understanding of the biochemistry of TFIIH has greatly benefited from studies focused on diseases related to TFIIH mutations. We address the etiology of these disorders and underline the fact that TFIIH can be considered a promising target for therapeutic strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060815-014857
2016-06-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biochem/85/1/annurev-biochem-060815-014857.html?itemId=/content/journals/10.1146/annurev-biochem-060815-014857&mimeType=html&fmt=ahah

Literature Cited

  1. Schaeffer L, Roy R, Humbert S, Moncollin V, Vermeulen W. 1.  et al. 1993. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260:58–63Showed that TFIIH links DNA repair and transcription. [Google Scholar]
  2. Rapin I. 2.  2013. Disorders of nucleotide excision repair. Handb. Clin. Neurol. 113:1637–50 [Google Scholar]
  3. DiGiovanna JJ, Kraemer KH. 3.  2012. Shining a light on xeroderma pigmentosum. J. Invest. Dermatol. 132:785–96 [Google Scholar]
  4. Gerard M, Fischer L, Moncollin V, Chipoulet JM, Chambon P, Egly JM. 4.  1991. Purification and interaction properties of the human RNA polymerase B (II) general transcription factor BTF2. J. Biol. Chem. 266:20940–45Described the purification of TFIIH (designated BTF2) from human cells. [Google Scholar]
  5. Conaway RC, Conaway JW. 5.  1989. An RNA polymerase II transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by TATA region of promoters. PNAS 86:7356–60Described the purification of TFIIH (designated δ) from rat liver cells. [Google Scholar]
  6. Feaver WJ, Gileadi O, Kornberg R. 6.  1991. Purification and characterization of yeast RNA polymerase II transcription factor b. J. Biol. Chem. 266:19000–5Described the purification of TFIIH from yeast cells. [Google Scholar]
  7. Ranish JA, Hahn S, Lu Y, Yi EC, Li XJ. 7.  et al. 2004. Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nat. Genet. 36:707–13Identified Tfb5, the tenth subunit of TFIIH, in yeast cells. [Google Scholar]
  8. Giglia-Mari G, Coin F, Ranish JA, Hoogstraten D, Theil A. 8.  et al. 2004. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat. Genet. 36:714–19 [Google Scholar]
  9. Coin F, Marinoni JC, Rodolfo C, Fribourg S, Pedrini AM, Egly JM. 9.  1998. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat. Genet. 20:184–88Showed that the p44/XPD partnership is disrupted by XPD mutations, leading to NER defects. [Google Scholar]
  10. Sandrock B, Egly JM. 10.  2001. A yeast four-hybrid system identifies Cdk-activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH. J. Biol. Chem. 276:35328–33 [Google Scholar]
  11. Ito S, Kuraoka I, Chymkowitch P, Compe E, Takedachi A. 11.  et al. 2007. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol. Cell 26:231–43Described the involvement of XPG in transcription. [Google Scholar]
  12. Schultz P, Fribourg S, Poterszman A, Mallouh V, Moras D, Egly JM. 12.  2000. Molecular structure of human TFIIH. Cell 102:599–607Described the first electron microscopy observations of human TFIIH. [Google Scholar]
  13. Luo J, Cimermancic P, Viswanath S, Ebmeier CC, Kim B. 13.  et al. 2015. Architecture of the human and yeast general transcription and DNA repair factor TFIIH. Mol. Cell 59:794–806 [Google Scholar]
  14. Fishburn J, Tomko E, Galburt E, Hahn S. 14.  2015. Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation. PNAS 112:3961–66 [Google Scholar]
  15. Takagi Y, Masuda CA, Chang WH, Komori H, Wang D. 15.  et al. 2005. Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage. Mol. Cell 18:237–43 [Google Scholar]
  16. Rabut G, Le Dez G, Verma R, Makhnevych T, Knebel A. 16.  et al. 2011. The TFIIH subunit Tfb3 regulates cullin neddylation. Mol. Cell 43:488–95 [Google Scholar]
  17. Chang WH, Kornberg RD. 17.  2000. Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell 102:609–13 [Google Scholar]
  18. Fan L, Arvai AS, Cooper PK, Iwai S, Hanaoka F, Tainer JA. 18.  2006. Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol. Cell 22:27–37 [Google Scholar]
  19. Fan L, Fuss JO, Cheng QJ, Arvai AS, Hammel M. 19.  et al. 2008. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133:789–800 [Google Scholar]
  20. Liu H, Rudolf J, Johnson KA, McMahon SA, Oke M. 20.  et al. 2008. Structure of the DNA repair helicase XPD. Cell 133:801–12 [Google Scholar]
  21. Wolski SC, Kuper J, Hanzelmann P, Truglio JJ, Croteau DL. 21.  et al. 2008. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLOS Biol. 6:e149 [Google Scholar]
  22. Kainov DE, Vitorino M, Cavarelli J, Poterszman A, Egly JM. 22.  2008. Structural basis for group A trichothiodystrophy. Nat. Struct. Biol. 15:980–84 [Google Scholar]
  23. Schmitt DR, Kuper J, Elias A, Kisker C. 23.  2014. The structure of the TFIIH p34 subunit reveals a von Willebrand factor A like fold. PLOS ONE 9:e102389 [Google Scholar]
  24. Kim JS, Saint-Andre C, Lim HS, Hwang CS, Egly JM, Cho Y. 24.  2015. Crystal structure of the Rad3/XPD regulatory domain of Ssl1/p44. J. Biol. Chem. 290:8321–30 [Google Scholar]
  25. Dubaele S. Santis L, Bienstock RJ, Keriel A, Stefanini M. 25. , Proietti De et al. 2003. Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol. Cell 11:1635–46 [Google Scholar]
  26. Coin F, Oksenych V, Egly JM. 26.  2007. Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol. Cell 26:245–56 [Google Scholar]
  27. Bedez F, Linard B, Brochet X, Ripp R, Thompson JD. 27.  et al. 2013. Functional insights into the core-TFIIH from a comparative survey. Genomics 101:178–86 [Google Scholar]
  28. Fisher RP. 28.  2005. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J. Cell. Sci. 118:5171–80 [Google Scholar]
  29. Fesquet D, Labbé JC, Derancourt J, Capony JP, Galas S. 29.  et al. 1993. The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J. 12:3111–21 [Google Scholar]
  30. Fisher RP, Morgan DO. 30.  1994. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 78:713–24 [Google Scholar]
  31. Mäkelä TP, Tassan JP, Nigg EA, Frutiger S, Hughes GJ, Weinberg R. 31.  1994. A cyclin associated with the CDK-associated kinase MO15. Nature 371:254–57 [Google Scholar]
  32. Poon RYC, Yamashita K, Adamczewski JP, Hunt T, Shuttleworth J. 32.  1993. The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J. 12:3123–32 [Google Scholar]
  33. Weeda G, van Ham RCA, Vermeulen W, Bootsma D, van der Eb AJ, Hoeijmakers JHJ. 33.  1990. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell 62:777–91 [Google Scholar]
  34. Weber CA, Salazar EP, Stewart SA, Thompson LH. 34.  1990. ERCC2: cDNA cloning and molecular characterization of human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J. 9:1437–47 [Google Scholar]
  35. Schaeffer L, Moncollin V, Roy R, Staub A, Mezzina M. 35.  et al. 1994. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 13:2388–92 [Google Scholar]
  36. Ito S, Tan LJ, Andoh D, Narita T, Seki M. 36.  et al. 2010. MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol. Cell 39:632–40 [Google Scholar]
  37. Yeom E, Hong ST, Choi KW. 37.  2015. Crumbs interacts with Xpd for nuclear division control in Drosophila. Oncogene 34:2777–89 [Google Scholar]
  38. Hernandez N. 38.  1993. TBP, a universal eukaryotic transcription factor?. Genes Dev. 7:1291–308 [Google Scholar]
  39. Buratowski S, Zhou H. 39.  1992. A suppressor of TBP mutations encodes an RNA polymerase III transcription factor with homology to TFIIB. Cell 71:221–30 [Google Scholar]
  40. Eberhard D, Tora L, Egly JM, Grummt I. 40.  1993. A TBP-containing multiprotein complex (TIF-IB) mediates transcription specificity of murine RNA polymerase I. Nucleic Acids Res. 21:4180–86 [Google Scholar]
  41. Iben S, Tschochner H, Bier M, Hoogstraten D, Hozak P. 41.  et al. 2002. TFIIH plays an essential role in RNA polymerase I transcription. Cell 109:297–306 [Google Scholar]
  42. Maldonado E, Ha I, Cortes P, Weis L, Reinberg D. 42.  1990. Factors involved in specific transcription by mammalian RNA polymerase II: role of transcription factors IIA, IID, and IIB during formation of a transcription-competent complex. Mol. Cell. Biol. 10:6335–47 [Google Scholar]
  43. Jonkers I, Lis JT. 43.  2015. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16:167–77 [Google Scholar]
  44. Douziech M, Coin F, Chipoulet JM, Arai Y, Ohkuma Y. 44.  et al. 2000. Mechanism of promoter melting by the xeroderma pigmentosum complementation group B helicase of transcription factor IIH revealed by protein-DNA photo-cross-linking. Mol. Cell. Biol. 20:8168–77 [Google Scholar]
  45. Kim TK, Ebright RH, Reinberg D. 45.  2000. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288:1418–22 [Google Scholar]
  46. Holstege FC, Fiedler U, Timmers HT. 46.  1997. Three transitions in the RNA polymerase II transcription complex during initiation. EMBO J. 16:7468–80 [Google Scholar]
  47. Lin YC, Choi WS, Gralla JD. 47.  2005. TFIIH XPB mutants suggest a unified bacterial-like mechanism for promoter opening but not escape. Nat. Struct. Mol. Biol. 12:603–7 [Google Scholar]
  48. Devault A, Martinez AM, Fesquet D, Labbé JC, Morin N. 48.  et al. 1995. MAT1 (‘ménage à trois’) a new RING finger protein subunit stabilizing cyclin H-cdk7 complexes in starfish and Xenopus CAK. EMBO J. 14:5027–36 [Google Scholar]
  49. Adamczewski JP, Rossignol M, Tassan JP, Nigg EA, Moncollin V, Egly JM. 49.  1996. MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH. EMBO J. 15:1877–84 [Google Scholar]
  50. Rossignol M, Kolb-Cheynel I, Egly JM. 50.  1997. Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. EMBO J. 16:1628–37 [Google Scholar]
  51. Murakami K, Mattei PJ, Davis RE, Jin H, Kaplan CD, Kornberg RD. 51.  2015. Uncoupling promoter opening from start-site scanning. Mol. Cell 59:133–38 [Google Scholar]
  52. Lu H, Zawel L, Fisher L, Egly JM, Reinberg D. 52.  1992. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 358:641–45Showed that TFIIH phosphorylates RNAPII. [Google Scholar]
  53. Roy R, Adamczewski JP, Seroz T, Vermeulen W, Tassan JP. 53.  et al. 1994. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79:1093–101Revealed that the CDK7 kinase is found in the TFIIH transcription complex. [Google Scholar]
  54. Glover-Cutter K, Larochelle S, Erickson B, Zhang C, Shokat K. 54.  et al. 2009. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29:5455–64 [Google Scholar]
  55. Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD. 55.  1994. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79:1103–9 [Google Scholar]
  56. Egloff S, O'Reilly D, Chapman RD, Taylor A, Tanzhaus K. 56.  et al. 2007. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318:1777–79 [Google Scholar]
  57. Cho E, Tagaki T, Moore CR, Buratowski S. 57.  1997. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 11:3319–26 [Google Scholar]
  58. Dvir A, Conaway RC, Conaway JW. 58.  1997. A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes. PNAS 94:9006–10 [Google Scholar]
  59. Jeronimo C, Robert F. 59.  2014. Kin28 regulates the transient association of Mediator with core promoters. Nat. Struct. Mol. Biol. 21:449–55 [Google Scholar]
  60. Wong KH, Jin Y, Struhl K. 60.  2014. TFIIH phosphorylation of the Pol II CTD stimulates mediator dissociation from the preinitiation complex and promoter escape. Mol. Cell 54:601–12 [Google Scholar]
  61. Ohkuma Y, Roeder RG. 61.  1994. Regulation of TFIIH ATPase and kinase activities by TFIIE during active initiation complex formation. Nature 368:160–63 [Google Scholar]
  62. Akoulitchev S, Chuikov S, Reinberg D. 62.  2000. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407:102–6 [Google Scholar]
  63. Esnault C, Ghavi-Helm Y, Brun S, Soutourina J. Berkum N. 63. , Van et al. 2008. Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol. Cell 31:337–46 [Google Scholar]
  64. Cho EJ, Kobor MS, Kim M, Greenblatt J, Buratowski S. 64.  2001. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15:3319–29 [Google Scholar]
  65. Larochelle S, Amat R, Glover-Cutter K, Sanso M, Zhang C. 65.  et al. 2012. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat. Struct. Mol. Biol. 19:1108–15 [Google Scholar]
  66. Zhou M, Nekhai S, Bharucha DC, Kumar A, Ge H. 66.  et al. 2001. TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription. J. Biol. Chem. 276:44633–40 [Google Scholar]
  67. Eick D, Geyer M. 67.  2013. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113:8456–90 [Google Scholar]
  68. Lee KM, Miklos I, Du H, Watt S, Szilagyi Z. 68.  et al. 2005. Impairment of the TFIIH-associated CDK-activating kinase selectively affects cell cycle-regulated gene expression in fission yeast. Mol. Biol. Cell 16:2734–45 [Google Scholar]
  69. Rossi DJ, Londesborough A, Korsisaari N, Pihlak A, Lehtonen E. 69.  et al. 2001. Inability to enter S phase and defective RNA polymerase II CTD phosphorylation in mice lacking Mat1. EMBO J. 20:2844–56 [Google Scholar]
  70. Ganuza M, Saiz-Ladera C, Canamero M, Gomez G, Schneider R. 70.  et al. 2012. Genetic inactivation of Cdk7 leads to cell cycle arrest and induces premature aging due to adult stem cell exhaustion. EMBO J. 31:2498–510 [Google Scholar]
  71. Kelso TW, Baumgart K, Eickhoff J, Albert T, Antrecht C. 71.  et al. 2014. Cyclin-dependent kinase 7 controls mRNA synthesis by affecting stability of preinitiation complexes, leading to altered gene expression, cell cycle progression, and survival of tumor cells. Mol. Cell. Biol. 34:3675–88 [Google Scholar]
  72. Kwiatkowski N, Zhang T, Rahl PB, Abraham BJ, Reddy J. 72.  et al. 2014. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511:616–20 [Google Scholar]
  73. Lu H, Fisher RP, Bailey P, Levine AJ. 73.  1997. The CDK7-cycH-p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro. Mol. Cell. Biol. 17:5923–34 [Google Scholar]
  74. Rochette-Egly C, Adam S, Rossignol M, Egly JM, Chambon P. 74.  1997. Stimulation of RARα activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 90:97–107 [Google Scholar]
  75. Keriel A, Stary A, Sarasin A, Rochette-Egly C, Egly JM. 75.  2002. XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARα. Cell 109:125–35Showed that the transactivation mediated by NRs is disrupted by TFIIH mutations. [Google Scholar]
  76. Chen D, Riedl T, Washbrook E, Pace PE, Coombes RC. 76.  et al. 2000. Activation of estrogen receptor α by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7. Mol. Cell 6:127–37 [Google Scholar]
  77. Compe E, Drane P, Laurent C, Diderich K, Braun C. 77.  et al. 2005. Dysregulation of the peroxisome proliferator-activated receptor target genes by XPD mutations. Mol. Cell. Biol. 25:6065–76 [Google Scholar]
  78. Drane P, Compe E, Catez P, Chymkowitch P, Egly JM. 78.  2004. Selective regulation of vitamin D receptor-responsive genes by TFIIH. Mol. Cell 16:187–97 [Google Scholar]
  79. Bour G, Plassat JL, Bauer A, Lalevee S, Rochette-Egly C. 79.  2005. Vinexin β interacts with the non-phosphorylated AF-1 domain of retinoid receptor γ (RARγ) and represses RARγ-mediated transcription. J. Biol. Chem. 280:17027–37 [Google Scholar]
  80. Compe E, Malerba M, Soler L, Marescaux J, Borrelli E, Egly JM. 80.  2007. Neurological defects in trichothiodystrophy reveal a coactivator function of TFIIH. Nat. Neurosci. 10:1414–22 [Google Scholar]
  81. Sano M, Izumi Y, Helenius K, Asakura M, Rossi DJ. 81.  et al. 2007. Ménage-à-trois 1 is critical for the transcriptional function of PPARγ coactivator 1. Cell Metab. 5:129–42 [Google Scholar]
  82. Puigserver P, Spiegelman BM. 82.  2003. Peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24:78–90 [Google Scholar]
  83. Traboulsi H, Davoli S, Catez P, Egly JM, Compe E. 83.  2014. Dynamic partnership between TFIIH, PGC-1α and SIRT1 is impaired in trichothiodystrophy. PLOS Genet. 10:e1004732 [Google Scholar]
  84. Herrera-Cruz M, Cruz G, Valadez-Graham V, Fregoso-Lomas M, Villicana C. 84.  et al. 2012. Physical and functional interactions between Drosophila homologue of Swc6/p18Hamlet subunit of the SWR1/SRCAP chromatin-remodeling complex with the DNA repair/transcription factor TFIIH. J. Biol. Chem. 287:33567–80 [Google Scholar]
  85. Singh A, Compe E, Le May N, Egly JM. 85.  2015. TFIIH subunit alterations causing xeroderma pigmentosum and trichothiodystrophy specifically disturb several steps during transcription. Am. J. Hum. Genet. 96:194–207 [Google Scholar]
  86. Le May N, Mota-Fernandes D, Velez-Cruz R, Iltis I, Biard D. 86.  et al. 2010. NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol. Cell 38:54–66 [Google Scholar]
  87. Puc J, Kozbial P, Li W, Tan Y, Liu Z. 87.  et al. 2015. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 160:367–80 [Google Scholar]
  88. Hoogstraten D, Nigg AL, Heath H, Mullenders LH, van Driel R. 88.  et al. 2002. Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol. Cell 10:1163–74 [Google Scholar]
  89. Bradsher J, Auriol J, de Santis LP, Iben S, Vonesch JL. 89.  et al. 2002. CSB is a component of RNA Pol I transcription. Mol. Cell 10:819–29 [Google Scholar]
  90. Swenberg JA, Lu K, Moeller BC, Gao L, Upton PB. 90.  et al. 2011. Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment. Toxicol. Sci. 120:S130–45 [Google Scholar]
  91. Scharer OD. 91.  2013. Nucleotide excision repair in eukaryotes. Cold Spring Harb. Perspect. Biol. 5:a012609 [Google Scholar]
  92. Min JH, Pavletich NP. 92.  2007. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449:570–75 [Google Scholar]
  93. Camenisch U, Trautlein D, Clement FC, Fei J, Leitenstorfer A. 93.  et al. 2009. Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein. EMBO J. 28:2387–99 [Google Scholar]
  94. Hanawalt PC, Spivak G. 94.  2008. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 9:958–70 [Google Scholar]
  95. Araujo SJ, Tirode F, Coin F, Pospiech H, Syvaoja JE. 95.  et al. 2000. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev. 14:349–59 [Google Scholar]
  96. Svejstrup JQ, Wang Z, Feaver WJ, Wu X, Bushnell DA. 96.  et al. 1995. Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell 80:21–28 [Google Scholar]
  97. Coin F, Oksenych V, Mocquet V, Groh S, Blattner C, Egly JM. 97.  2008. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol. Cell 31:9–20 [Google Scholar]
  98. Bootsma D, Hoeijmakers JHJ. 98.  1993. DNA repair. Engagement with transcription. Nature 363:114–15 [Google Scholar]
  99. Oksenych V, Bernardes de Jesus BM, Zhovmer A, Egly JM, Coin F. 99.  2009. Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J. 28:2971–80 [Google Scholar]
  100. Mathieu N, Kaczmarek N, Naegeli H. 100.  2010. Strand- and site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase. PNAS 107:17545–50 [Google Scholar]
  101. Reardon JT, Sancar A. 101.  2003. Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev. 17:2539–51 [Google Scholar]
  102. Sugasawa K, Akagi J, Nishi R, Iwai S, Hanaoka F. 102.  2009. Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol. Cell 36:642–53 [Google Scholar]
  103. de Jesus BM, Bjoras M, Coin F, Egly JM. 103.  Bernardes 2008. Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC. Mol. Cell. Biol. 28:7225–35 [Google Scholar]
  104. Fregoso M, Laine JP, Aguilar-Fuentes J, Mocquet V, Reynaud E. 104.  et al. 2007. DNA repair and transcriptional deficiencies caused by mutations in the Drosophila p52 subunit of TFIIH generate developmental defects and chromosome fragility. Mol. Cell. Biol. 27:3640–50 [Google Scholar]
  105. Coin F, De Santis LP, Nardo T, Zlobinskaya O, Stefanini M, Egly JM. 105.  2006. p8/TTD-A as a repair-specific TFIIH subunit. Mol. Cell 21:215–26 [Google Scholar]
  106. Vermeulen W, Bergmann E, Auriol J, Rademakers S, Frit P. 106.  et al. 2000. Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder. Nat. Genet. 26:307–13 [Google Scholar]
  107. Giglia-Mari G, Miquel C, Theil AF, Mari PO, Hoogstraten D. 107.  et al. 2006. Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells. PLOS Biol. 4:e156 [Google Scholar]
  108. Aguilar-Fuentes J, Fregoso M, Herrera M, Reynaud E, Braun C. 108.  et al. 2008. p8/TTDA overexpression enhances UV-irradiation resistance and suppresses TFIIH mutations in a Drosophila trichothiodystrophy model. PLOS Genet. 4:e1000253 [Google Scholar]
  109. Compe E, Egly JM. 109.  2012. TFIIH: when transcription met DNA repair. Nat. Rev. Mol. Cell Biol. 13:343–54 [Google Scholar]
  110. Evans E, Moggs JG, Hwang JR, Egly JM, Wood RD. 110.  1997. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 16:6559–73 [Google Scholar]
  111. Tsodikov OV, Ivanov D, Orelli B, Staresincic L, Shoshani I. 111.  et al. 2007. Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA. EMBO J. 26:4768–76 [Google Scholar]
  112. Zotter A, Luijsterburg MS, Warmerdam DO, Ibrahim S, Nigg A. 112.  et al. 2006. Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced DNA damage depends on functional TFIIH. Mol. Cell. Biol. 26:8868–79 [Google Scholar]
  113. Riedl T, Hanaoka F, Egly JM. 113.  2003. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J. 22:5293–303 [Google Scholar]
  114. Staresincic L, Fagbemi AF, Enzlin JH, Gourdin AM, Wijgers N. 114.  et al. 2009. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 28:1111–20 [Google Scholar]
  115. Mocquet V, Laine JP, Riedl T, Yajin Z, Lee MY, Egly JM. 115.  2008. Sequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step. EMBO J. 27:155–67 [Google Scholar]
  116. Coin F, Auriol J, Tapias A, Clivio P, Vermeulen W, Egly JM. 116.  2004. Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity. EMBO J. 23:4835–46 [Google Scholar]
  117. Kemp MG, Reardon JT, Lindsey-Boltz LA, Sancar A. 117.  2012. Mechanism of release and fate of excised oligonucleotides during nucleotide excision repair. J. Biol. Chem. 287:22889–99 [Google Scholar]
  118. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. 118.  2014. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15:465–81 [Google Scholar]
  119. Wilson MD, Harreman M, Svejstrup JQ. 119.  2013. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim. Biophys. Acta 1829:151–57 [Google Scholar]
  120. Schachter MM, Merrick KA, Larochelle S, Hirschi A, Zhang C. 120.  et al. 2013. A Cdk7-Cdk4 T-loop phosphorylation cascade promotes G1 progression. Mol. Cell 50:250–60 [Google Scholar]
  121. Russo AA, Jeffrey PD, Pavletich NP. 121.  1996. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol. 3:696–700 [Google Scholar]
  122. Larochelle S, Pandur J, Fisher RP, Salz HK, Suter B. 122.  1998. CDK7 is essential for mitosis and for in vivo CDK-activating kinase activity. Genes Dev. 12:370–81 [Google Scholar]
  123. Larochelle S, Merrick KA, Terret ME, Wohlbold L, Barboza NM. 123.  et al. 2007. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol. Cell 25:839–50 [Google Scholar]
  124. Tassan JP, Shultz SJ, Bartek J, Nigg EA. 124.  1994. Cell cycle analysis of the activity, subcellular localisation, and subunit composition of human CAK (CDK-activating kinase). J. Cell. Biol. 127:467–78 [Google Scholar]
  125. Harper JW, Elledge SJ. 125.  1998. The role of Cdk7 in CAK function, a retro-retrospective. Genes Dev. 12:285–89 [Google Scholar]
  126. Chen J, Larochelle S, Li X, Suter B. 126.  2003. Xpd/Ercc2 regulates CAK activity and mitotic progression. Nature 424:228–32 [Google Scholar]
  127. Li X, Urwyler O, Suter B. 127.  2010. Drosophila Xpd regulates Cdk7 localization, mitotic kinase activity, spindle dynamics, and chromosome segregation. PLOS Genet. 6:e1000876 [Google Scholar]
  128. Vashisht AA, Yu CC, Sharma T, Ro K, Wohlschlegel JA. 128.  2015. The association of the xeroderma pigmentosum group D DNA helicase (XPD) with transcription factor IIH is regulated by the cytosolic iron-sulfur cluster assembly pathway. J. Biol. Chem. 290:14218–25 [Google Scholar]
  129. Lauder S, Bankmann M, Guzder S, Sung P, Prakash L, Prakash S. 129.  1996. Dual requirement for yeast MMS19 in DNA repair and RNA polymerase II transcription. Mol. Cell. Biol. 16:6783–93 [Google Scholar]
  130. Seroz T, Winkler GS, Auriol J, Verhage RA, Vermeulen W. 130.  et al. 2000. Cloning of a human homolog of the yeast nucleotide excision repair gene MMS19 and interaction with transcription repair factor TFIIH via the XPB and XPD helicases. Nucleic Acids Res. 28:4506–13 [Google Scholar]
  131. Kou H, Zhou Y, Gorospe RM, Wang Z. 131.  2008. Mms19 protein functions in nucleotide excision repair by sustaining an adequate cellular concentration of the TFIIH component Rad3. PNAS 105:15714–19 [Google Scholar]
  132. Gari K, Leon Ortiz AM, Borel V, Flynn H, Skehel JM, Boulton SJ. 132.  2012. MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science 337:243–45 [Google Scholar]
  133. Stehling O, Vashisht AA, Mascarenhas J, Jonsson ZO, Sharma T. 133.  et al. 2012. MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science 337:195–99 [Google Scholar]
  134. Izaddoost S, Nam SC, Bhat MA, Bellen HJ, Choi KW. 134.  2002. Drosophila Crumbs is a positional cue in photoreceptor adherens junctions and rhabdomeres. Nature 416:178–83 [Google Scholar]
  135. Pellikka M, Tanentzapf G, Pinto M, Smith C, McGlade CJ. 135.  et al. 2002. Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 416:143–49 [Google Scholar]
  136. den Hollander AI, ten Brink JB, de Kok YJ, van Soest S, van den Born LI. 136.  et al. 1999. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nat. Genet. 23:217–21 [Google Scholar]
  137. Dollfus H, Porto F, Caussade P, Speeg-Schatz C, Sahel J. 137.  et al. 2003. Ocular manifestations in the inherited DNA repair disorders. Surv. Ophthalmol. 48:107–22 [Google Scholar]
  138. Cleaver JE, Lam ET, Revet I. 138.  2009. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat. Rev. Genet. 10:756–68 [Google Scholar]
  139. Bootsma D. 139.  2001. The “Dutch DNA Repair Group,” in retrospect. Mutat. Res. 485:37–41 [Google Scholar]
  140. Itin PH, Sarasin A, Pittelkow MR. 140.  2001. Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J. Am. Acad. Dermatol. 44:891–920 [Google Scholar]
  141. Faghri S, Tamura D, Kraemer KH, Digiovanna JJ. 141.  2008. Trichothiodystrophy: A systematic review of 112 published cases characterises a wide spectrum of clinical manifestations. J. Med. Genet. 45:609–21 [Google Scholar]
  142. Matsui P, DePaulo J, Buratowski S. 142.  1995. An interaction between the Tfb1 and Ssl1 subunits of yeast TFIIH correlates with DNA repair activity. Nucleic Acids Res. 23:767–72 [Google Scholar]
  143. Bürglen L, Seroz T, Miniou P, Lefebvre S, Burlet P. 143.  et al. 1997. The gene encoding p44, a subunit of the transcription factor TFIIH, is involved in large-scale deletions associated with Werdnig-Hoffmann disease. Am. J. Hum. Genet. 60:72–79 [Google Scholar]
  144. Coin F, Bergmann E, Tremeau-Bravard A, Egly JM. 144.  1999. Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J. 18:1357–66 [Google Scholar]
  145. Ueda T, Compe E, Catez P, Kraemer KH, Egly JM. 145.  2009. Both XPD alleles contribute to the phenotype of compound heterozygote xeroderma pigmentosum patients. J. Exp. Med. 206:3031–46 [Google Scholar]
  146. Arseni L, Lanzafame M, Compe E, Fortugno P, Afonso-Barroso A. 146.  et al. 2015. TFIIH-dependent MMP-1 overexpression in trichothiodystrophy leads to extracellular matrix alterations in patient skin. PNAS 112:1499–504 [Google Scholar]
  147. Lebedev A, Scharffetter-Kochanek K, Iben S. 147.  2008. Truncated Cockayne syndrome B protein represses elongation by RNA polymerase I. J. Mol. Biol. 382:266–74 [Google Scholar]
  148. Alekseev S, Ayadi M, Brino L, Egly JM, Larsen AK, Coin F. 148.  2014. A small molecule screen identifies an inhibitor of DNA repair inducing the degradation of TFIIH and the chemosensitization of tumor cells to platinum. Chem. Biol. 21:398–407 [Google Scholar]
  149. Chipumuro E, Marco E, Christensen CL, Kwiatkowski N, Zhang T. 149.  et al. 2014. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159:1126–39 [Google Scholar]
  150. Christensen CL, Kwiatkowski N, Abraham BJ, Carretero J, Al-Shahrour F. 150.  et al. 2014. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor.. Cancer Cell 26:909–22 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060815-014857
Loading
/content/journals/10.1146/annurev-biochem-060815-014857
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error