1932

Abstract

Precise allocation of limited resources between growth and defense is critical for plant survival. In shade-intolerant species, perception of competition signals by informational photoreceptors activates shade-avoidance responses and reduces the expression of defenses against pathogens and insects. The main mechanism underlying defense suppression is the simultaneous downregulation of jasmonate and salicylic acid signaling by low ratios of red:far-red radiation. Inactivation of phytochrome B by low red:far-red ratios appears to suppress jasmonate responses by altering the balance between DELLA and JASMONATE ZIM DOMAIN (JAZ) proteins in favor of the latter. Solar UVB radiation is a positive modulator of plant defense, signaling through jasmonate-dependent and jasmonate-independent pathways. Light, perceived by phytochrome B and presumably other photoreceptors, helps plants concentrate their defensive arsenals in photosynthetically valuable leaves. The discovery of connections between photoreceptors and defense signaling is revealing novel mechanisms that control key resource allocation decisions in plant canopies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050213-040145
2014-04-29
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/arplant/65/1/annurev-arplant-050213-040145.html?itemId=/content/journals/10.1146/annurev-arplant-050213-040145&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal A, Kearney E, Hastings A, Ramsey T. 1.  2012. Attenuation of the jasmonate burst, plant defensive traits, and resistance to specialist monarch caterpillars on shaded common milkweed (Asclepias syriaca). J. Chem. Ecol. 38:893–901 [Google Scholar]
  2. Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH. 2.  1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–49 [Google Scholar]
  3. Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S. 3.  et al. 2012. Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc. Natl. Acad. Sci. USA 109:303–8 [Google Scholar]
  4. Augspurger CK, Kelly CK. 4.  1984. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61:211–17 [Google Scholar]
  5. Baldwin IT. 5.  2001. An ecologically motivated analysis of plant-herbivore interactions in native tobacco. Plant Physiol. 127:1449–58 [Google Scholar]
  6. Ballaré CL. 6.  1999. Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci. 4:97–102 [Google Scholar]
  7. Ballaré CL. 7.  2009. Illuminated behaviour: phytochrome as a key regulator of light foraging and plant anti-herbivore defence. Plant Cell Environ. 32:713–25 [Google Scholar]
  8. Ballaré CL. 8.  2011. Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci. 16:249–57 [Google Scholar]
  9. Ballaré CL, Caldwell MM, Flint SD, Robinson SA, Bornman JF. 9.  2011. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem. Photobiol. Sci. 10:226–41 [Google Scholar]
  10. Ballaré CL, Mazza CA, Austin AT, Pierik R. 10.  2012. Canopy light and plant health. Plant Physiol. 160:145–55 [Google Scholar]
  11. Ballaré CL, Scopel AL, Sánchez RA. 11.  1989. Photomodulation of axis extension in sparse canopies: role of the stem in the perception of light-quality signals of stand density. Plant Physiol. 89:1324–30 [Google Scholar]
  12. Ballaré CL, Scopel AL, Sánchez RA. 12.  1990. Far-red radiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science 247:329–32 [Google Scholar]
  13. Ballaré CL, Scopel AL, Stapleton AE, Yanovsky MJ. 13.  1996. Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox. Plant Physiol. 112:161–70 [Google Scholar]
  14. Belkhadir Y, Jaillais Y, Epple P, Balsemão-Pires E, Dangl JL, Chory J. 14.  2012. Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc. Natl. Acad. Sci. USA 109:297–302 [Google Scholar]
  15. Bell T, Freckleton RP, Lewis OT. 15.  2006. Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol. Lett. 9:569–74 [Google Scholar]
  16. Berger S, Bell E, Sadka A, Mullet JE. 16.  1995. Arabidopsis thaliana Atvsp is homologous to soybean VspA and VspB, genes encoding vegetative storage protein acid phosphatases, and is regulated similarly by methyl jasmonate, wounding, sugars, light and phosphate. Plant Mol. Biol. 27:933–42 [Google Scholar]
  17. Birch ANE, Begg GS, Squire GR. 17.  2011. How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems. J. Exp. Bot. 62:3251–61 [Google Scholar]
  18. Björkman O. 18.  1981. Responses to different quantum flux densities. Physiological Plant Ecology I: Responses to the Physical Environment OL Lange, PS Nobel, CB Osmond, H Ziegler 57–107 Encycl. Plant Ecol . 12/A Berlin: Springer-Verlag [Google Scholar]
  19. Bonaventure G. 19.  2012. Perception of insect feeding by plants. Plant Biol. 14:872–80 [Google Scholar]
  20. Boonman A, Prinsen E, Gilmer F, Schurr U, Peeters AJM. 20.  et al. 2007. Cytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients. Plant Physiol. 143:1841–52 [Google Scholar]
  21. Bostock RM. 21.  2005. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43:545–80 [Google Scholar]
  22. Brooks DM, Bender CL, Kunkel BN. 22.  2005. The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol. Plant Pathol. 6:629–39 [Google Scholar]
  23. Browse J. 23.  2009. Jasmonate passes muster: a receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 60:183–205 [Google Scholar]
  24. Bruinsma J. 24.  2009. The resource outlook to 2050: By how much do land, water use and crop yields need to increase by 2050?. Proceedings of the Expert Meeting on How to Feed the World in 2050, 24–26 June 2009, FAO Headquarters, Rome. Rome: Food Agric. Organ. UN http://www.fao.org/docrep/012/ak542e/ak542e00.htm [Google Scholar]
  25. Bryant JP, Chapin FSI, Klein DR. 25.  1983. Carbon nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–68 [Google Scholar]
  26. Burdon JJ, Chilvers GA. 26.  1982. Host density as a factor in plant disease ecology. Annu. Rev. Phytopathol. 20:143–66 [Google Scholar]
  27. Campos ML, de Almeida M, Rossi ML, Martinelli AP, Litholdo Junior CG. 27.  et al. 2009. Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. J. Exp. Bot. 60:4347–61 [Google Scholar]
  28. Caputo C, Rutitzky M, Ballaré CL. 28.  2006. Solar ultraviolet-B radiation alters the attractiveness of Arabidopsis plants to diamondback moths (Plutella xylostella L.): impacts on oviposition and involvement of the jasmonic acid pathway. Oecologia 149:81–90 [Google Scholar]
  29. Casal JJ. 29.  2012. Shade avoidance. Arabidopsis Book 10:e0157 [Google Scholar]
  30. Cerrudo I, Keller MM, Cargnel MD, Demkura PV, de Wit M. 30.  et al. 2012. Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. Plant Physiol. 158:2042–52 [Google Scholar]
  31. Chini A, Fonseca S, Fernández G, Adie B, Chico JM. 31.  et al. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–71 [Google Scholar]
  32. Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I. 32.  2010. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev. Cell 19:284–95 [Google Scholar]
  33. Chung HS, Cooke TF, Depew CL, Patel LC, Ogawa N. 33.  et al. 2010. Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling. Plant J. 63:613–22 [Google Scholar]
  34. Chung HS, Howe GA. 34.  2009. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21:131–45 [Google Scholar]
  35. Cipollini D. 35.  2004. Stretching the limits of plasticity: Can a plant defend against both competitors and herbivores?. Ecology 85:28–37 [Google Scholar]
  36. Conconi A, Smerdon MJ, Howe GA, Ryan CA. 36.  1996. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature 383:826–29 [Google Scholar]
  37. de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM. 37.  et al. 2008. A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–84 [Google Scholar]
  38. de Wit M, Spoel SH, Sanchez-Perez GF, Gommers CMM, Pieterse CMJ. 38.  et al. 2013. Perception of low red:far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis. Plant J. 75:90–103 [Google Scholar]
  39. Demkura PV, Abdala G, Baldwin IT, Ballaré CL. 39.  2010. Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet-B radiation on leaf phenolics and antiherbivore defense. Plant Physiol. 152:1084–95 [Google Scholar]
  40. Demkura PV, Ballaré CL. 40.  2012. UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. Mol. Plant 5:642–52 [Google Scholar]
  41. Dervinis C, Frost CJ, Lawrence SD, Novak NG, Davis JM. 41.  2010. Cytokinin primes plant responses to wounding and reduces insect performance. J. Plant Growth Regul. 29:289–96 [Google Scholar]
  42. Després C, DeLong C, Glaze S, Liu E, Fobert PR. 42.  2000. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–90 [Google Scholar]
  43. Đinh ST, Gális I, Baldwin IT. 43.  2012. UVB radiation and HGL-DTGs provide durable resistance against mirid (Tupiocoris notatus) attack in field-grown Nicotiana attenuata plants. Plant Cell Environ. 36:590–606 [Google Scholar]
  44. Djakovic-Petrovic T, de Wit M, Voesenek LACJ, Pierik R. 44.  2007. DELLA protein function in growth responses to canopy signals. Plant J. 51:117–26 [Google Scholar]
  45. Elliger CA, Wong Y, Chan BG, Waiss AC Jr. 45.  1981. Growth inhibitors in tomato (Lycopersicon) to tomato fruitworm (Heliothis zea). J. Chem. Ecol. 7:753–58 [Google Scholar]
  46. Engelen-Eigles G, Holden G, Cohen JD, Gardner G. 46.  2006. The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). J. Agric. Food Chem. 54:328–34 [Google Scholar]
  47. Erb M, Meldau S, Howe GA. 47.  2012. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17:250–59 [Google Scholar]
  48. Faigón-Soverna A, Harmon FG, Storani L, Karayekov E, Staneloni RJ. 48.  et al. 2006. A constitutive shade-avoidance mutant implicates TIR-NBS-LRR proteins in Arabidopsis photomorphogenic development. Plant Cell 18:2919–28 [Google Scholar]
  49. Felton GW, Korth KL. 49.  2000. Trade-offs between pathogen and herbivore resistance. Curr. Opin. Plant Biol. 3:309–14 [Google Scholar]
  50. Feng SH, Martinez C, Gusmaroli G, Wang Y, Zhou JL. 50.  et al. 2008. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–79 [Google Scholar]
  51. Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J-M, Gimenez-Ibanez S. 51.  et al. 2011. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–15 [Google Scholar]
  52. Fonseca S, Chico JM, Solano R. 52.  2009. The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr. Opin. Plant Biol. 12:539–47 [Google Scholar]
  53. Fonseca S, Chini A, Hamberg M, Adie B, Porzel A. 53.  et al. 2009. (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5:344–50 [Google Scholar]
  54. Frigerio M, Alabadí D, Pérez-Gómez J, García-Cárcel L, Phillips AL. 54.  et al. 2006. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol. 142:553–63 [Google Scholar]
  55. Fu ZQ, Dong X. 55.  2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64:839–63 [Google Scholar]
  56. Fu ZQ, Yan S, Saleh A, Wang W, Ruble J. 56.  et al. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–32 [Google Scholar]
  57. Galstyan A, Cifuentes-Esquivel N, Bou-Torrent J, Martinez-Garcia JF. 57.  2011. The shade avoidance syndrome in Arabidopsis: a fundamental role for atypical basic helix-loop-helix proteins as transcriptional cofactors. Plant J. 66:258–67 [Google Scholar]
  58. García-Guzmán G, Heil M. 58.  2014. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. New Phytol. 2011106–20
  59. Genoud T, Buchala AJ, Chua N-H, Metraux J-P. 59.  2002. Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. Plant J. 31:87–95 [Google Scholar]
  60. Glazebrook J. 60.  2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205–27 [Google Scholar]
  61. Grant RH. 61.  1991. Ultraviolet and photosynthetically active bands: plane surface irradiance at corn canopy base. Agron. J. 83:391–96 [Google Scholar]
  62. Green TR, Ryan CA. 62.  1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–77 [Google Scholar]
  63. Griebel T, Zeier J. 63.  2008. Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: Phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol. 147:790–801 [Google Scholar]
  64. Gunasekera TS, Paul ND, Ayres PG. 64.  1997. The effects of ultraviolet-U (UV-B: 290–320 nm) radiation on blister blight disease of tea (Camellia sinensis). Plant Pathol. 46:179–85 [Google Scholar]
  65. Hamilton JG, Zangerl AR, DeLucia EH, Berenbaum MR. 65.  2001. The carbon–nutrient balance hypothesis: its rise and fall. Ecol. Lett. 4:86–95 [Google Scholar]
  66. Heijde M, Ulm R. 66.  2012. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci. 17:230–37 [Google Scholar]
  67. Heil M, Ibarra-Laclette E, Adame-Álvarez RM, Martínez O, Ramirez-Chávez E. 67.  et al. 2012. How plants sense wounds: Damaged-self recognition is based on plant-derived elicitors and induces octadecanoid signaling. PLoS ONE 7:e30537 [Google Scholar]
  68. Herms DA, Mattson WJ. 68.  1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67:283–335 [Google Scholar]
  69. Hirano K, Ueguchi-Tanaka M, Matsuoka M. 69.  2008. GID1-mediated gibberellin signaling in plants. Trends Plant Sci. 13:192–99 [Google Scholar]
  70. Hoffland E, Dicke M, Van Tintelen W, Dijkman H, Van Beusichem ML. 70.  2000. Nitrogen availability and defense of tomato against two-spotted spider mite. J. Chem. Ecol. 26:2697–711 [Google Scholar]
  71. Hogenhout SA, Bos JIB. 71.  2011. Effector proteins that modulate plant-insect interactions. Curr. Opin. Plant Biol. 14:422–28 [Google Scholar]
  72. Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K. 72.  et al. 2012. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J. 71:699–711 [Google Scholar]
  73. Hornitschek P, Lorrain S, Zoete V, Michielin O, Fankhauser C. 73.  2009. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J. 28:3893–902 [Google Scholar]
  74. Hou X, Lee LYC, Xia K, Yan Y, Yu H. 74.  2010. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell 19:884–94 [Google Scholar]
  75. Howe GA, Jander G. 75.  2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66 [Google Scholar]
  76. Hu P, Zhou W, Cheng Z, Fan M, Wang L, Xie D. 76.  2013. JAV1 controls jasmonate-regulated plant defense. Mol. Cell 50:504–15 [Google Scholar]
  77. Hua J. 77.  2013. Modulation of plant immunity by light, circadian rhythm, and temperature. Curr. Opin. Plant Biol. 16:406–13 [Google Scholar]
  78. Huner NPA, Oquist G, Sarhan F. 78.  1998. Energy balance and acclimation to light and cold. Trends Plant Sci. 3:224–30 [Google Scholar]
  79. Izaguirre MM, Mazza CA, Astigueta MS, Ciarla AM, Ballaré CL. 79.  2013. No time for candy: passionfruit (Passiflora edulis) plants down-regulate damage-induced extra floral nectar production in response to light signals of competition. Oecologia 173:213–21 [Google Scholar]
  80. Izaguirre MM, Mazza CA, Biondini M, Baldwin IT, Ballaré CL. 80.  2006. Remote sensing of future competitors: impacts on plant defenses. Proc. Natl. Acad. Sci. USA 103:7170–74 [Google Scholar]
  81. Izaguirre MM, Scopel AL, Baldwin IT, Ballaré CL. 81.  2003. Convergent responses to stress. Solar ultraviolet-B radiation and Manduca sexta herbivory elicit overlapping transcriptional responses in field-grown plants of Nicotiana longiflora. Plant Physiol. 132:1755–67 [Google Scholar]
  82. Jenkins GI. 82.  2009. Signal transduction in responses to UV-B radiation. Annu. Rev. Plant Biol. 60:407–31 [Google Scholar]
  83. Jeong J, Choi G. 83.  2013. Phytochrome-interacting factors have both shared and distinct biological roles. Mol. Cells 35:371–80 [Google Scholar]
  84. Jeong RD, Chandra-Shekara AC, Barman SR, Navarre D, Klessig DF. 84.  et al. 2010. Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Proc. Natl. Acad. Sci. USA 107:13538–43 [Google Scholar]
  85. Jones JDG, Dangl JL. 85.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  86. Jurke CJ, Fernando WGD. 86.  2008. Effects of seeding rate and plant density on sclerotinia stem rot incidence in canola. Arch. Phytopathol. Plant Prot. 41:142–55 [Google Scholar]
  87. Kami C, Lorrain S, Hornitschek P, Fankhauser C. 87.  2010. Light-regulated plant growth and development. Current Topics in Developmental Biology 91 Plant Development MCP Timmermans 29–66 San Diego: Academic [Google Scholar]
  88. Kangasjärvi S, Neukermans J, Li S, Aro E-M, Noctor G. 88.  2012. Photosynthesis, photorespiration, and light signalling in defence responses. J. Exp. Bot. 63:1619–36 [Google Scholar]
  89. Karban R, Baldwin I. 89.  1997. Induced Responses to Herbivory Chicago: Univ. Chicago Press
  90. Karpinski S, Gabrys H, Mateo A, Karpinska B, Mullineaux PM. 90.  2003. Light perception in plant disease defence signalling. Curr. Opin. Plant Biol. 6:390–96 [Google Scholar]
  91. Kazan K, Manners JM. 91.  2011. The interplay between light and jasmonate signalling during defence and development. J. Exp. Bot. 62:4087–100 [Google Scholar]
  92. Kazan K, Manners JM. 92.  2012. JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci. 17:22–31 [Google Scholar]
  93. Kegge W, Weldegergis BT, Soler R, Eijk MV-V, Dicke M. 93.  et al. 2013. Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana. New Phytol. 200:861–74 [Google Scholar]
  94. Keinänen M, Oldham NJ, Baldwin IT. 94.  2001. Rapid HPLC screening of jasmonate-induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in Nicotiana attenuata. J. Agric. Food Chem. 49:3553–58 [Google Scholar]
  95. Keller MM, Jaillais Y, Pedmale UV, Moreno JE, Chory J, Ballaré CL. 95.  2011. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially-independent hormonal cascades. Plant J. 67:195–207 [Google Scholar]
  96. Keuskamp DH, Pollmann S, Voesenek LACJ, Peeters AJM, Pierik R. 96.  2010. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc. Natl. Acad. Sci. USA 107:22740–44 [Google Scholar]
  97. Keuskamp DH, Sasidharan R, Vos I, Peeters AJM, Voesenek LACJ, Pierik R. 97.  2011. Blue light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J. 67:208–17 [Google Scholar]
  98. Kishimoto K, Matsui K, Ozawa R, Takabayashi J. 98.  2006. Components of C6-aldehyde-induced resistance in Arabidopsis thaliana against a necrotrophic fungal pathogen, Botrytis cinerea. Plant Sci. 170:715–23 [Google Scholar]
  99. Koricheva J, Larsson S, Haukioja E, Keinanen M. 99.  1998. Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos 83:212–26 [Google Scholar]
  100. Kozuka T, Kobayashi J, Horiguchi G, Demura T, Sakakibara H. 100.  et al. 2010. Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiol. 153:1608–18 [Google Scholar]
  101. Kuhlmann F, Müller C. 101.  2011. Impacts of ultraviolet radiation on interactions between plants and herbivorous insects: a chemo-ecological perspective. Prog. Bot. 72:305–47 [Google Scholar]
  102. Kunkel BN, Brooks DM. 102.  2002. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5:325–31 [Google Scholar]
  103. Kurepin LV, Emery RJN, Pharis RP, Reid DM. 103.  2007. The interaction of light quality and irradiance with gibberellins, cytokinins and auxin in regulating growth of Helianthus annuus hypocotyls. Plant Cell Environ. 30:147–55 [Google Scholar]
  104. Leivar P, Quail PH. 104.  2011. PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci. 16:19–28 [Google Scholar]
  105. Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J. 105.  et al. 2012. Linking photoreceptor excitation to changes in plant architecture. Genes Dev. 26:785–90 [Google Scholar]
  106. Lloyd AJ, Allwood JW, Winder CL, Dunn WB, Heald JK. 106.  et al. 2011. Metabolomic approaches reveal that cell wall modifications play a major role in ethylene-mediated resistance against Botrytis cinerea. Plant J. 67:852–68 [Google Scholar]
  107. Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C. 107.  2008. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 53:312–23 [Google Scholar]
  108. Martin D, Tholl D, Gershenzon J, Bohlmann J. 108.  2002. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol. 129:1003–18 [Google Scholar]
  109. Mazza CA, Battista D, Zima AM, Szwarcberg-Bracchitta M, Giordano CV. 109.  et al. 1999. The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses. Plant Cell Environ. 22:61–70 [Google Scholar]
  110. Mazza CA, Boccalandro HE, Giordano CV, Battista D, Scopel AL, Ballaré CL. 110.  2000. Functional significance and induction by solar radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops. Plant Physiol. 122:117–25 [Google Scholar]
  111. Mazza CA, Izaguirre MM, Zavala J, Scopel AL, Ballaré CL. 111.  2002. Insect perception of ambient ultraviolet-B radiation. Ecol. Lett. 5:722–26 [Google Scholar]
  112. Mazza CA, Zavala J, Scopel AL, Ballaré CL. 112.  1999. Perception of solar UVB radiation by phytophagous insects: behavioral responses and ecosystem implications. Proc. Natl. Acad. Sci. USA 96:980–85 [Google Scholar]
  113. McGuire R, Agrawal AA. 113.  2005. Trade-offs between the shade-avoidance response and plant resistance to herbivores? Tests with mutant Cucumis sativus. Funct. Ecol. 19:1025–31 [Google Scholar]
  114. McKey D. 114.  1974. Adaptive patterns in alkaloid physiology. Am. Nat. 108:305–20 [Google Scholar]
  115. Meldau S, Erb M, Baldwin IT. 115.  2012. Defence on demand: mechanisms behind optimal defence patterns. Ann. Bot. 110:1503–14 [Google Scholar]
  116. Melotto M, Mecey C, Niu Y, Chung HS, Katsir L. 116.  et al. 2008. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J. 55:979–88 [Google Scholar]
  117. Morales LO, Brosché M, Vainonen J, Jenkins GI, Wargent JJ. 117.  et al. 2013. Multiple roles for UV RESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation. Plant Physiol. 161:744–59 [Google Scholar]
  118. Morelli G, Ruberti I. 118.  2000. Shade avoidance responses. Driving auxin along lateral routes. Plant Physiol. 122:621–26 [Google Scholar]
  119. Moreno JE, Shyu C, Campos ML, Patel LC, Chung HS. 119.  et al. 2013. Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10. Plant Physiol. 162:1006–17 [Google Scholar]
  120. Moreno JE, Tao Y, Chory J, Ballaré CL. 120.  2009. Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc. Natl. Acad. Sci. USA 106:4935–40 [Google Scholar]
  121. Morgan DC, O'Brien T, Smith H. 121.  1980. Rapid photomodulation of stem extension in light-grown Sinapis alba L. Planta 150:95–101 [Google Scholar]
  122. Mou Z, Fan W, Dong X. 122.  2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–44 [Google Scholar]
  123. Nakata M, Mitsuda N, Herde M, Koo AJK, Moreno JE. 123.  et al. 2013. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell 25:1641–56 [Google Scholar]
  124. Navarro L, Bari R, Achard P, Lison P, Nemri A. 124.  et al. 2008. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 18:650–55 [Google Scholar]
  125. Oerke EC. 125.  2006. Crop losses to pests. J. Agric. Sci. 144:31–43 [Google Scholar]
  126. Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS. 126.  2013. Tell me more: roles of NPRs in plant immunity. Trends Plant Sci. 18:402–11 [Google Scholar]
  127. Panstruga R, Parker JE, Schulze-Lefert P. 127.  2009. SnapShot: plant immune response pathways. Cell 136:978.e1–3 [Google Scholar]
  128. Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W. 128.  et al. 2010. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–91 [Google Scholar]
  129. Pauwels L, Goossens A. 129.  2011. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–100 [Google Scholar]
  130. Pieterse CMJ, van der Does D, Zamioudis C, Leon-Reyes A, van Wees SCM. 130.  2012. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28:489–521 [Google Scholar]
  131. Pourcel L, Irani NG, Koo AJK, Bohorquez-Restrepo A, Howe GA, Grotewold E. 131.  2013. A chemical complementation approach reveals genes and interactions of flavonoids with other pathways. Plant J. 74:383–97 [Google Scholar]
  132. Qi T, Song S, Ren Q, Wu D, Huang H. 132.  et al. 2011. The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–814 [Google Scholar]
  133. Radhika V, Kost C, Mithöfer A, Boland W. 133.  2010. Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proc. Natl. Acad. Sci. USA 107:17228–33 [Google Scholar]
  134. Rasmann S, Johnson MD, Agrawal AA. 134.  2009. Induced responses to herbivory and jasmonate in three milkweed species. J. Chem. Ecol. 35:1326–34 [Google Scholar]
  135. Rate DN, Greenberg JT. 135.  2001. The Arabidopsis aberrant growth and death2 mutant shows resistance to Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death. Plant J. 27:203–11 [Google Scholar]
  136. Ren C, Han C, Peng W, Huang Y, Peng Z. 136.  et al. 2009. A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. Plant Physiol. 151:1412–20 [Google Scholar]
  137. Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A. 137.  et al. 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–6 [Google Scholar]
  138. Robert-Seilaniantz A, Grant M, Jones JDG. 138.  2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49:317–43 [Google Scholar]
  139. Roberts MR, Paul ND. 139.  2006. Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. New Phytol. 170:677–99 [Google Scholar]
  140. Robson F, Okamoto H, Patrick E, Sue-Ré H, Wasternack C. 140.  et al. 2010. Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22:1143–60 [Google Scholar]
  141. Roig-Villanova I, Bou-Torrent J, Galstyan A, Carretero-Paulet L, Portolés S. 141.  et al. 2007. Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO J. 26:4756–67 [Google Scholar]
  142. Rousseaux MC, Julkunen-Tiitto R, Searles PS, Scopel AL, Aphalo PJ, Ballaré CL. 142.  2004. Solar UV-B radiation affects leaf quality and insect herbivory in the southern beech tree Nothofagus antarctica. Oecologia 138:505–12 [Google Scholar]
  143. Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S. 143.  et al. 2013. bHLH transcription factors JA-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol. 163:291–304 [Google Scholar]
  144. Schoonhoven LM, van Loon JJA, Dicke M. 144.  2005. Insect–Plant Biology New York: Oxford Univ. Press
  145. Sellaro R, Crepy M, Trupkin SA, Karayekov E, Buchovsky AS. 145.  et al. 2010. Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. Plant Physiol. 154:401–9 [Google Scholar]
  146. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G. 146.  et al. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–7 [Google Scholar]
  147. Smith H. 147.  1995. Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:289–315 [Google Scholar]
  148. Song S, Qi T, Fan M, Zhang X, Gao H. 148.  et al. 2013. The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet. 9:e1003653 [Google Scholar]
  149. Spoel SH, Johnson JS, Dong X. 149.  2007. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 104:18842–47 [Google Scholar]
  150. Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X. 150.  2009. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137:860–72 [Google Scholar]
  151. Stamp NE, Yang YL. 151.  1996. Response of insect herbivores to multiple allelochemicals under different thermal regimes. Ecology 77:1088–102 [Google Scholar]
  152. Stratmann JW, Stelmach BA, Weiler EW, Ryan CA. 152.  2000. UVB/UVA radiation activates a 48 kDa myelin basic protein kinase and potentiates wound signaling in tomato leaves. Photochem. Photobiol. 71:116–23 [Google Scholar]
  153. Suzuki A, Suriyagoda L, Shigeyama T, Tominaga A, Sasaki M. 153.  et al. 2011. Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA) signaling. Proc. Natl. Acad. Sci. USA 108:16837–42 [Google Scholar]
  154. Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F. 154.  et al. 2008. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–76 [Google Scholar]
  155. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A. 155.  et al. 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–65 [Google Scholar]
  156. Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A. 156.  et al. 2007. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol. Plant-Microbe Interact. 20:955–65 [Google Scholar]
  157. Vlot AC, Dempsey DA, Klessig DF. 157.  2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177–206 [Google Scholar]
  158. Wallin KF, Kolb TE, Skov KR, Wagner M. 158.  2008. Forest management treatments, tree resistance, and bark beetle resource utilization in ponderosa pine forests of northern Arizona. For. Ecol. Manag. 255:3263–69 [Google Scholar]
  159. Wasternack C, Hause B. 159.  2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111:1021–58 [Google Scholar]
  160. Wu J, Baldwin IT. 160.  2010. New insights into plant responses to the attack from insect herbivores. Annu. Rev. Genet. 44:1–24 [Google Scholar]
  161. Wu L, Yang H-Q. 161.  2010. CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol. Plant 3:539–48 [Google Scholar]
  162. Wu Y, Zhang D, Chu JY, Boyle P, Wang Y. 162.  et al. 2012. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 1:639–47 [Google Scholar]
  163. Xie X-Z, Xue Y-J, Zhou J-J, Zhang B, Chang H, Takano M. 163.  2011. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol. Plant 4:688–96 [Google Scholar]
  164. Yalpani N, Enyedi AJ, Leon J, Raskin I. 164.  1994. Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193:372–76 [Google Scholar]
  165. Yan J, Li H, Li S, Yao R, Deng H. 165.  et al. 2013. The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway. Plant Cell 25:486–98 [Google Scholar]
  166. Yan J, Zhang C, Gu M, Bai Z, Zhang W. 166.  et al. 2009. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220–36 [Google Scholar]
  167. Yan Y, Stolz S, Chetelat A, Reymond P, Pagni M. 167.  et al. 2007. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–83 [Google Scholar]
  168. Yanagisawa S, Yoo SD, Sheen J. 168.  2003. Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521–25 [Google Scholar]
  169. Yang D-L, Yao J, Mei C-S, Tong X-H, Zeng L-J. 169.  et al. 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. USA 109:E1192–200 [Google Scholar]
  170. Yoshinaga N, Alborn HT, Nakanishi T, Suckling DM, Nishida R. 170.  et al. 2010. Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars. J. Chem. Ecol. 36:319–25 [Google Scholar]
  171. Zavala JA, Scopel AL, Ballaré CL. 171.  2001. Effects of ambient UV-B radiation on soybean crops: impact on leaf herbivory by Anticarsia gemmatalis. Plant Ecol. 156:121–30 [Google Scholar]
  172. Zhu Z, An F, Feng Y, Li P, Xue L. 172.  et al. 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc. Natl. Acad. Sci. USA 108:12539–44 [Google Scholar]
/content/journals/10.1146/annurev-arplant-050213-040145
Loading
/content/journals/10.1146/annurev-arplant-050213-040145
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error