1887

Abstract

is an opportunistic pathogen which causes a variety of diseases, including respiratory tract infections in patients suffering from cystic fibrosis. Therapeutic treatment of infections is still very difficult because the bacteria exhibit high intrinsic resistance against a variety of different antibiotics and, in addition, form stable biofilms, e.g. in the human lung. Several virulence factors are produced by , among them the two lectins LecA and LecB, which exert different cytotoxic effects on respiratory epithelial cells and presumably facilitate bacterial adhesion to the airway mucosa. Here, the physiology has been studied of the lectin LecB, which binds specifically to -fucose. A LecB-deficient mutant was shown to be impaired in biofilm formation when compared with the wild-type strain, suggesting an important role for LecB in this process. This result prompted an investigation of the subcellular localization of LecB by cell fractionation and subsequent immunoblotting. The results show that LecB is abundantly present in the bacterial outer-membrane fraction. It is further demonstrated that LecB could be released specifically by treatment of the outer-membrane fraction with -nitrophenyl --fucose, whereas treatment with -galactose had no effect. In contrast, a LecB protein carrying the mutation D104A, which results in a defective sugar-binding site, was no longer detectable in the membrane fraction, suggesting that LecB binds to specific carbohydrate ligands located at the bacterial cell surface. Staining of biofilm cells using fluorescently labelled LecB confirmed the presence of these ligands.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27701-0
2005-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511313.html?itemId=/content/journal/micro/10.1099/mic.0.27701-0&mimeType=html&fmt=ahah

References

  1. Adam E. C., Mitchell B. S., Schumacher D. U., Grant G., Schumacher U. 1997a; Pseudomonas aeruginosa PA-II lectin stops human ciliary beating: therapeutic implications of fucose. Am J Respir Crit Care Med 155:2102–2104 [CrossRef]
    [Google Scholar]
  2. Adam E. C., Schumacher D. U., Schumacher U. 1997b; Cilia from a cystic fibrosis patient react to cilitoxic Pseudomonas aeruginosa II lectin in a similar manner to normal control cilia: a case report. J Laryngol Otol 111:760–762
    [Google Scholar]
  3. Alexeyev M. F., Shokolenko I. N., Croughan T. P. 1995; Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene 160:63–67 [CrossRef]
    [Google Scholar]
  4. Arora S. K., Ritchings B. W., Almira E. C., Lory S., Ramphal R. 1998; The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect Immun 66:1000–1007
    [Google Scholar]
  5. Avichezer D., Katcoff D. J., Garber N. C., Gilboa-Garber N. 1992; Analysis of the amino acid sequence of the Pseudomonas aeruginosa galactophilic PA-I lectin. J Biol Chem 267:23023–23027
    [Google Scholar]
  6. Azghani A. O., Idell S., Bains M., Hancock R. E. 2002; Pseudomonas aeruginosa outer membrane protein F is an adhesin in bacterial binding to lung epithelial cells in culture. Microb Pathog 33:109–114 [CrossRef]
    [Google Scholar]
  7. Bajolet-Laudinat O., Girod-de Bentzmann S., Tournier J. M., Madoulet C., Plotkowski M. C., Chippaux C., Puchelle E. 1994; Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to respiratory epithelial cells in primary culture. Infect Immun 62:4481–4487
    [Google Scholar]
  8. Barondes S. H., Gitt M. A., Leffler H., Cooper D. N. 1988; Multiple soluble vertebrate galactoside-binding lectins. Biochimie 70:1627–1632 [CrossRef]
    [Google Scholar]
  9. Beachey E. H. 1981; Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface. J Infect Dis 143:325–345 [CrossRef]
    [Google Scholar]
  10. Beuth J., Stoffel B., Ko H. L., Jeljaszewicz J., Pulverer G. 1995; Mistellektin-1: neue therapeutische Perspektiven in der Onkologie. Onkologie 18:36–40 in German
    [Google Scholar]
  11. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [CrossRef]
    [Google Scholar]
  12. Brimer C. D., Montie T. C. 1998; Cloning and comparison of fliC genes and identification of glycosylation in the flagellin of Pseudomonas aeruginosa a-type strains. J Bacteriol 180:3209–3217
    [Google Scholar]
  13. Castric P., Cassels F. J., Carlson R. W. 2001; Structural characterization of the Pseudomonas aeruginosa 1244 pilin glycan. J Biol Chem 276:26479–26485 [CrossRef]
    [Google Scholar]
  14. Costerton J. W. 2001; Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol 9:50–52 [CrossRef]
    [Google Scholar]
  15. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 [CrossRef]
    [Google Scholar]
  16. DiGiandomenico A., Matewish M. J., Bisaillon A., Stehle J. R., Lam J. S., Castric P. 2002; Glycosylation of Pseudomonas aeruginosa 1244 pilin: glycan substrate specificity. Mol Microbiol 46:519–530 [CrossRef]
    [Google Scholar]
  17. Dobos K. M., Swiderek K., Khoo K. H., Brennan P. J., Belisle J. T. 1995; Evidence for glycosylation sites on the 45-kilodalton glycoprotein of Mycobacterium tuberculosis . Infect Immun 63:2846–2853
    [Google Scholar]
  18. Doig P., Sastry P. A., Hodges R. S., Lee K. K., Paranchych W., Irvin R. T. 1990; Inhibition of pilus-mediated adhesion of Pseudomonas aeruginosa to human buccal epithelial cells by monoclonal antibodies directed against pili. Infect Immun 58:124–130
    [Google Scholar]
  19. Erickson P. R., Herzberg M. C. 1993; Evidence for the covalent linkage of carbohydrate polymers to a glycoprotein from Streptococcus sanguis. J Biol Chem 268:23780–23783
    [Google Scholar]
  20. Gabius H. J., Andre S., Kaltner H., Siebert H.-C. 2002; The sugar code: functional lectinomics. Biochim Biophys Acta 1572:165–177 [CrossRef]
    [Google Scholar]
  21. Garber N. C., Guempel U., Gilboa-Garber N., Doyle R. J. 1987; Specificity of the fucose-binding lectin of Pseudomonas aeruginosa. FEMS Microbiol Lett 48:331–334 [CrossRef]
    [Google Scholar]
  22. Gilboa-Garber N. 1972; Purification and properties of hemagglutinin from Pseudomonas aeruginosa and its reaction with human blood cells. Biochim Biophys Acta 273:165–173 [CrossRef]
    [Google Scholar]
  23. Gilboa-Garber N. 1982; Pseudomonas aeruginosa lectins. Methods Enzymol 83:378–385
    [Google Scholar]
  24. Gilboa-Garber N., Garber N. C. 1992; Microbial lectins. In Glycoconjugates: Composition, Structure and Function pp 541–591 Edited by Allen H. J., Kisailus E. C. New York: Marcel Dekker;
    [Google Scholar]
  25. Gilboa-Garber N., Katcoff D. J., Garber N. C. 2000; Identification and characterization of Pseudomonas aeruginosa PA-IIL lectin gene and protein compared to PA-IL. FEMS Immunol Med Microbiol 29:53–57 [CrossRef]
    [Google Scholar]
  26. Glick J., Garber N. C. 1983; The intracellular localization of Pseudomonas aeruginosa lectins. J Gen Microbiol 129:3085–3090
    [Google Scholar]
  27. Grobe S., Wingender J., Trüper H. G. 1995; Characterization of mucoid Pseudomonas aeruginosa strains isolated from technical water systems. J Appl Bacteriol 79:94–102 [CrossRef]
    [Google Scholar]
  28. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersbøll B. K., Molin S. 2000; Quantification of biofilm structures by the novel computer program comstat. Microbiology 146:2395–2407
    [Google Scholar]
  29. Higgins M. J., Novak J. T. 1997; Characterization of exocellular protein and its role in bioflocculation. J Environ Eng 123:479–485 [CrossRef]
    [Google Scholar]
  30. Holloway B. W., Krishnapillai V., Morgan A. F. 1979; Chromosomal genetics of Pseudomonas. Microbiol Rev 43:73–102
    [Google Scholar]
  31. Imberty A., Wimmerova M., Mitchell E. P., Gilboa-Garber N. 2004; Structures of lectins from Pseudomonas aeruginosa: insights into the molecular basis for host glycan recognition. Microbes Infect 6:221–228 [CrossRef]
    [Google Scholar]
  32. Klausen M., Heydorn A., Ragas P., Lambertsen L., Aaes-Jorgensen A., Molin S., Tolker-Nielsen T. 2003; Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524 [CrossRef]
    [Google Scholar]
  33. Korber D. R., Lawrence J. R., Hendry M. J., Caldwell D. E. 1993; Analysis of spatial variability within mot+ and motPseudomonas fluorescens biofilms using representative elements. Biofouling 7:339–358 [CrossRef]
    [Google Scholar]
  34. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. II, Peterson K. M. 1994; pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802
    [Google Scholar]
  35. Laughlin R. S., Musch M. W., Hollbrook C. J., Rocha F. M., Chang E. B., Alverdy J. C. 2000; The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Ann Surg 232:133–142 [CrossRef]
    [Google Scholar]
  36. Loris R., Tielker D., Jaeger K.-E., Wyns L. 2003; Structural basis of carbohydrate recognition by the lectin LecB from Pseudomonas aeruginosa . J Mol Biol 331:861–870 [CrossRef]
    [Google Scholar]
  37. Lyczak J. B., Cannon C. L., Pier G. B. 2002; Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222 [CrossRef]
    [Google Scholar]
  38. Ma Q., Zhai Y., Schneider J. C., Ramseier T. M., Saier M. H. Jr 2003; Protein secretion systems of Pseudomonas aeruginosa and P. fluorescens . Biochim Biophys Acta 1611223–233 [CrossRef]
    [Google Scholar]
  39. Mitchell E., Houles C., Sudakevitz D., Wimmerova M., Gautier C., Perez S., Gilboa-Garber N., Imberty A. 2002; Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat Struct Biol 9:918–921 [CrossRef]
    [Google Scholar]
  40. Mitchell E. P., Sabin C., Snajdrova L. 8 other authors; 2005; High affinity fucose binding of Pseudomonas aeruginosa lectin PA-IIL: 1·0 Å resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches. Proteins 58:735–746
    [Google Scholar]
  41. Morimoto M., Saimoto H., Usui H., Okamoto Y., Minami S., Shigemasa Y. 2001; Biological activities of carbohydrate-branched chitosan derivatives. Biomacromolecules 2:1133–1136 [CrossRef]
    [Google Scholar]
  42. O'Toole G. A., Kolter R. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304 [CrossRef]
    [Google Scholar]
  43. Parsek M. R., Greenberg E. P. 2000; Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A 97:8789–8793 [CrossRef]
    [Google Scholar]
  44. Power P. M., Jennings M. P. 2003; The genetics of glycosylation in Gram-negative bacteria. FEMS Microbiol Lett 218:211–222 [CrossRef]
    [Google Scholar]
  45. Rhim A. D., Stoykova L., Glick M. C., Scanlin T. F. 2001; Terminal glycosylation in cystic fibrosis (CF): a review emphasizing the airway epithelial cell. Glycoconj J 18:649–659 [CrossRef]
    [Google Scholar]
  46. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Scanlin T. F., Glick M. C. 2001; Glycosylation and the cystic fibrosis transmembrane conductance regulator. Respir Res 2:276–279 [CrossRef]
    [Google Scholar]
  48. Scharfman A., Arora S. K., Delmotte P., Van Brussel E., Mazurier J., Ramphal R., Roussel P. 2001; Recognition of Lewis x derivatives present on mucins by flagellar components of Pseudomonas aeruginosa . Infect Immun 69:5243–5248 [CrossRef]
    [Google Scholar]
  49. Shori D. K., Genter T., Hansen J. & 7 other authors; 2001; Altered sialyl- and fucosyl-linkage on mucins in cystic fibrosis patients promotes formation of the sialyl-Lewis X determinant on salivary MUC-5B and MUC-7. Pflugers Arch 443 (Suppl. 1:S55–S61 [CrossRef]
    [Google Scholar]
  50. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization for in vitro genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1:784–791 [CrossRef]
    [Google Scholar]
  51. Simon R., O'Connell M., Labes M., Puhler A. 1986; Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. Methods Enzymol 118:640–659
    [Google Scholar]
  52. Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Welsh M. J., Greenberg E. P. 2000; Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764 [CrossRef]
    [Google Scholar]
  53. Sivaraman T., Kumar T. K., Jayaraman G., Yu C. 1997; The mechanism of 2,2,2-trichloroacetic acid-induced protein precipitation. J Protein Chem 16:291–297 [CrossRef]
    [Google Scholar]
  54. Steinberger R. E., Allen A. R., Hansa H. G., Holden P. A. 2002; Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa-unsaturated biofilms. Microb Ecol 43:416–423 [CrossRef]
    [Google Scholar]
  55. Steuer M. K., Herbst H., Beuth J., Steuer M., Pulverer G., Matthias R. 1993; Hemmung der bakteriellen Adhäsion durch Lektinblockade bei durch Pseudomonas aeruginosa induzierter Otitis externa im Vergleich zur lokalen Therapie mit Antibiotika. Otorhinolaryngol Nova 3:19–25 in German [CrossRef]
    [Google Scholar]
  56. Stewart P. S., Costerton J. W. 2001; Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138 [CrossRef]
    [Google Scholar]
  57. Strathmann M., Wingender J., Flemming H.-C. 2002; Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa . J Microbiol Methods 50:237–248 [CrossRef]
    [Google Scholar]
  58. Studier F. W., Moffat B. A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high level expression of cloned genes. J Mol Biol 189:113–130 [CrossRef]
    [Google Scholar]
  59. Thomsson K. A., Hinojosa-Kurtzberg M., Axelsson K. A., Domino S. E., Lowe J. B., Gendler S. J., Hansson G. C. 2002; Intestinal mucins from cystic fibrosis mice show increased fucosylation due to an induced Fuc α1-2 glycosyltransferase. Biochem J 367:609–616 [CrossRef]
    [Google Scholar]
  60. Timmermans M. C., Maliga P., Vieira J., Messing J. 1990; The pFF plasmids: cassettes utilising CaMV sequences for expression of foreign genes in plants. J Biotechnol 14:333–344 [CrossRef]
    [Google Scholar]
  61. Vallet I., Olson J. W., Lory S., Lazdunski A., Filloux A. 2001; The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A 98:6911–6916 [CrossRef]
    [Google Scholar]
  62. von Bismarck P., Schneppenheim R., Schumacher U. 2001; Successful treatment of Pseudomonas aeruginosa respiratory tract infection with a sugar solution – a case report on a lectin based therapeutic principle. Klin Padiatr 213:285–287 [CrossRef]
    [Google Scholar]
  63. Wentworth J. S., Austin F. E., Garber N. C., Gilboa-Garber N., Paterson C. A., Doyle R. J. 1991; Cytoplasmic lectins contribute to the adhesion of Pseudomonas aeruginosa . Biofouling 4:99–104 [CrossRef]
    [Google Scholar]
  64. Wilhelm S., Tommassen J., Jaeger K. E. 1999; A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa . J Bacteriol 181:6977–6986
    [Google Scholar]
  65. Wingender J., Neu T. R., Flemming H.-C. 1999; What are bacterial extracellular substances?. In Microbial Extracellular Polymeric Substances pp 1–19 Edited by Wingender J., Neu T. R., Flemming H.-C. Berlin: Springer;
    [Google Scholar]
  66. Winzer K., Falconer C., Garber N. C., Diggle S. P., Camara M., Williams P. 2000; The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182:6401–6411 [CrossRef]
    [Google Scholar]
  67. Witholt B., Boekhout M., Brock M., Kingma J., Heerikhuizen H. V., Leij L. D. 1976; An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli . Anal Biochem 74:160–170 [CrossRef]
    [Google Scholar]
  68. Woodcock D. M., Crowther P. J., Doherty J., Jefferson S., DeCruz E., Noyer-Weidner M., Smith S. S., Michael M. Z., Graham M. W. 1989; Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469–3478 [CrossRef]
    [Google Scholar]
  69. Wozniak D. J., Wyckoff T. J., Starkey M., Keyser R., Azadi P., O'Toole G. A., Parsek M. R. 2003; Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100:7907–7912 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27701-0
Loading
/content/journal/micro/10.1099/mic.0.27701-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error