1887

Abstract

The expression of genes for cold-shock proteins is proposed to be regulated primarily at the post-transcriptional level by increase of mRNA stability after transition to low temperatures. Destabilization of the cold-induced transcript at 37 °C as well as stabilization upon cold shock is known to depend on the unusually long (159 nt) 5′-untranslated region. Determination of the mRNA 5′-end from revealed a shorter distance between the start of transcription and the start codon for translation. The mRNA of was shown to be stabilized at low temperatures to a greater extent than other investigated transcripts. To address the mechanism of decay of the transcript, it was incubated with purified degradosome of . Endoribonucleolytic cleavage in the 5′-untranslated region as reported for the transcript of was not observed. Instead, the data indicated that the mRNA decay in is mediated by endoribonucleolytic cleavages within the coding region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26666-0
2004-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/3/mic1500687.html?itemId=/content/journal/micro/10.1099/mic.0.26666-0&mimeType=html&fmt=ahah

References

  1. Bae W., Jones P. G., Inouye M. 1997; CspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression. J Bacteriol 179:7081–7088
    [Google Scholar]
  2. Bae W., Phadtare S., Sverinov K., Inouye M. 1999; Characterization of Escherichia coli cspE, whose product negatively regulates transcription of cspA, the gene for the major cold shock protein. Mol Microbiol 31:1429–1441 [CrossRef]
    [Google Scholar]
  3. Beran R. K., Simons R. W. 2001; Cold-temperature induction of Escherichia coli polynucleotide phosphorylase occurs by reversal of its autoregulation. Mol Microbiol 39:112–125 [CrossRef]
    [Google Scholar]
  4. Brandi A., Pietroni P., Gualerzi C. O., Pon C. L. 1996; Post-transcriptional regulation of CspA expression in Escherichia coli. Mol Microbiol 19:231–240 [CrossRef]
    [Google Scholar]
  5. Brandi A., Spurio R., Gualerzi C. O., Pon C. L. 1999; Massive presence of the Escherichia coli ‘major cold-shock protein’ CspA under non-stress conditions. EMBO J 18:1653–1659 [CrossRef]
    [Google Scholar]
  6. Carpousis A. J., Van Houwe G., Ehretsmann C., Krisch H. M. 1994; Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 76:889–900 [CrossRef]
    [Google Scholar]
  7. Drews G. 1983 Mikrobiologisches Praktikum Berlin, Heidelberg & New York: Springer;
  8. Ehretsmann C. P., Carpousis A. J., Krisch H. M. 1992; Specificity of the Escherichia coli endoribonuclease RNAse E:in vivo and in vitro analysis of mutants in a bacteriophage T4 processing site. Genes Dev 6:149–159 [CrossRef]
    [Google Scholar]
  9. Emory S. A., Belasco J. G. 1990; The ompA 5′ untranslated segment functions in E. coli as a growth-rate-regulated mRNA stabilizer whose activity is unrelated to transcriptional efficiency. J Bacteriol 172:4472–4481
    [Google Scholar]
  10. Emory S. A., Bouvet P., Belasco J. G. 1992; A 5′-terminal stem-loop structure can stabilize mRNA in Escherichia coli. Genes Dev 6:135–148 [CrossRef]
    [Google Scholar]
  11. Fang L., Jiang W., Bae W., Inouye M. 1997; Promoter-independent cold-shock induction of cspA and its derepression at 37 °C by mRNA stabilization. Mol Microbiol 23:355–364 [CrossRef]
    [Google Scholar]
  12. Fang L., Xia B., Inouye M. 1999; Transcription of cspA, the gene for the major cold-shock protein of Escherichia coli, is negatively regulated at 37 °C by the 5′-untranslated region of its mRNA. FEMS Microbiol Lett 176:39–43
    [Google Scholar]
  13. Fritsch J., Rothfuchs R., Rauhut R., Klug G. 1995; Identification of an mRNA element promoting rate-limiting cleavage of the polycistronic puf mRNA in Rhodobacter capsulatus by an enzyme similar to RNase E. Mol Microbiol 15:1017–1029 [CrossRef]
    [Google Scholar]
  14. Goldenberg D., Azar I., Oppenheim A. B. 1996; Differential mRNA stability of the cspA gene in the cold-shock response of Escherichia coli. Mol Microbiol 19:241–248 [CrossRef]
    [Google Scholar]
  15. Graumann P. L., Marahiel M. A. 1998; A superfamily of proteins that contain the cold-shock domain. Trends Biol Sci 23:286–290 [CrossRef]
    [Google Scholar]
  16. Graumann P. L., Marahiel M. A. 1999; Cold shock proteins CspB and CspC are major stationary-phase-induced proteins in Bacillus subtilis. Arch Microbiol 171:135–138 [CrossRef]
    [Google Scholar]
  17. Gualerzi C. O., Giuliodori A. M., Pon C. L. 2003; Transcriptional and post-transcriptional control of cold shock genes. J Mol Biol 331:527–539 [CrossRef]
    [Google Scholar]
  18. Heck C., Klug G., Rothfuchs R., Jäger A., Rauhut R. 1996; Effect of the pufQ-pufB intercistronic region on puf mRNA stability in Rhodobacter capsulatus. Mol Microbiol 20:1165–1178 [CrossRef]
    [Google Scholar]
  19. Hübner P., Dame G., Sandmeier U., Vandekerckhove J., Beyer P., Tadros M. H. 1996; Molecular analysis of the Rhodobacter capsulatus chaperonin (groESL) operon: purification and characterization of Cpn60. Arch Microbiol 166:193–203 [CrossRef]
    [Google Scholar]
  20. Jaeger J. A., Turner D. H., Zuker M. 1989; Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A 86:7706–7710 [CrossRef]
    [Google Scholar]
  21. Jäger S., Fuhrmann O., Heck C., Hebermehl M., Schiltz E., Rauhut R., Klug G. 2001; An mRNA degrading complex in Rhodobacter capsulatus. Nucleic Acids Res 29:4581–4588 [CrossRef]
    [Google Scholar]
  22. Jiang W., Hou Y., Inouye M. 1997; CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272:196–202 [CrossRef]
    [Google Scholar]
  23. Jones P. G., VanBogelen R. A., Neidhardt F. C. 1987; Induction of proteins in response to low temperatures in Escherichia coli. J Bacteriol 169:2092–2095
    [Google Scholar]
  24. Kim B. H., Bang I. S., Lee S. Y., Hong S. K., Bang S. H., Lee I. S., Park Y. K. 2001; Expression of cspH, encoding the cold shock protein in Salmonella enterica serovar typhimurium UK1. J Bacteriol 183:5580–5588 [CrossRef]
    [Google Scholar]
  25. Klug G. 1991; Endonucleolytic degradation of puf mRNA in Rhodobacter capsulatus is influenced by oxygen. Proc Natl Acad Sci U S A 88:1765–1769 [CrossRef]
    [Google Scholar]
  26. Klug G., Jock S., Rothfuchs R. 1992; The rate of decay of Rhodobacter capsulatus-specific puf mRNA segments is differentially affected by RNase E activity inEscherichia coli. Gene 121:95–102 [CrossRef]
    [Google Scholar]
  27. Klug G., Jäger A., Heck C., Rauhut R. 1997; Identification, sequence analysis, and expression of the lepB gene for a leader peptidase in Rhodobacter capsulatus. Mol Gen Genet 253:666–673 [CrossRef]
    [Google Scholar]
  28. Lee S. J., Xie A., Jiang W., Etchegaray J. P., Jones P. G., Inouye M. 1994; Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol Microbiol 11:833–839 [CrossRef]
    [Google Scholar]
  29. Mackie G. A. 1998; Ribonuclease E is a 5′-end dependent endonuclease. Nature 395:720–723 [CrossRef]
    [Google Scholar]
  30. McDowall K. J., Lin-Chao S., Cohen S. N. 1994; A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J Biol Chem 269:10790–10796
    [Google Scholar]
  31. McDowall K. J., Kaberdin V. R., Wu S. W., Cohen S. N., Lin-Chao S. 1995; Site-specific RNase E cleavage of oligonucleotides and inhibition by stem-loops. Nature 374:287–290 [CrossRef]
    [Google Scholar]
  32. Mitta M., Fang L., Inouye M. 1997; Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol Microbiol 26:321–335 [CrossRef]
    [Google Scholar]
  33. Neuhaus K., Francis K. P., Rapposch S., Görg A., Scherer S. 1999; Pathogenic Yersinia species carry a novel, cold-inducible major cold shock protein tandem gene duplication producing both bicistronic and monocistronic mRNA. J Bacteriol 181:6449–6455
    [Google Scholar]
  34. Nieuwlandt D. T., Palmer J. R., Armbruster D. T., Kuo Y.-P., Oda W., Daniels C. J. 1995; A rapid procedure for the isolation of RNA from Haloferax volcanii. In Archaea, a Laboratory Manual, Halophiles pp 161–162 Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Pasternak C., Chen W., Heck C., Klug G. 1996; Cloning, nucleotide sequence and characterization of the rpoD gene encoding the primary sigma factor ofRhodobacter capsulatus. Gene 176:177–184 [CrossRef]
    [Google Scholar]
  36. Phadtare S., Yamanaka K., Inouye M. 2000; The cold shock response. In Bacterial Stress Responses pp 33–45 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Rauhut R., Jäger A., Conrad C., Klug G. 1996; Identification and analysis of the rnc gene for RNase III inRhodobacter capsulatus. Nucleic Acids Res 24:1246–1251 [CrossRef]
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  39. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  40. Sato N., Nakamura A. 1998; Involvement of the 5′-untranslated region in cold-regulated expression of the rbpA1 gene in the cyanobacterium Anabaena variabilis M3. Nucleic Acids Res 26:2192–2199 [CrossRef]
    [Google Scholar]
  41. Schindelin H., Marahiel M. A., Heinemann U. 1993; Universal nucleic acid-binding domain revealed by crystal structure of the Bacillus subtilis major cold-shock protein. Nature 364:164–168 [CrossRef]
    [Google Scholar]
  42. Schindelin H., Jiang W., Inouye M., Heinemann U. 1994; Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A 91:5119–5123 [CrossRef]
    [Google Scholar]
  43. von Hippel P. H. 1998; An integrated model of the transcription complex in elongation, termination and editing. Science 281:660–665 [CrossRef]
    [Google Scholar]
  44. Xia B., Ke H., Jiang W., Inouye M. 2002; The cold box stem-loop proximal to the 5′-end of the Escherichia coli cspA gene stabilizes its mRNA at low temperature. J Biol Chem 277:6005–6011 [CrossRef]
    [Google Scholar]
  45. Yamanaka K., Inouye M. 1997; Growth-phase-dependent expression of cspD, encoding a member of the CspA family inEscherichia coli. J Bacteriol 179:5126–5130
    [Google Scholar]
  46. Yanisch-Perron C., Viera J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  47. Yura T., Nagai N., Mori H. 1993; Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 47:321–350 [CrossRef]
    [Google Scholar]
  48. Zuker M. 1989; On finding all suboptimal foldings of an RNA molecule. Science 244:48–52 [CrossRef]
    [Google Scholar]
  49. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26666-0
Loading
/content/journal/micro/10.1099/mic.0.26666-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error