1887

Abstract

shows extraordinary tolerance to DNA damage, and exhibits differential gene expression and protein recycling. A putative response regulator, the DRB0091 (RadR) ORF, was identified from a pool of DNA-binding proteins induced in response to gamma radiation in this bacterium. is located upstream of , which encodes a putative sensor histidine kinase (RadS) on the megaplasmid. Deletion of these genes both individually and together resulted in hypersensitivity to DNA-damaging agents and a delayed or altered double-strand break repair. A Δ double mutant and a Δ single mutant showed nearly identical responses to gamma radiation and UVC. Wild-type RadR and RadS complemented the corresponding mutant strains, but also exhibited significant cross-complementation, albeit at lower doses of gamma radiation. The transcript was not detected in the Δ mutant, suggesting the existence of a operon. Recombinant RadS was autophosphorylated and could catalyse the transfer of γ phosphate from ATP to RadR . These results indicated the functional interaction of RadS and RadR, and suggested a role for the RadS/RadR two-component system in the radiation resistance of this bacterium.

Funding
This study was supported by the:
  • Bhabha Atomic Research Centre
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049361-0
2011-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2974.html?itemId=/content/journal/micro/10.1099/mic.0.049361-0&mimeType=html&fmt=ahah

References

  1. Appleby J. L., Parkinson J. S., Bourret R. B. ( 1996). Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 86:845–848 [View Article][PubMed]
    [Google Scholar]
  2. Aravind L., Koonin E. V. ( 1999). DNA polymerase β-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. Nucleic Acids Res 27:1609–1618 [View Article][PubMed]
    [Google Scholar]
  3. Bagwell C. E., Milliken C. E., Ghoshroy S., Blom D. A. ( 2008). Intracellular copper accumulation enhances the growth of Kineococcus radiotolerans during chronic irradiation. Appl Environ Microbiol 74:1376–1384 [View Article][PubMed]
    [Google Scholar]
  4. Battista J. R., Park M. J., McLemore A. E. ( 2001). Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 43:133–139 [View Article][PubMed]
    [Google Scholar]
  5. Blasius M., Sommer S., Hübscher U. ( 2008). Deinococcus radiodurans: what belongs to the survival kit?. Crit Rev Biochem Mol Biol 43:221–238 [View Article][PubMed]
    [Google Scholar]
  6. Bonacossa de Almeida C., Coste G., Sommer S., Bailone A. ( 2002). Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Mol Genet Genomics 268:28–41 [View Article][PubMed]
    [Google Scholar]
  7. Cox M. M., Battista J. R. ( 2005). Deinococcus radiodurans – the consummate survivor. Nat Rev Microbiol 3:882–892 [View Article][PubMed]
    [Google Scholar]
  8. Daly M. J., Minton K. W. ( 1996). An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 178:4461–4471[PubMed]
    [Google Scholar]
  9. Daly M. J., Ouyang L., Fuchs P., Minton K. W. ( 1994). In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol 176:3508–3517[PubMed]
    [Google Scholar]
  10. Ghosal D. M., Omelchenko M. V., Gaidamakova E. K., Matrosova V. Y., Vasilenko A., Venkateswaran A., Zhai M., Kostandarithes H. M., Brim H. et al. & other authors ( 2005). How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol Rev 29:361–375[PubMed]
    [Google Scholar]
  11. Hickman A. B., James J. A., Barabas O., Pasternak C., Ton-Hoang B., Chandler M., Sommer S., Dyda F. ( 2010). DNA recognition and the precleavage state during single-stranded DNA transposition in D. radiodurans. EMBO J 29:3840–3852 [View Article][PubMed]
    [Google Scholar]
  12. Inouye M., Dutta R. ( 2003). Histidine Kinases in Signal Transduction San Diego, CA: Academic Press;
    [Google Scholar]
  13. Joshi B., Schmid R., Altendorf K., Apte S. K. ( 2004). Protein recycling is a major component of post-irradiation recovery in Deinococcus radiodurans strain R1. Biochem Biophys Res Commun 320:1112–1117 [View Article][PubMed]
    [Google Scholar]
  14. Kamble V. A., Rajpurohit Y. S., Srivastava A. K., Misra H. S. ( 2010). Increased synthesis of signaling molecules coincides with reversible inhibition of nucleolytic activity during postirradiation recovery of Deinococcus radiodurans. FEMS Microbiol Lett 303:18–25 [View Article][PubMed]
    [Google Scholar]
  15. Khairnar N. P., Kamble V. A., Mangoli S. H., Apte S. K., Misra H. S. ( 2007). Involvement of a periplasmic protein kinase in DNA strand break repair and homologous recombination in Escherichia coli. Mol Microbiol 65:294–304 [View Article][PubMed]
    [Google Scholar]
  16. Khairnar N. P., Kamble V. A., Misra H. S. ( 2008). RecBC enzyme overproduction affects UV and gamma radiation survival of Deinococcus radiodurans. DNA Repair (Amst) 7:40–47 [View Article][PubMed]
    [Google Scholar]
  17. Kim D., Forst S. ( 2001). Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology 147:1197–1212[PubMed]
    [Google Scholar]
  18. Kota S., Misra H. S. ( 2006). PprA: a protein implicated in radioresistance of Deinococcus radiodurans stimulates catalase activity in Escherichia coli. Appl Microbiol Biotechnol 72:790–796 [View Article][PubMed]
    [Google Scholar]
  19. Kota S., Misra H. S. ( 2008). Identification of a DNA processing complex from Deinococcus radiodurans. Biochem Cell Biol 86:448–458 [View Article][PubMed]
    [Google Scholar]
  20. Lavin M. F., Kozlov S. ( 2007). ATM activation and DNA damage response. Cell Cycle 6:931–942 [View Article][PubMed]
    [Google Scholar]
  21. Leonard C. J., Aravind L., Koonin E. V. ( 1998). Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily. Genome Res 8:1038–1047[PubMed]
    [Google Scholar]
  22. Liu Y., Zhou J., Omelchenko M. V., Beliaev A. S., Venkateswaran A., Stair J., Wu L., Thompson D. K., Xu D. et al. & other authors ( 2003). Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci U S A 100:4191–4196 [View Article][PubMed]
    [Google Scholar]
  23. Makarova K. S., Aravind L., Wolf Y. I., Tatusov R. L., Minton K. W., Koonin E. V., Daly M. J. ( 2001). Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65:44–79 [View Article][PubMed]
    [Google Scholar]
  24. Markillie L. M., Varnum S. M., Hradecky P., Wong K. K. ( 1999). Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol 181:666–669[PubMed]
    [Google Scholar]
  25. Mascher T., Helmann J. D., Unden G. ( 2006). Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70:910–938 [View Article][PubMed]
    [Google Scholar]
  26. Mattimore V., Battista J. R. ( 1996). Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637[PubMed]
    [Google Scholar]
  27. Meima R., Rothfuss H. M., Gewin L., Lidstrom M. E. ( 2001). Promoter cloning in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 183:3169–3175 [View Article][PubMed]
    [Google Scholar]
  28. Mijakovic I., Petranovic D., Macek B., Cepo T., Mann M., Davies J., Jensen P. R., Vujaklija D. ( 2006). Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res 34:1588–1596 [View Article][PubMed]
    [Google Scholar]
  29. Misra H. S., Pandey P. K., Modak M. J., Vinayak R., Pandey V. N. ( 1998). Polyamide nucleic acid–DNA chimera lacking the phosphate backbone are novel primers for polymerase reaction catalyzed by DNA polymerases. Biochemistry 37:1917–1925 [View Article][PubMed]
    [Google Scholar]
  30. Misra H. S., Khairnar N. P., Kota S., Shrivastava S., Joshi V. P., Apte S. K. ( 2006). An exonuclease I-sensitive DNA repair pathway in Deinococcus radiodurans: a major determinant of radiation resistance. Mol Microbiol 59:1308–1316 [View Article][PubMed]
    [Google Scholar]
  31. Narumi I., Satoh K., Kikuchi M., Funayama T., Yanagisawa T., Kobayashi Y., Watanabe H., Yamamoto K. ( 2001). The LexA protein from Deinococcus radiodurans is not involved in RecA induction following gamma irradiation. J Bacteriol 183:6951–6956 [View Article][PubMed]
    [Google Scholar]
  32. Oshima T., Aiba H., Masuda Y., Kanaya S., Sugiura M., Wanner B. L., Mori H., Mizuno T. ( 2002). Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 46:281–291 [View Article][PubMed]
    [Google Scholar]
  33. Parkinson J. S. ( 1993). Signal transduction schemes of bacteria. Cell 73:857–871 [View Article][PubMed]
    [Google Scholar]
  34. Rajpurohit Y. S., Misra H. S. ( 2010). Characterization of a DNA damage-inducible membrane protein kinase from Deinococcus radiodurans and its role in bacterial radioresistance and DNA strand break repair. Mol Microbiol 77:1470–1482 [View Article][PubMed]
    [Google Scholar]
  35. Rajpurohit Y. S., Gopalakrishnan R., Misra H. S. ( 2008). Involvement of a protein kinase activity inducer in DNA double strand break repair and radioresistance of Deinococcus radiodurans. J Bacteriol 190:3948–3954 [View Article][PubMed]
    [Google Scholar]
  36. Rensing C., Grass G. ( 2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213 [View Article][PubMed]
    [Google Scholar]
  37. Repar J., Cvjetan S., Slade D., Radman M., Zahradka D., Zahradka K. ( 2010). RecA protein assures fidelity of DNA repair and genome stability in Deinococcus radiodurans. DNA Repair (Amst) 9:1151–1161 [View Article][PubMed]
    [Google Scholar]
  38. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Sancar A., Lindsey-Boltz L. A., Unsal-Kaçmaz K., Linn S. ( 2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85 [View Article][PubMed]
    [Google Scholar]
  40. Shashidhar R., Kumar S. A., Misra H. S., Bandekar J. R. ( 2010). Evaluation of the role of enzymatic and nonenzymatic antioxidant systems in the radiation resistance of Deinococcus. Can J Microbiol 56:195–201 [View Article][PubMed]
    [Google Scholar]
  41. Shimoni Y., Altuvia S., Margalit H., Biham O. ( 2009). Stochastic analysis of the SOS response in Escherichia coli. PLoS ONE 4:e5363 [View Article][PubMed]
    [Google Scholar]
  42. Shrivastava R., Ghosh A. K., Das A. K. ( 2007). Probing the nucleotide binding and phosphorylation by the histidine kinase of a novel three-protein two-component system from Mycobacterium tuberculosis. FEBS Lett 581:1903–1909 [View Article][PubMed]
    [Google Scholar]
  43. Slade D., Radman M. ( 2011). Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75:133–191 [View Article][PubMed]
    [Google Scholar]
  44. Slade D., Lindner A. B., Paul G., Radman M. ( 2009). Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136:1044–1055 [View Article][PubMed]
    [Google Scholar]
  45. Tanaka M., Earl A. M., Howell H. A., Park M. J., Eisen J. A., Peterson S. N., Battista J. R. ( 2004). Analysis of Deinococcus radiodurans’s transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 168:21–33 [View Article][PubMed]
    [Google Scholar]
  46. Walker G. C. ( 1996). The SOS response of Escherichia coli. Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn.1400–1416 Neidhardt F. C. et al. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Wang L., Xu G., Chen H., Zhao Y., Xu N., Tian B., Hua Y. ( 2008). DrRRA: a novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans. Mol Microbiol 67:1211–1222 [View Article][PubMed]
    [Google Scholar]
  48. White O., Eisen J. A., Heidelberg J. F., Hickey E. K., Peterson J. D., Dodson R. J., Haft D. H., Gwinn M. L., Nelson W. C. et al. & other authors ( 1999). Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577 [View Article][PubMed]
    [Google Scholar]
  49. Zahradka K., Slade D., Bailone A., Sommer S., Averbeck D., Petranovic M., Lindner A. B., Radman M. ( 2006). Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443:569–573[PubMed]
    [Google Scholar]
  50. Zhou B. B., Elledge S. J. ( 2000). The DNA damage response: putting checkpoints in perspective. Nature 408:433–439 [View Article][PubMed]
    [Google Scholar]
  51. Zhou L., Lei X. H., Bochner B. R., Wanner B. L. ( 2003). Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol 185:4956–4972 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049361-0
Loading
/content/journal/micro/10.1099/mic.0.049361-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error