Skip to main content
Log in

DNER as key molecule for cerebellar maturation

  • Mini Review
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Notch signaling plays an important role in the process of cell-fate assignation during nervous system development. DNER is a neuron-specific transmembrane protein carrying extracellular EGF-like repeats and is expressed in somatodendritic regions.In vitro studies demonstrated that DNER mediates Notch signaling by cell-cell interaction. In the cerebellum, DNER is abundantly expressed in Purkinje cells and moderately in granule cells. DNER-knockout mice showed motor discoordination. The mutant cerebellum showed morphological impairments of Bergmann glia and multiple innervation between climbing fibers and Purkinje cells. Moreover, glutamate clearance at the synapses between parallel fibers and Purkinje cells was significantly weakened, and the expression of GLAST, a glutamate transporter in Bergmann glia, was reduced in the mutant cerebellum. Therefore, DNER contributes to the morphological and functional maturation of Bergmann glia via the Notch signaling pathway, and is essential for precise cerebellar development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: Cell fate control and signal integration in development. Science. 1999;284:770–6.

    Article  PubMed  CAS  Google Scholar 

  2. Mumm JS, Kopan R. Notch signaling: From the outside in. Dev Biol. 2000;228:151–65.

    Article  PubMed  CAS  Google Scholar 

  3. Struhl G, Adachi A. Requirements for presenilin-dependent cleavage of Notch and other transmembrane proteins. Mol Cell. 2000;6:625–36.

    Article  PubMed  CAS  Google Scholar 

  4. Ramain P, Khechumian K, Seugnet L, Arbogast N, Ackermann C, Heitzler P. Novel Notch alleles reveal a Deltex-dependent pathway repressing neural fate. Curr Biol. 2001;11:1729–38.

    Article  PubMed  CAS  Google Scholar 

  5. De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Rayk WJ, Goatek A, Kopan R. A presenillin-1-dependent (-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999;398:518–22.

    Article  PubMed  Google Scholar 

  6. Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R. Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res. 2005;306:343–8.

    Article  PubMed  Google Scholar 

  7. Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD. MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for Notch receptors. Nat Genet. 2000;26:484–9.

    Article  PubMed  CAS  Google Scholar 

  8. Bailey AM, Posakony JW. Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev. 1995;9: 2609–22.

    Article  PubMed  CAS  Google Scholar 

  9. Matsuno K, Ito M, Hori K, Miyashita F, Suzuki S, Kishi N, Artavanis-Tsakonas S, Okano H. Involvement of a proline-rich motif and RING-H2 finger of Deltex in the regulation of Notch signaling. Development. 2002;129:1049–59.

    PubMed  CAS  Google Scholar 

  10. Liu WH, Lai MZ. Deltex regulates T-cell activation by targeted degradation of active MEKK1. Mol Cell Biol. 2005;25:1367–78.

    Article  PubMed  Google Scholar 

  11. Anderson DJ. Stem cells and pattern formation in the nervous system: The possible versus the actual. Neuron. 2001;30: 19–35.

    Article  PubMed  CAS  Google Scholar 

  12. Eiraku M, Hirata Y, Takeshima H, Hirano T, Kengaku M. Delta/Notch-like epidermal growth factor (EGF)-related receptor, a novel EGF-like repeat-containing protein targeted to dendrites of developing and adult central nervous system neurons. J Biol Chem. 2002;277:25400–07.

    Article  PubMed  CAS  Google Scholar 

  13. Nishizumi H, Komiyama T, Miyabayashi T, Sakano S, Sakano H. BET, a novel neuronal transmembrane protein with multiple EGF-like motifs. NeuroReport. 2002;13: 909–15.

    Article  PubMed  CAS  Google Scholar 

  14. Handford PA, Mayhew M, Baron M, Winship PR, Campbell ID, Brownlee GG. Key residues involved in calcium-binding motifs in EGF-like domains. Nature. 1991;351:164–7.

    Article  PubMed  CAS  Google Scholar 

  15. Bonifacino JS, Traub LM. Signals for sorting of transmem-brane proteins to endosomes and lysosomes. Annu Rev Biochem. 2003;72:395–447.

    Article  PubMed  CAS  Google Scholar 

  16. Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, Kengaku M. DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat Neurosci. 2005;8:873–80.

    PubMed  Google Scholar 

  17. Shawber C, Nofziger D, Hsieh JJ, Lindsell C, Bogler O, Hayward D, Weinmaster G. Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development. 1996;122:3765–73.

    PubMed  CAS  Google Scholar 

  18. Patten BA, Peyrin JM, Weinmaster G, Corfas G. Sequential signaling through Notch1 and erbB receptors mediates radial glia differentiation. J Neurosci. 2003;23:6132–40.

    PubMed  CAS  Google Scholar 

  19. Tohgo A, Eiraku M, Miyazaki T, Miura E, Kawaguchi S, Nishi M, Watanabe M, Hirano T, Kengaku M, Takeshima H. Impaired cerebellar functions in mutant mice lacking DNER. Mol Cell Neurosci. 2005 in press.

  20. Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci. 1998;10:976–88.

    Article  PubMed  CAS  Google Scholar 

  21. Lordkipanidze T, Dunaevsky A. Purkinje cell dendrites grow in alignment with Bergmann glia. Glia. 2005;51: 229–34.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takeshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, SY., Takeshima, H. DNER as key molecule for cerebellar maturation. Cerebellum 5, 227–231 (2006). https://doi.org/10.1080/14734220600632564

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220600632564

Key words

Navigation