Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Metabolic determinants of embryonic development and stem cell fate

Clifford D. L. Folmes A and Andre Terzic A B
+ Author Affiliations
- Author Affiliations

A Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA.

B Corresponding author. Email: terzic.andre@mayo.edu

Reproduction, Fertility and Development 27(1) 82-88 https://doi.org/10.1071/RD14383
Published: 4 December 2014

Abstract

Decoding stem cell metabolism has implicated a tight linkage between energy metabolism and cell fate regulation, a dynamic interplay vital in the execution of developmental and differentiation programs. The inherent plasticity in energy metabolism enables prioritisation of metabolic pathways in support of stage-specific demands. Beyond traditional support of energetic needs, intermediate metabolism may also dictate cell fate choices through regulation of cellular signalling and epigenetic regulation of gene expression. The notion of a ‘metabolism-centric’ control of stem cell differentiation has been informed by developmental embryogenesis based upon an on-demand paradigm paramount in defining diverse developmental behaviours, from a post-fertilisation nascent zygote to complex organogenesis leading to adequate tissue formation and maturation. Monitored through natural or bioengineered stem cell surrogates, nutrient-responsive metabolites are identified as mediators of cross-talk between metabolic flux, cell signalling and epigenetic regulation charting, collectively, whether a cell will self-renew to maintain progenitor pools, lineage specify to ensure tissue (re)generation or remain quiescent to curb stress damage. Thus, bioenergetics are increasingly recognised as integral in governing stemness and associated organogenic decisions, paving the way for metabolism-defined targets in control of embryology, stem cell biology and tissue regeneration.

Additional keywords: bioenergetics, differentiation, embryogenesis, metabolomics, regenerative medicine, reprogramming.


References

Agathocleous, M., Love, N. K., Randlett, O., Harris, J. J., Liu, J., Murray, A. J., and Harris, W. A. (2012). Metabolic differentiation in the embryonic retina. Nat. Cell Biol. 14, 859–864.
Metabolic differentiation in the embryonic retina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVSqs7s%3D&md5=c4c7d2dd63cccaf501278669a424e2baCAS | 22750943PubMed |

Alexander, P. B., Wang, J., and McKnight, S. L. (2011). Targeted killing of a mammalian cell based upon its specialized metabolic state. Proc. Natl Acad. Sci. USA 108, 15 828–15 833.
Targeted killing of a mammalian cell based upon its specialized metabolic state.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1emtrjL&md5=5b65a19743f8ea2a27a1c88e970eedacCAS |

Barbehenn, E. K., Wales, R. G., and Lowry, O. H. (1978). Measurement of metabolites in single preimplantation embryos; a new means to study metabolic control in early embryos. J. Embryol. Exp. Morphol. 43, 29–46.
| 1:CAS:528:DyaE1cXhtlarur0%3D&md5=eb6bb7c2374d7d0502a82f38553f8d17CAS | 580293PubMed |

Bracha, A. L., Ramanathan, A., Huang, S., Ingber, D. E., and Schreiber, S. L. (2010). Carbon metabolism-mediated myogenic differentiation. Nat. Chem. Biol. 6, 202–204.
Carbon metabolism-mediated myogenic differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVGitA%3D%3D&md5=62b16e009bcf94f2872362be2c50a870CAS | 20081855PubMed |

Brinster, R. L., and Troike, D. E. (1979). Requirements for blastocyst development in vitro. J. Anim. Sci. 49, 26–34.

Chen, C. T., Shih, Y. R., Kuo, T. K., Lee, O. K., and Wei, Y. H. (2008). Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26, 960–968.
Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFKltbk%3D&md5=050a9cdc447f168f753d2232d011dcafCAS | 18218821PubMed |

Chen, G., Gulbranson, D. R., Hou, Z., Bolin, J. M., Ruotti, V., Probasco, M. D., Smuga-Otto, K., Howden, S. E., Diol, N. R., Propson, N. E., Wagner, R., Lee, G. O., Antosiewicz-Bourget, J., Teng, J. M., and Thomson, J. A. (2011). Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8, 424–429.
Chemically defined conditions for human iPSC derivation and culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFWnt7o%3D&md5=93d74391592b16759268859abcfb79f3CAS | 21478862PubMed |

Cho, Y. M., Kwon, S., Pak, Y. K., Seol, H. W., Choi, Y. M., Park, D. J., Park, K. S., and Lee, H. K. (2006). Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem. Biophys. Res. Commun. 348, 1472–1478.
Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVWru7o%3D&md5=6ac016a9222b80985306f93f3e4bf8f4CAS | 16920071PubMed |

Chung, S., Dzeja, P. P., Faustino, R. S., Perez-Terzic, C., Behfar, A., and Terzic, A. (2007). Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 4, S60–S67.
Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVemtbs%3D&md5=6b12a8d4002dc16abe7fb55756f262f2CAS | 17230217PubMed |

Chung, S., Dzeja, P. P., Faustino, R. S., and Terzic, A. (2008). Developmental restructuring of the creatine kinase system integrates mitochondrial energetics with stem cell cardiogenesis. Ann. N. Y. Acad. Sci. 1147, 254–263.
Developmental restructuring of the creatine kinase system integrates mitochondrial energetics with stem cell cardiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVaqurk%3D&md5=b8bfb94dfb6a0111671e975c0742beb8CAS | 19076447PubMed |

Chung, S., Arrell, D. K., Faustino, R. S., Terzic, A., and Dzeja, P. P. (2010). Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J. Mol. Cell. Cardiol. 48, 725–734.
Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1anur4%3D&md5=c47edbfd8c1d4d716eb6dde91a766449CAS | 20045004PubMed |

Dumollard, R., Duchen, M., and Carroll, J. (2007). The role of mitochondrial function in the oocyte and embryo. Curr. Top. Dev. Biol. 77, 21–49.
The role of mitochondrial function in the oocyte and embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1Gltb4%3D&md5=42344ed0bf0ffa5090ae8641a59040a4CAS | 17222699PubMed |

Dzeja, P. P., Chung, S., Faustino, R. S., Behfar, A., and Terzic, A. (2011). Developmental enhancement of adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation. PLoS ONE 6, e19300.
Developmental enhancement of adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1Snur0%3D&md5=f808d5a824da1ef0f6b6915800e03f43CAS | 21556322PubMed |

Eichenlaub-Ritter, U., Vogt, E., Yin, H., and Gosden, R. (2004). Spindles, mitochondria and redox potential in ageing oocytes. Reprod. Biomed. Online 8, 45–58.
Spindles, mitochondria and redox potential in ageing oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1Ojsb0%3D&md5=cc0226f02310cf6c14adfe272ab78bddCAS | 14759287PubMed |

El Shourbagy, S. H., Spikings, E. C., Freitas, M., and St John, J. C. (2006). Mitochondria directly influence fertilisation outcome in the pig. Reproduction 131, 233–245.
Mitochondria directly influence fertilisation outcome in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFalsL4%3D&md5=f0457ff7daef9cacf24b578829b3d4e2CAS | 16452717PubMed |

Ezashi, T., Das, P., and Roberts, R. M. (2005). Low O2 tensions and the prevention of differentiation of hES cells. Proc. Natl Acad. Sci. USA 102, 4783–4788.
Low O2 tensions and the prevention of differentiation of hES cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1Ohsrs%3D&md5=9e5cba5a7bc893e94b18a48b9d562ff2CAS | 15772165PubMed |

Facucho-Oliveira, J. M., Alderson, J., Spikings, E. C., Egginton, S., and St John, J. C. (2007). Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J. Cell Sci. 120, 4025–4034.
Mitochondrial DNA replication during differentiation of murine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOru73K&md5=d60655fb3a1f9ea092dd2d6ac4cdfd88CAS | 17971411PubMed |

Fan, W., Waymire, K. G., Narula, N., Li, P., Rocher, C., Coskun, P. E., Vannan, M. A., Narula, J., Macgregor, G. R., and Wallace, D. C. (2008). A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319, 958–962.
A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslOmt70%3D&md5=43f5107f3e1b6caada6f57baaf9b5852CAS | 18276892PubMed |

Folmes, C. D., and Terzic, A. (2014). Stem cell lineage specification: you become what you eat. Cell Metab. 20, 389–391.
Stem cell lineage specification: you become what you eat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVKntL%2FL&md5=f710f7fd0df41c014c7de03882490935CAS | 25185944PubMed |

Folmes, C. D., Nelson, T. J., Martinez-Fernandez, A., Arrell, D. K., Lindor, J. Z., Dzeja, P. P., Ikeda, Y., Perez-Terzic, C., and Terzic, A. (2011a). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14, 264–271.
Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFKitbk%3D&md5=7f939ac7d398cd2547d9a608bd468000CAS | 21803296PubMed |

Folmes, C. D., Nelson, T. J., and Terzic, A. (2011b). Energy metabolism in nuclear reprogramming. Biomark. Med. 5, 715–729.
Energy metabolism in nuclear reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFamtrnK&md5=c98d20c76b3580d09a8486a8a99cd9a3CAS | 22103608PubMed |

Folmes, C. D., Dzeja, P. P., Nelson, T. J., and Terzic, A. (2012a). Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11, 596–606.
Metabolic plasticity in stem cell homeostasis and differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1aqtr3N&md5=9d9a99df35c25f33387c06114db7b30cCAS | 23122287PubMed |

Folmes, C. D. L., Dzeja, P. P., Nelson, T. J., and Terzic, A. (2012b). Mitochondria in control of cell fate. Circ. Res. 110, 526–529.
Mitochondria in control of cell fate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1aru74%3D&md5=b581de16b6200fdf5e2b2c9204b883edCAS |

Folmes, C. D., Park, S., and Terzic, A. (2013). Lipid metabolism greases the stem cell engine. Cell Metab. 17, 153–155.
Lipid metabolism greases the stem cell engine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitFCiurY%3D&md5=34d07fe3a5bc8ca43301759f36da32bbCAS | 23395162PubMed |

Han, C., Gu, H., Wang, J., Lu, W., Mei, Y., and Wu, M. (2013). Regulation of l-threonine dehydrogenase in somatic cell reprogramming. Stem Cells 31, 953–965.
Regulation of l-threonine dehydrogenase in somatic cell reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVOlur4%3D&md5=4eecad3134459b39cf636a119f8e45f4CAS | 23355387PubMed |

Hansson, J., Rafiee, M. R., Reiland, S., Polo, J. M., Gehring, J., Okawa, S., Huber, W., Hochedlinger, K., and Krijgsveld, J. (2012). Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell. Rep. 2, 1579–1592.
Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1yhsg%3D%3D&md5=5c0102d2ee2e3fcbfa3c9e8fa56057b7CAS | 23260666PubMed |

Hom, J. R., Quintanilla, R. A., Hoffman, D. L., de Mesy Bentley, K. L., Molkentin, J. D., Sheu, S. S., and Porter, G. A. (2011). The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev. Cell 21, 469–478.
The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2rsLrJ&md5=e03271ed15497b305b43e0796fdb4c71CAS | 21920313PubMed |

Ito, K., Carracedo, A., Weiss, D., Arai, F., Ala, U., Avigan, D. E., Schafer, Z. T., Evans, R. M., Suda, T., Lee, C. H., and Pandolfi, P. P. (2012). A PML–PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18, 1350–1358.
A PML–PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WktLfL&md5=c25fe0611632fbf1e01af151ad5d90acCAS | 22902876PubMed |

Jansen, R. P., and Burton, G. J. (2004). Mitochondrial dysfunction in reproduction. Mitochondrion 4, 577–600.
Mitochondrial dysfunction in reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCgs7nL&md5=ebedf6799c9ac878d1d916acf9f5e166CAS | 16120416PubMed |

Johnson, M. T., Mahmood, S., and Patel, M. S. (2003). Intermediary metabolism and energetics during murine early embryogenesis. J. Biol. Chem. 278, 31 457–31 460.
Intermediary metabolism and energetics during murine early embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVOnsbw%3D&md5=49d0d0ce69c8a4047dad64e86dcd9bc7CAS |

Knobloch, M., Braun, S. M., Zurkirchen, L., von Schoultz, C., Zamboni, N., Arauzo-Bravo, M. J., Kovacs, W. J., Karalay, O., Suter, U., Machado, R. A., Roccio, M., Lutolf, M. P., Semenkovich, C. F., and Jessberger, S. (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226–230.
Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslymtLjP&md5=f765c563bab008620cc8002c5a398a90CAS | 23201681PubMed |

Kondoh, H., Lleonart, M. E., Nakashima, Y., Yokode, M., Tanaka, M., Bernard, D., Gil, J., and Beach, D. (2007). A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid. Redox Signal. 9, 293–299.
A high glycolytic flux supports the proliferative potential of murine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKlsLw%3D&md5=6daf53987eb670682f9fdd7c737da60dCAS | 17184172PubMed |

Larsson, N. G., Wang, J., Wilhelmsson, H., Oldfors, A., Rustin, P., Lewandoski, M., Barsh, G. S., and Clayton, D. A. (1998). Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231–236.
Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlKktL8%3D&md5=852fdeec659bb771e302052a2f4244b2CAS | 9500544PubMed |

Lonergan, T., Brenner, C., and Bavister, B. (2006). Differentiation-related changes in mitochondrial properties as indicators of stem cell competence. J. Cell. Physiol. 208, 149–153.
Differentiation-related changes in mitochondrial properties as indicators of stem cell competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVagtbc%3D&md5=97d8ef0dfd029acd5dd9d934e6906f1aCAS | 16575916PubMed |

Lonergan, T., Bavister, B., and Brenner, C. (2007). Mitochondria in stem cells. Mitochondrion 7, 289–296.
Mitochondria in stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFGqs7c%3D&md5=9a30c9206c98283534f2bc0f9bd602faCAS | 17588828PubMed |

Mandal, S., Lindgren, A. G., Srivastava, A. S., Clark, A. T., and Banerjee, U. (2011). Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells 29, 486–495.
Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFKjsrw%3D&md5=93bcc25c12c69df5ea6341e4732baea3CAS | 21425411PubMed |

Merkle, S., and Pretsch, W. (1989). Characterization of triosephosphate isomerase mutants with reduced enzyme activity in Mus musculus. Genetics 123, 837–844.
| 1:CAS:528:DyaK3cXlt1yqug%3D%3D&md5=502b2f9b6535c2d1cc3407835e71c665CAS | 2693209PubMed |

Merkle, S., Favor, J., Graw, J., Hornhardt, S., and Pretsch, W. (1992). Hereditary lactate dehydrogenase A-subunit deficiency as cause of early postimplantation death of homozygotes in Mus musculus. Genetics 131, 413–421.
| 1:CAS:528:DyaK38Xls1yrtLk%3D&md5=36f217356f6ac401eccd77724307d7dcCAS | 1644279PubMed |

Mohyeldin, A., Garzon-Muvdi, T., and Quinones-Hinojosa, A. (2010). Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7, 150–161.
Oxygen in stem cell biology: a critical component of the stem cell niche.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrt77L&md5=11cecc3848ebb81448d5ba68565c8297CAS | 20682444PubMed |

Motta, P. M., Nottola, S. A., Makabe, S., and Heyn, R. (2000). Mitochondrial morphology in human fetal and adult female germ cells. Hum. Reprod. 15, 129–147.
Mitochondrial morphology in human fetal and adult female germ cells.Crossref | GoogleScholarGoogle Scholar | 11041520PubMed |

Oburoglu, L., Tardito, S., Fritz, V., de Barros, S. C., Merida, P., Craveiro, M., Mamede, J., Cretenet, G., Mongellaz, C., An, X., Klysz, D., Touhami, J., Boyer-Clavel, M., Battini, J. L., Dardalhon, V., Zimmermann, V. S., Mohandas, N., Gottlieb, E., Sitbon, M., Kinet, S., and Taylor, N. (2014). Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell 15, 169–184.
Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVamsL3I&md5=6da72524089f85754fdaaa802902ffc4CAS | 24953180PubMed |

Panopoulos, A. D., Yanes, O., Ruiz, S., Kida, Y. S., Diep, D., Tautenhahn, R., Herrerias, A., Batchelder, E. M., Plongthongkum, N., Lutz, M., Berggren, W. T., Zhang, K., Evans, R. M., Siuzdak, G., and Belmonte, J. C. (2012). The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 22, 168–177.
The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1CisQ%3D%3D&md5=69b3b419e3a6342a6784b6df290059c0CAS | 22064701PubMed |

Pantaleon, M., and Kaye, P. L. (1998). Glucose transporters in preimplantation development. Rev. Reprod. 3, 77–81.
Glucose transporters in preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksVSjtL4%3D&md5=62d16c4000488b0840c89bd07e4066e9CAS | 9685185PubMed |

Piccoli, C., Ria, R., Scrima, R., Cela, O., D’Aprile, A., Boffoli, D., Falzetti, F., Tabilio, A., and Capitanio, N. (2005). Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J. Biol. Chem. 280, 26 467–26 476.
Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFymurs%3D&md5=d73c5e0bcf5627c5ed1736b08345d788CAS |

Pikó, L., and Matsumoto, L. (1976). Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Dev. Biol. 49, 1–10.
Number of mitochondria and some properties of mitochondrial DNA in the mouse egg.Crossref | GoogleScholarGoogle Scholar | 943339PubMed |

Pikó, L., and Taylor, K. D. (1987). Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev. Biol. 123, 364–374.
Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos.Crossref | GoogleScholarGoogle Scholar | 2443405PubMed |

Pretsch, W. (2000). Enzyme-activity mutants in Mus musculus. I. Phenotypic description and genetic characterization of ethylnitrosourea-induced mutations. Mamm. Genome 11, 537–542.
Enzyme-activity mutants in Mus musculus. I. Phenotypic description and genetic characterization of ethylnitrosourea-induced mutations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFCksLY%3D&md5=711387e382144529abd274f45e1bfe37CAS | 10886019PubMed |

Prigione, A., Fauler, B., Lurz, R., Lehrach, H., and Adjaye, J. (2010). The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28, 721–733.
The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1yisL0%3D&md5=4e2088bbbce30c4f448c3ff135aae76aCAS | 20201066PubMed |

Reynier, P., May-Panloup, P., Chretien, M. F., Morgan, C. J., Jean, M., Savagner, F., Barriere, P., and Malthiery, Y. (2001). Mitochondrial DNA content affects the fertilizability of human oocytes. Mol. Hum. Reprod. 7, 425–429.
Mitochondrial DNA content affects the fertilizability of human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1CqsLg%3D&md5=d992edf173ed21a2847ca52be9e660caCAS | 11331664PubMed |

Santos, T. A., El Shourbagy, S., and St John, J. C. (2006). Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil. Steril. 85, 584–591.
Mitochondrial content reflects oocyte variability and fertilization outcome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVChsr0%3D&md5=4452f90dcd3784588fc955885e08c8d7CAS | 16500323PubMed |

Sathananthan, A. H., and Trounson, A. O. (2000). Mitochondrial morphology during preimplantational human embryogenesis. Hum. Reprod. 15, 148–159.
Mitochondrial morphology during preimplantational human embryogenesis.Crossref | GoogleScholarGoogle Scholar | 11041521PubMed |

Schon, E. A., Kim, S. H., Ferreira, J. C., Magalhaes, P., Grace, M., Warburton, D., and Gross, S. J. (2000). Chromosomal non-disjunction in human oocytes: is there a mitochondrial connection? Hum. Reprod. 15, 160–172.
Chromosomal non-disjunction in human oocytes: is there a mitochondrial connection?Crossref | GoogleScholarGoogle Scholar | 11041522PubMed |

Shiraki, N., Shiraki, Y., Tsuyama, T., Obata, F., Miura, M., Nagae, G., Aburatani, H., Kume, K., Endo, F., and Kume, S. (2014). Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 19, 780–794.
Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVCjtrY%3D&md5=faad178eed9e331c17b6aef8594b4973CAS | 24746804PubMed |

Shoubridge, E. A., and Wai, T. (2008). Sidestepping mutational meltdown. Science 319, 914–915.
Sidestepping mutational meltdown.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFamtbY%3D&md5=146920ece8dc34f99528d772640cfabaCAS | 18276880PubMed |

Shyh-Chang, N., Locasale, J. W., Lyssiotis, C. A., Zheng, Y., Teo, R. Y., Ratanasirintrawoot, S., Zhang, J., Onder, T., Unternaehrer, J. J., Zhu, H., Asara, J. M., Daley, G. Q., and Cantley, L. C. (2013). Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222–226.
Influence of threonine metabolism on S-adenosylmethionine and histone methylation.Crossref | GoogleScholarGoogle Scholar | 23118012PubMed |

Simsek, T., Kocabas, F., Zheng, J., Deberardinis, R. J., Mahmoud, A. I., Olson, E. N., Schneider, J. W., Zhang, C. C., and Sadek, H. A. (2010). The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390.
The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrurbI&md5=5c6fd88bb814850248b6724df3c49b76CAS | 20804973PubMed |

Spikings, E. C., Alderson, J., and St John, J. C. (2007). Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol. Reprod. 76, 327–335.
Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWqtLs%3D&md5=0f25b8f56ab93bc97019011eacb1cf48CAS | 17035641PubMed |

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1aktbs%3D&md5=df53429488f67a17eb6f817c42c627f1CAS | 16904174PubMed |

Tilly, J. L., and Sinclair, D. A. (2013). Germline energetics, aging, and female infertility. Cell Metab. 17, 838–850.
Germline energetics, aging, and female infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptV2msLw%3D&md5=f3ee8426d5acdcb78a41cf5481d5e77fCAS | 23747243PubMed |

Todd, L. R., Damin, M. N., Gomathinayagam, R., Horn, S. R., Means, A. R., and Sankar, U. (2010). Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Mol. Biol. Cell 21, 1225–1236.
Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1OisLo%3D&md5=62212c0d0357a6d5b64d3273fbfe9a30CAS | 20147447PubMed |

Tormos, K. V., Anso, E., Hamanaka, R. B., Eisenbart, J., Joseph, J., Kalyanaraman, B., and Chandel, N. S. (2011). Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 14, 537–544.
Mitochondrial complex III ROS regulate adipocyte differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12rtLvE&md5=b54c1cd7d4e0b14e6bd4ea325106f228CAS | 21982713PubMed |

Turner, W. S., Seagle, C., Galanko, J. A., Favorov, O., Prestwich, G. D., Macdonald, J. M., and Reid, L. M. (2008). Nuclear magnetic resonance metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in hyaluronan-matrix hydrogels. Stem Cells 26, 1547–1555.
Nuclear magnetic resonance metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in hyaluronan-matrix hydrogels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFGhtbs%3D&md5=4a4fabf7298c38d4a7eeac5412271e05CAS | 18323408PubMed |

Van Blerkom, J. (1989). Morphodynamics of nuclear and cytoplasmic reorganization during the resumption of arrested meiosis in the mouse oocyte. Prog. Clin. Biol. Res. 294, 33–51.
| 1:STN:280:DyaL1M3msV2isg%3D%3D&md5=6341a58eab37277c7366f4e52873f704CAS | 2657780PubMed |

Van Blerkom, J. (1993). Development of human embryos to the hatched blastocyst stage in the presence or absence of a monolayer of Vero cells. Hum. Reprod. 8, 1525–1539.
| 1:STN:280:DyaK2c%2FnsFGhtw%3D%3D&md5=b4ac8faf48b9e4e67cfda867af18ee87CAS | 8253948PubMed |

Van Blerkom, J. (2009). Mitochondria in early mammalian development. Semin. Cell Dev. Biol. 20, 354–364.
Mitochondria in early mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVCmsLs%3D&md5=de77495b8e71488ea676f3d940b6a2a1CAS | 19136067PubMed |

Van Blerkom, J., Manes, C., and Daniel, J. C. (1973). Development of preimplantation rabbit embryos in vivo and in vitro. I. An ultrastructural comparison. Dev. Biol. 35, 262–282.
Development of preimplantation rabbit embryos in vivo and in vitro. I. An ultrastructural comparison.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c7kslKluw%3D%3D&md5=8cdf77e8637cb596dbc74d14f9cb8108CAS | 4363068PubMed |

Van Blerkom, J., Davis, P. W., and Lee, J. (1995). ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum. Reprod. 10, 415–424.
| 1:STN:280:DyaK2M3os1OrtQ%3D%3D&md5=6f576716de000bfff8a2b444665f7ecdCAS | 7769073PubMed |

Varum, S., Momcilovic, O., Castro, C., Ben-Yehudah, A., Ramalho-Santos, J., and Navara, C. S. (2009). Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Res. 3, 142–156.
Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGmsb%2FL&md5=f0f5a5cb939d2528965a4d0bb6cb7020CAS | 19716358PubMed |

Varum, S., Rodrigues, A. S., Moura, M. B., Momcilovic, O., Easley, C. A., Ramalho-Santos, J., Van Houten, B., and Schatten, G. (2011). Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS ONE 6, e20914.
Energy metabolism in human pluripotent stem cells and their differentiated counterparts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVWgt7k%3D&md5=2270ff6abdedc53972fc5dad88003d8aCAS | 21698063PubMed |

Wai, T., Ao, A., Zhang, X., Cyr, D., Dufort, D., and Shoubridge, E. A. (2010). The role of mitochondrial DNA copy number in mammalian fertility. Biol. Reprod. 83, 52–62.
The role of mitochondrial DNA copy number in mammalian fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWqtLo%3D&md5=43f9d4810663acde4386c042f706bf73CAS | 20130269PubMed |

Wang, J., Alexander, P., Wu, L., Hammer, R., Cleaver, O., and McKnight, S. L. (2009). Dependence of mouse embryonic stem cells on threonine catabolism. Science 325, 435–439.
Dependence of mouse embryonic stem cells on threonine catabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVCgtLY%3D&md5=3064d6f4f97bf36631b1549bc32178c7CAS | 19589965PubMed |

West, J. D., Flockhart, J. H., Peters, J., and Ball, S. T. (1990). Death of mouse embryos that lack a functional gene for glucose phosphate isomerase. Genet. Res. 56, 223–236.
Death of mouse embryos that lack a functional gene for glucose phosphate isomerase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvVaku74%3D&md5=6c7bd7ea150875a2cb7fd3b752f3c10cCAS | 2272513PubMed |

Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., and Yamanaka, S. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5, 237–241.
Hypoxia enhances the generation of induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCiurnI&md5=20656fbe658ca8b2467bcb16129a71c9CAS | 19716359PubMed |

Zheng, P., Vassena, R., and Latham, K. E. (2007). Effects of in vitro oocyte maturation and embryo culture on the expression of glucose transporters, glucose metabolism and insulin signaling genes in rhesus monkey oocytes and preimplantation embryos. Mol. Hum. Reprod. 13, 361–371.
Effects of in vitro oocyte maturation and embryo culture on the expression of glucose transporters, glucose metabolism and insulin signaling genes in rhesus monkey oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFCqu7s%3D&md5=cfe3250462593433046d4dda445b009dCAS | 17416905PubMed |

Zhu, S., Li, W., Zhou, H., Wei, W., Ambasudhan, R., Lin, T., Kim, J., Zhang, K., and Ding, S. (2010). Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7, 651–655.
Reprogramming of human primary somatic cells by OCT4 and chemical compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVygs7rJ&md5=6a24eb234df7fa3d65d41ec6f22bde2cCAS | 21112560PubMed |