Skip to main content
Log in

Formation of UV-induced DNA damage contributing to skin cancer development

  • PERSPECTIVE
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

UV-induced DNA damage plays a key role in the initiation phase of skin cancer. When left unrepaired or when damaged cells are not eliminated by apoptosis, DNA lesions express their mutagneic properties, leading to the activation of proto-oncogene or the inactivation of tumor suppression genes. The chemical nature and the amount of DNA damage strongly depend on the wavelength of the incident photons. The most energetic part of the solar spectrum at the Earth’s surface (UVB, 280-320 nm) leads to the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (64PPs). Less energetic but 20-times more intense UVA (320-400 nm) also induces the formation of CPDs together with a wide variety of oxidatively generated lesions such as single strand breaks and oxidized bases. Among those, 8-oxo-7,8-dihydroguanine (8-oxoGua) is the most frequent since it can be produced by several mechanisms. Data available on the respective yield of DNA photoproducts in cells and skin show that exposure to sunlight mostly induces pyrimidine dimers, which explains the mutational signature found in skin tumors, with lower amounts of 8-oxoGua and strand breaks. The present review aims at describing the basic photochemistry of DNA and discussing the quantitative formation of the different UV-induced DNA lesions reported in the literature. Additional information on mutagenesis, repair and photoprotection is briefly provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. R. de Gruijl, Skin cancer and solar UV radiation, Eur. J. Cancer, 1999, 35, 2003–2009.

    Article  PubMed  Google Scholar 

  2. V. O. Melnikova and H. N. Ananthaswamy, Cellular and molecular events leading to the development of skin cancer, Mutat. Res., 2005, 571, 91–106.

    Article  CAS  PubMed  Google Scholar 

  3. F. El Ghissassi, R. Baan, K. Straif, Y. Grosse, B. Secretan, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, C. Freeman, L. Galichet and V. Cogliano, A review of human carcino-gens—Part D: radiation, Lancet Oncol., 2009, 10, 751–752.

    Article  PubMed  Google Scholar 

  4. F. R. de Gruijl and H. Rebel, Early events in UV carcino-genesis-DNA damage, target cells and mutant p53 foci, Photochem. Photobiol., 2008, 84, 382–387.

    Article  CAS  PubMed  Google Scholar 

  5. K. H. Kraemer, Sunlight and skin cancer: another link revealed, Proc. Natl. Acad. Sci. U. S. A., 1997, 94, 11–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. J. Reichrath and K. Rass, Ultraviolet damage, DNA repair and vitamin D in nonmelanoma skin cancer and in malignant melanoma: an update, Adv. Exp. Med. Biol., 2014, 810, 208–233.

    PubMed  Google Scholar 

  7. A. Sample and Y. Y. He, Mechanisms and prevention of UV-induced melanoma, Photodermatol., Photoimmunol. Photomed., 2018, 34, 13–24.

    Article  CAS  Google Scholar 

  8. R. M. Lucas, M. Norval, R. E. Neale, A. R. Young, F. R. de Gruijl, Y. Takizawa and J. C. van der Leun, The consequences for human health of stratospheric ozone depletion in association with other environmental factors, Photochem. Photobiol. Sci., 2015, 14, 53–87.

    Article  CAS  PubMed  Google Scholar 

  9. T. B. Buckel, A. M. Goldstein, M. C. Fraser, B. Rogers and M. A. Tucker, Recent tanning bed use: a risk factor for melanoma, Arch. Dermatol., 2006, 142, 485–488.

    Article  PubMed  Google Scholar 

  10. N. A. O’Sullivan and C. P. Tait, Tanning bed and nail lamp use and the risk of cutaneous malignancy: a review of the literature, Australas. J. Dermatol., 2014, 55, 99–106.

    Article  PubMed  Google Scholar 

  11. L. M. Madigan and H. W. Lim, Tanning beds: Impact on health, and recent regulations, Clin. Dermatol., 2016, 34, 640–648.

    Article  PubMed  Google Scholar 

  12. D. E. Brash, UV signature mutations, Photochem. Photobiol., 2015, 91, 15–26.

    Article  CAS  PubMed  Google Scholar 

  13. H. Ikehata and T. Ono, The mechanisms of UV mutagenesis, J. Radiat. Res., 2011, 52, 115–125.

    Article  CAS  PubMed  Google Scholar 

  14. J. Cadet, A. Grand and T. Douki, in Photoinduced Phenomena in Nucleic Acids Ii: DNA Fragments and Phenomenological Aspects, ed. M. Barbatti, A.C. Borin and S. Ullrich, Springer-Verlag, Berlin, 2015, pp. 249–275.

  15. J. Cadet, S. Mouret, J. L. Ravanat and T. Douki, Photoinduced damage to cellular DNA: direct and photosensitized reactions, Photochem. Photobiol., 2012, 88, 1048–1065.

    Article  CAS  PubMed  Google Scholar 

  16. T. Douki, The variety of UV-induced pyrimidine dimeric photoproducts in DNA as shown by chromatographic quantification methods, Photochem. Photobiol. Sci., 2013, 12, 1286–1302.

    Article  CAS  PubMed  Google Scholar 

  17. J. Cadet, T. Douki and J. L. Ravanat, Oxidatively generated damage to cellular DNA by UVB and UVA radiation, Photochem. Photobiol., 2015, 91, 140–155.

    Article  CAS  PubMed  Google Scholar 

  18. C. Kielbassa, L. Roza and B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light, Carcinogenesis, 1997, 18, 811–816.

    Article  CAS  PubMed  Google Scholar 

  19. E. Kvam and R. M. Tyrrell, Artificial background and induced levels of oxidative base damage in DNA from human cells, Carcinogenesis, 1997, 18, 2281–2283.

    Article  CAS  PubMed  Google Scholar 

  20. J.-P. Pouget, T. Douki, M.-J. Richard and J. Cadet, DNA damage induced in cells by gamma and UVA radiations as measured by HPLC/GC-MS, HPLC-EC and comet assay, Chem. Res. Toxicol., 2000, 13, 541–549.

    Article  CAS  PubMed  Google Scholar 

  21. J. E. Cleaver, Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective, Proc. Natl. Acad. Sci. U. S. A., 1969, 63, 428–435.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. J. E. Cleaver, Historical aspects of xeroderma pigmentosum and nucleotide excision repair, Adv. Exp. Med. Biol., 2008, 637, 1–9.

    PubMed  Google Scholar 

  23. H. van Steeg and K. H. Kraemer, Xeroderma pigmentosum and the role of UV-induced DNA damage in skin cancer, Mol. Med. Today, 1999, 5, 86–94.

    Article  PubMed  Google Scholar 

  24. A. Rösch, R. Beukers, I. Ijistra and W. Berends, The effect of U.V.-light on some components of the nucleic acids. I. Uracil, thymine, Recl. Trav. Chim. Pays-Bas, 1958, 77, 423–429.

    Article  Google Scholar 

  25. R. Beukers and W. Berends, Isolation and identification of the irradiation product of thymine, Biochim. Biophys. Acta, 1960, 41, 550–551.

    Article  CAS  PubMed  Google Scholar 

  26. J. Cadet and P. Vigny, in Bioorganic Photochemistry, ed. H. Morrison, Wiley, New York, 1990, pp. 1–272.

  27. S. Y. Wang, in Photochemistry and Photobiology of Nucleic Acids, Academic Press, New-York, 1976, pp. 295–356.

    Book  Google Scholar 

  28. D. E. Brash, J. A. Rudolph, J. A. Simon, A. Lin, G. J. McKenna, H. P. Baden, A. J. Halperin and J. Ponten, A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 10124–10128.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. A. Ziegler, D. J. Leffel, S. Kunala, H. W. Sharma, P. E. Shapiro, A. E. Bale and D. E. Brash, Mutation hot spots due to sunlight in the p53 gene of nonmelanoma skin cancers, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 4216–4220.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. T. W. Zhang, K. Dutton-Regester, K. M. Brown and N. K. Hayward, The genomic landscape of cutaneous melanoma, Pigment Cell Melanoma Res., 2016, 29, 266–283.

    Article  CAS  PubMed  Google Scholar 

  31. R. Drouin and J. P. Therrien, UVB-induced cyclobutane pyrimidine dimer frequency correlates with skin cancer mutational hotspots in p53, Photochem. Photobiol., 1997, 66, 719–726.

    Article  CAS  PubMed  Google Scholar 

  32. C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernandez and B. Kohler, DNA excited-state dynamics: from single bases to the double helix, Annu. Rev. Phys. Chem., 2009, 60, 217–239.

    Article  CAS  PubMed  Google Scholar 

  33. A. W. Lange and J. M. Herbert, Both intra- and interstrand charge-transfer excited states in aqueous B-DNA are present at energies comparable to, or just above, the (1) pipi* excitonic bright states, J. Am. Chem. Soc., 2009, 131, 3913–3922.

    Article  CAS  PubMed  Google Scholar 

  34. I. Vaya, T. Gustavsson, T. Douki, Y. Berlin and D. Markovitsi, Electronic excitation energy transfer between nucleobases of natural DNA, J. Am. Chem. Soc., 2012, 134, 11366–11368.

    Article  CAS  PubMed  Google Scholar 

  35. S. Kumar, N. D. Sharma, R. J. H. Davies, D. W. Phillipson and J. A. McCloskey, The isolation and characterization of a new type of dimeric adenine photoproduct in UV-irradiated deoxyadenylates, Nucleic Acids Res., 1987, 15, 1199–1216.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. A. Banyasz, L. Martinez-Fernandez, T. M. Ketola, A. Munoz-Losa, L. Esposito, D. Markovitsi and R. Improta, Excited state pathways leading to formation of adenine dimers, J. Phys. Chem. Lett., 2016, 7, 2020–2023.

    Article  CAS  PubMed  Google Scholar 

  37. T. M. G. Koning, R. J. H. Davies and R. Kaptein, The solution structure of the intramolecular photoproduct of d(TpA) derived with the use of NMR and a combination of distance geometry and molecular dynamics, Nucleic Acids Res., 1990, 18, 277–284.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. X. Zhao and J.-S. Taylor, The structure of d(TpA), the major photoproduct of thymidylyl-(3′5′)-deoxyadenosine, Nucleic Acids Res., 1996, 24, 1554–1560.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. S. Asgatay, A. Martinez, S. Coantic-Castex, D. Harakat, C. Philippe, T. Douki and P. Clivio, UV-Induced TA Photoproducts: Formation and Hydrolysis in DoubleStranded DNA, J. Am. Chem. Soc., 2010, 132, 10260–10261.

    Article  CAS  PubMed  Google Scholar 

  40. E. Emanuele, K. Zakrzewska, D. Markovitsi, R. Lavery and P. Millie, Exciton states of dynamic DNA double helices: Alternating dCdG sequences, J. Phys. Chem. B, 2005, 109, 16109–16118.

    Article  CAS  PubMed  Google Scholar 

  41. D. Markovitsi, UV-induced DNA damage: The role of electronic excited states, Photochem. Photobiol., 2016, 92, 45–51.

    Article  CAS  PubMed  Google Scholar 

  42. L. Blancafort and A. A. Voityuk, Exciton delocalization, charge transfer, and electronic coupling for singlet excitation energy transfer between stacked nucleobases in DNA: an MS-CASPT2 study, J. Chem. Phys., 2014, 140, 095102.

    Article  CAS  PubMed  Google Scholar 

  43. A. Banyasz, T. Douki, R. Improta, T. Gustavsson, D. Onidas, I. Vaya, M. Perron and D. Markovitsi, Electronic excited states responsible for dimer formation upon UV absorption directly by thymine strands: joint experimental and theoretical study, J. Am. Chem. Soc., 2012, 134, 14834–14845.

    Article  CAS  PubMed  Google Scholar 

  44. W. J. Schreier, T. E. Schrader, F. O. Koller, P. Gilch, C. E. Crespo-Hernandez, V. N. Swaminathan, T. Carell, W. Zinth and B. Kohler, Thymine dimerization in DNA is an ultrafast photoreaction, Science, 2007, 315, 625–629.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. L. Liu, B. M. Pilles, J. Gontcharov, D. B. Bucher and W. Zinth, Quantum yield of cyclobutane pyrimidine dimer formation via the triplet channel determined by photosensitization, J. Phys. Chem. B, 2016, 120, 292–298.

    Article  CAS  PubMed  Google Scholar 

  46. S. Mouret, C. Philippe, J. Gracia-Chantegrel, A. Banyasz, S. Karpati, D. Markovitsi and T. Douki, UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?, Org. Biomol. Chem., 2010, 8, 1706–1711.

    Article  CAS  PubMed  Google Scholar 

  47. A. Banyasz, I. Vaya, P. Changenet-Barret, T. Gustavsson, T. Douki and D. Markovitsi, Base pairing enhances fluorescence and favors cyclobutane dimer formation induced upon absorption of uva radiation by DNA, J. Am. Chem. Soc., 2011, 133, 5163–5165.

    Article  CAS  PubMed  Google Scholar 

  48. M. Huix-Rotllant, J. Brazard, R. Improta, I. Burghardt and D. Markovitsi, Stabilization of mixed Frenkel-charge transfer excitons extended across both strands of guanine-cytosine DNA duplexes, J. Phys. Chem. Lett., 2015, 6, 2247–2251.

    Article  CAS  PubMed  Google Scholar 

  49. M. H. Patrick, Studies on thymine-derived UV photoproducts in DNA-I. Formation and biological role of pyrimidine adducts in DNA, Photochem. Photobiol., 1977, 25, 357–372.

    Article  CAS  PubMed  Google Scholar 

  50. A. J. Varghese, Photochemistry of thymidine on ice, Biochemistry, 1970, 9, 4781–4787.

    Article  CAS  PubMed  Google Scholar 

  51. T. Douki and J. Cadet, Individual determination of the yield of the main-UV induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions, Biochemistry, 2001, 40, 2495–2501.

    Article  CAS  PubMed  Google Scholar 

  52. M. H. Patrick and D. M. Gray, Independence of photoproduct formation on DNA conformation, Photochem. Photobiol., 1976, 24, 507–513.

    Article  CAS  PubMed  Google Scholar 

  53. D. G. Su, J. L. Kao, M. L. Gross and J. S. Taylor, Structure determination of an interstrand-type cis-anti cyclobutane thymine dimer produced in high yield by UVB light in an oligodeoxynucleotide at acidic pH, J. Am. Chem. Soc., 2008, 130, 11328–11337.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. T. Douki, Effect of denaturation on the photochemistry of pyrimidine bases in isolated DNA, J. Photochem. Photobiol., B, 2006, 82, 45–52.

    Article  CAS  Google Scholar 

  55. T. Douki, Low ionic strength reduces cytosine photoreactivity in UVC-irradiated isolated DNA, Photochem. Photobiol. Sci., 2006, 5, 1045–1051.

    Article  CAS  PubMed  Google Scholar 

  56. S. Matallana-Surget, J. A. Meador, F. Joux and T. Douki, Effect of the GC content of DNA on the distribution of UVB-induced bipyrimidine photoproducts, Photochem. Photobiol. Sci., 2008, 7, 794–801.

    Article  CAS  PubMed  Google Scholar 

  57. Y. K. Law, R. A. Forties, X. Liu, M. G. Poirier and B. Kohler, Sequence-dependent thymine dimer formation and photoreversal rates in double-stranded DNA, Photochem. Photobiol. Sci., 2013, 12, 1431–1439.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. D. G. E. Lemaire and B. P. Ruzsicska, Quantum yields and secondary photoreactions of the photoproducts of dTpdT, dTpdC and dTpdU, Photochem. Photobiol., 1993, 57, 755–769.

    Article  CAS  PubMed  Google Scholar 

  59. S. Marguet and D. Markovitsi, Time-resolved study of thymine dimer formation, J. Am. Chem. Soc., 2005, 127, 5780–5781.

    Article  CAS  PubMed  Google Scholar 

  60. P. Clivio, J.-L. Fourrey and J. Gasche, DNA photodamage mechanistic studies: characterization of a thietane intermediate in a model reaction relevant to “6-4 lesions”, J. Am. Chem. Soc., 1991, 113, 5481–5483.

    Article  CAS  Google Scholar 

  61. A. Giussani, L. Serrano-Andres, M. Merchan, D. Roca-Sanjuan and M. Garavelli, Photoinduced formation mechanism of the thymine-thymine (6-4) adduct, J. Phys. Chem. B, 2013, 117, 1999–2004.

    Article  CAS  PubMed  Google Scholar 

  62. D. L. Mitchell, J. P. Allison and R. S. Nairn, Immunoprecipitation of pyrimidine(6-4)pyrimidone photoproducts and cyclobutane pyrimidine dimers in UV-irradiated DNA, Radiat. Res., 1990, 123, 299–303.

    Article  CAS  PubMed  Google Scholar 

  63. D. S. Bryan, M. Ransom, B. Adane, K. York and J. R. Hesselberth, High resolution mapping of modified DNA nucleobases using excision repair enzymes, Genome Res., 2014, 24, 1534–1542.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. J. Blais, T. Douki, P. Vigny and J. Cadet, Fluorescence quantum yield determination of pyrimidine (6-4) pyrimidone photoadducts, Photochem. Photobiol., 1994, 59, 404–404.

    Article  Google Scholar 

  65. J.-S. Taylor and M. P. Cohrs, DNA, light, and Dewar pyrimidones: the structure and biological significance of TpT3, J. Am. Chem. Soc., 1987, 109, 2834–2835.

    Article  CAS  Google Scholar 

  66. K. Haiser, B. P. Fingerhut, K. Heil, A. Glas, T. T. Herzog, B. M. Pilles, W. J. Schreier, W. Zinth, R. de Vivie-Riedle and T. Carell, Mechanism of UV-Induced Formation of Dewar Lesions in DNA, Angew. Chem., Int. Ed., 2012, 51, 408–411.

    Article  CAS  Google Scholar 

  67. L. Celewicz, M. Mayer and M. D. Shetlar, The photochemistry of thymidylyl-(3 ‘-5)-5-methyl-2 ‘-deoxycytidine in aqueous solution, Photochem. Photobiol., 2005, 81, 404–418.

    Article  CAS  PubMed  Google Scholar 

  68. T. Douki, L. Voituriez and J. Cadet, Characterization of the (6-4) photoproduct of 2′-deoxycytidylyl-(3′-5′)-thymidine and of its Dewar valence isomer, Photochem. Photobiol., 1991, 27, 293–297.

    Article  Google Scholar 

  69. J.-S. Taylor, H.-L. Lu and J. J. Kotyk, Quantitative conversion of the (6-4) photoproduct of TpdC to its Dewar valence isomer upon exposure to simulated sunlight, Photochem. Photobiol., 1990, 51, 161–167.

    Article  CAS  PubMed  Google Scholar 

  70. D. B. Bucher, B. M. Pilles, T. Carell and W. Zinth, Dewar lesion formation in single- and double-stranded DNA is quenched by neighboring bases, J. Phys. Chem. B, 2015, 119, 8685–8692.

    Article  CAS  PubMed  Google Scholar 

  71. T. Douki, Relative contributions of UVB and UVA to the photoconversion of (6-4) photoproducts into their dewar valence isomers, Photochem. Photobiol., 2016, 92, 587–594.

    Article  CAS  PubMed  Google Scholar 

  72. V. Vendrell-Criado, G. M. Rodriguez-Muniz, M. C. Cuquerella, V. Lhiaubet-Vallet and M. A. Miranda, Photosensitization of DNA by 5-methyl-2-pyrimidone deoxyribonucleoside: (6-4) photoproduct as a possible Trojan horse, Angew. Chem., Int. Ed., 2013, 52, 6476–6479.

    Article  CAS  Google Scholar 

  73. V. Vendrell-Criado, G. M. Rodriguez-Muniz, V. Lhiaubet-Vallet, M. C. Cuquerella and M. A. Miranda, The (6-4) Dimeric Lesion as a DNA Photosensitizer, ChemPhysChem, 2016, 17, 1979–1982.

    Article  CAS  PubMed  Google Scholar 

  74. E. Bignon, H. Gattuso, C. Morell, E. Dumont and A. Monari, DNA Photosensitization by an “Insider”: Photophysics and Triplet Energy Transfer of 5-Methyl-2-pyrimidone Deoxyribonucleoside, Chem. - Eur. J., 2015, 21, 11509–11516.

    Article  CAS  PubMed  Google Scholar 

  75. S. Tommasi, M. F. Denissenko and G. P. Pfeifer, Sunlight induces pyrimidine dimers preferentially at 5-methyl-cytosine bases, Cancer Res., 1997, 57, 4727–4730.

    CAS  PubMed  Google Scholar 

  76. Y.-H. You and G. P. Pfeifer, Involvement of 5-methyl-cytosine in sunlight-induced mutagenesis, J. Mol. Biol., 1999, 293, 493–503.

    Article  CAS  PubMed  Google Scholar 

  77. P. J. Rochette, S. Lacoste, J. P. Therrien, N. Bastien, D. E. Brash and R. Drouin, Influence of cytosine methylation on ultraviolet-induced cyclobutane pyrimidine dimer formation in genomic DNA, Mutat. Res., 2009, 665, 7–13.

    Article  CAS  PubMed  Google Scholar 

  78. T. Douki and J. Cadet, Formation of cyclobutane dimers and (6-4) photoproducts upon far-UV photolysis of 5-methylcytosine containing dinucleoside monophosphates, Biochemistry, 1994, 33, 11942–11950.

    Article  CAS  PubMed  Google Scholar 

  79. T. Douki, J. A. Meador, I. Berard and A. Wack, N4-Methylation of cytosine drastically favors the formation of (6-4) photoproducts in a TCG context, Photochem. Photobiol., 2015, 91, 102–108.

    Article  CAS  PubMed  Google Scholar 

  80. A. Banyasz, L. Esposito, T. Douki, M. Perron, C. Lepori, R. Improta and D. Markovitsi, Effect of C5-methylation of cytosine on the uv-induced reactivity of duplex DNA: Conformational and electronic factors, J. Phys. Chem. B, 2016, 120, 4232–4242.

    Article  CAS  PubMed  Google Scholar 

  81. M. C. Cuquerella, V. Lhiaubet-Vallet, F. Bosca and M. A. Miranda, Photosensitised pyrimidine dimerisation in DNA, Chem. Sci., 2011, 2, 1219–1232.

    Article  CAS  Google Scholar 

  82. F. Bosca, V. Lhiaubet-Vallet, M. C. Cuquerella, J. V. Castell and M. A. Miranda, The triplet energy of thymine in DNA, J. Am. Chem. Soc., 2006, 128, 6318–6319.

    Article  CAS  PubMed  Google Scholar 

  83. M. C. Cuquerella, V. Lhiaubet-Vallet, J. Cadet and M. A. Miranda, Benzophenone photosensitized DNA damage, Acc. Chem. Res., 2012, 45, 1558–1570.

    Article  CAS  PubMed  Google Scholar 

  84. V. Lhiaubet-Vallet, M. C. Cuquerella, J. V. Castell, F. Bosca and M. A. Miranda, Triplet excited fluoroquinolones as mediators for thymine cyclobutane dimer formation in DNA, J. Phys. Chem. B, 2007, 111, 7409–7414.

    Article  CAS  PubMed  Google Scholar 

  85. I. G. Gut, P. D. Wood and R. W. Redmond, Interaction of triplet photosensitizers with nucleotides and DNA In aqueous solution at room temperature, J. Am. Chem. Soc., 1996, 118, 2366–2373.

    Article  CAS  Google Scholar 

  86. T. Douki, I. Berard, A. Wack and S. Andra, Contribution of cytosine-containing cyclobutane dimers to DNA damage produced by photosensitized triplet-triplet energy transfer, Chem. - Eur.J., 2014, 20, 5787–5794.

    Article  CAS  PubMed  Google Scholar 

  87. P. Miro, V. Lhiaubet-Vallet, M. L. Marin and M. A. Miranda, Photosensitized Thymine Dimerization via Delocalized Triplet Excited States, Chem. - Eur. J., 2015, 21, 17051–17056.

    Article  CAS  PubMed  Google Scholar 

  88. S. Premi, S. Wallisch, C. M. Mano, A. B. Weiner, A. Bacchiocchi, K. Wakamatsu, E. J. Bechara, R. Halaban, T. Douki and D. E. Brash, Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure, Science, 2016, 347, 842–847.

    Article  CAS  Google Scholar 

  89. V. Labet, C. Morell, T. Douki, J. Cadet, L. A. Eriksson and A. Grand, Hydrolytic Deamination of 5,6-Dihydrocytosine in a Protic Medium: A Theoretical Study, J. Phys. Chem. A, 2010, 114, 1826–1834.

    Article  CAS  PubMed  Google Scholar 

  90. K. M. Uddin, C. G. Flinn, R. A. Poirier and P. L. Warburton, Comparative computational investigation of the reaction mechanism for the hydrolytic deamination of cytosine, cytosine butane dimer and 5,6-saturated cytosine analogues, Comput. Theor. Chem., 2014, 1027, 91–102.

    Article  CAS  Google Scholar 

  91. T. Douki and J. Cadet, Far-UV photochemistry and photosensitization of 2′-deoxycytidylyl-(3′-5′)-thymidine: isolation and characterization of the main photoproducts, J. Photochem. Photobiol., B, 1992, 15, 199–213.

    Article  CAS  Google Scholar 

  92. K. B. Freeman, P. V. Hariharan and H. E. Johns, The ultraviolet photochemistry of cytidylyl-(3′-5′)-cytidine, J. Mol. Biol., 1965, 13, 833–848.

    Article  CAS  Google Scholar 

  93. D. G. E. Lemaire and B. P. Ruzsicska, Kinetic analysis of the deamination reactions of cyclobutane dimers of thymidylyl-3′,5′-2′-deoxycytidine and 2′-deoxycytidine-3,5′-thymidine, Biochemistry, 1993, 32, 2525–2533.

    Article  CAS  PubMed  Google Scholar 

  94. F.-T. Liu and N. C. Yang, Photochemistry of cytosine derivatives. 1 Photochemistry of Thymidylyl-(3′-5′)-deoxy-cytidine, Biochemistry, 1978, 17, 4865–4876.

    Article  CAS  PubMed  Google Scholar 

  95. W. Peng and B. R. Shaw, Accelerated deamination of cytosine residues in UV-induced cyclobutane dimers leads to CC-TT transitions, Biochemistry, 1996, 35, 10172–10181.

    Article  CAS  PubMed  Google Scholar 

  96. Y. Barak, O. Cohen-fix and Z. Livneh, Deamination of cytosine containing photodimers in UV-irradiated DNA, J. Biol. Chem., 1995, 270, 24174–24179.

    Article  CAS  PubMed  Google Scholar 

  97. I. Tessman, M. A. Kennedy and S. K. Liu, Unusual kinetics of uracil formation in single and double -stranded DNA by deamination of cytosine in cyclobutane pyrimidine dimers, J. Mol. Biol., 1994, 235, 807–812.

    Article  CAS  PubMed  Google Scholar 

  98. P. E. M. Gibbs and C. W. Lawrence, U-U and T-T cyclobutane dimers have different mutational properties, Nucleic Acids Res., 1993, 21, 4059–4065.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. N. Jiang and J.-S. Taylor, In vivo evidence that UV-induced C→T mutations at dipyrimidine sites could result from the replicative bypass of cis-syn, cyclobutane dimers or their deamination products, Biochemistry, 1993, 32, 472–481.

    Article  CAS  PubMed  Google Scholar 

  100. C. W. Lawrence, P. E. M. Gibbs, A. Borden, M. J. Horsfall and B. J. Kilbey, Mutagenesis induced by single UV photoproducts in E. Coli and yeast, Mutat. Res., 1993, 299, 157–163.

    Article  CAS  PubMed  Google Scholar 

  101. J.-S. Taylor, Unraveling the molecular pathway from sunlight to skin cancer, Acc. Chem. Res., 1994, 27, 76–82.

    Article  CAS  Google Scholar 

  102. S. Mouret, M. Charveron, A. Favier, J. Cadet and T. Douki, Differential repair of UVB-induced cyclobutane pyrimidine dimers in cultured human skin cells and whole human skin, DNA Repair, 2008, 7, 704–712.

    Article  CAS  PubMed  Google Scholar 

  103. J.-S. Taylor and C. L. O’Day, Cis-syn thymine dimers are not absolute blocks to replication by DNA polymerase I of Escherichia coli in vitro, Biochemistry, 1990, 29, 1624–1632.

    Article  CAS  PubMed  Google Scholar 

  104. V. J. Cannistraro and J. S. Taylor, Acceleration of 5-methyl-cytosine deamination in cyclobutane dimers by G and its implications for UV-induced C-to-T mutation hotspots, J. Mol. Biol., 2009, 392, 1145–1157.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. H. Ikehata, T. Mori and M. Yamamoto, In Vivo Spectrum of UVC-induced Mutation in Mouse Skin Epidermis May Reflect the Cytosine Deamination Propensity of Cyclobutane Pyrimidine Dimers, Photochem. Photobiol., 2015, 91, 1488–1496.

    Article  CAS  PubMed  Google Scholar 

  106. G. Hendriks, F. Calleja, A. Besaratinia, H. Vrieling, G. P. Pfeifer, L. H. Mullenders, J. G. Jansen and N. de Wind, Transcription-dependent cytosine deamination is a novel mechanism in ultraviolet light-induced mutagenesis, Curr. Biol., 2010, 20, 170–175.

    Article  CAS  PubMed  Google Scholar 

  107. Q. Song, V. J. Cannistraro and J. S. Taylor, Synergistic modulation of cyclobutane pyrimidine dimer photoproduct formation and deamination at a TmCG site over a full helical DNA turn in a nucleosome core particle, Nucleic Acids Res., 2014, 42, 13122–13133.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. V. J. Cannistraro, S. Pondugula, Q. Song and J. S. Taylor, Rapid deamination of cyclobutane pyrimidine dimer photoproducts at TCG sites in a translationally and rotationally positioned nucleosome in vivo, J. Biol. Chem., 2015, 290, 26597–26609.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. J. E. LeClerc, A. Borden and C. W. Lawrence, The thyminethymine pyrimidine-pyrimidone (6-4) ultraviolet light photoproduct is highly mutagenic and specifically induces 3′ thymine-to-cytosine transitions in Escherichia coli, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 9685–9689.

    Article  CAS  PubMed  Google Scholar 

  110. C. A. Smith, M. Wang, N. Jiang, L. Che, X. D. Zhao and J. S. Taylor, Mutation spectra of M13 vectors containing site-specific cis-syn, trans-syn-I, (6-4), and dewar pyrimidone photoproducts of thymidylyl-(3′→5′)-thymidine in Escherichia coli under SOS conditions, Biochemistry, 1996, 35, 4146–4154.

    Article  CAS  PubMed  Google Scholar 

  111. M. J. Horsfall and C. W. Lawrence, Accuracy of replication past the T-C (6-4) adduct, J. Mol. Biol., 1993, 235, 465–471.

    Article  Google Scholar 

  112. S. Courdavault, C. Baudouin, M. Charveron, B. Canghilem, A. Favier, J. Cadet and T. Douki, Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations, DNA Repair, 2005, 4, 836–844.

    Article  CAS  PubMed  Google Scholar 

  113. D. L. Mitchell, C. A. Haipek and J. M. Clarkson, (6-4) Photoproducts are removed from the DNA of UV-irradiated mammalian cells more efficiently than cyclobutane pyrimidine dimers, Mutat. Res., 1985, 143, 109–112.

    Article  CAS  PubMed  Google Scholar 

  114. A. R. Young, C. A. Chadwick, G. I. Harrison, J. L. Hawk, O. Nikaido and C. S. Potten, The in situ repair kinetics of epidermal thymine dimers and 6-4 photoproducts in human skin types I and II, J. Invest. Dermatol., 1996, 106, 1307–1313.

    Article  CAS  PubMed  Google Scholar 

  115. Y. H. You, D. H. Lee, J. H. Yoon, S. Nakajima, A. Yasui and G. P. Pfeifer, Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells, J. Biol. Chem., 2001, 276, 44688–44694.

    Article  CAS  PubMed  Google Scholar 

  116. J. Jans, W. Schul, Y. G. Sert, Y. Rijksen, H. Rebel, A. P. Eker, S. Nakajima, H. van Steeg, F. R. de Gruijl, A. Yasui, J. H. Hoeijmakers and G. T. van der Horst, Powerful skin cancer protection by a CPD-photolyase transgene, Curr. Biol., 2005, 15, 105–115.

    Article  CAS  PubMed  Google Scholar 

  117. J. Hu and S. Adar, The Cartography of UV-induced DNA Damage Formation and DNA Repair, Photochem. Photobiol., 2017, 93, 199–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. V. J. Bykov, J. M. Sheehan, K. Hemminki and A. R. Young, In situ repair of cyclobutane pyrimidine dimers and 6-4 photoproducts in human skin exposed to solar simulating radiation, J. Invest. Dermatol., 1999, 112, 326–631.

    Article  CAS  PubMed  Google Scholar 

  119. J. Hu, O. Adebali, S. Adar and A. Sancar, Dynamic maps of UV damage formation and repair for the human genome, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 6758–6763.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet and T. Douki, Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 13765–13770.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. M. Guven, R. Brem, P. Macpherson, M. Peacock and P. Karran, Oxidative Damage to RPA Limits the Nucleotide Excision Repair Capacity of Human Cells, J. Invest. Dermatol., 2015, 135, 2834–2841.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. B. Montaner, P. O’Donovan, O. Reelfs, C. M. Perrett, X. Zhang, Y. Z. Xu, X. Ren, P. Macpherson, D. Frith and P. Karran, Reactive oxygen-mediated damage to a human DNA replication and repair protein, EMBO Rep., 2007, 8, 1074–1079.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. M. Dardalhon, L. A. Guillo, A. Moysan, P. Vigny and D. Averbeck, Detection of pyrimidine dimers and monoadducts induced by 7-methylpyrido(3,4-c) psoralen and UVA in chinese hamster V79 cells by enzymatic cleavage and high-pressure liquid chromatography, Photochem. Photobiol., 1994, 59, 423–429.

    Article  CAS  PubMed  Google Scholar 

  124. J. Jen, D. L. Mitchell, R. P. Cunningham, C. A. Smith, J. S. Taylor and J. E. Cleaver, Ultraviolet irradiation produces novel endonuclease III-sensitive cytosine photoproducts at dipyrimidine sites, Photochem. Photobiol., 1997, 65, 323–329.

    Article  CAS  PubMed  Google Scholar 

  125. D. L. Mitchell, J. Jen and J. E. Cleaver, Relative induction of cyclobutane dimers and cytosine photohydrates in DNA irradiated in vitro and in vivo, with ultraviolet-C and ultraviolet-B light, Photochem. Photobiol., 1991, 54, 741–746.

    Article  CAS  PubMed  Google Scholar 

  126. D. Perdiz, P. Grof, M. Mezzina, O. Nikaido, E. Moustacchi and E. Sage, Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells. Possible role of Dewar photoproducts in solar mutagenesis, J. Biol. Chem., 2000, 275, 26732–26742.

    Article  CAS  PubMed  Google Scholar 

  127. D. C. Swinton and P. Hanawalt, The fate of pyrimidine dimers in ultraviolet-irradiated chlamydomonas, Photochem. Photobiol., 1973, 17, 361–375.

    Article  CAS  PubMed  Google Scholar 

  128. B. S. Tung, W. G. McGregor, Y.-C. Wang, V. Maher and J. J. McCornick, Comparison of the rate of excision of major UV photoproducts in the strands of the human HPRT, gene in normal and xeroderma pigmentosum variant cells, Mutat. Res., 1996, 632, 65–74.

    Article  Google Scholar 

  129. S. Courdavault, C. Baudouin, S. Sauvaigo, S. Mouret, S. Candéias, M. Charveron, A. Favier, J. Cadet and T. Douki, Unrepaired cyclobutane pyrimidine dimers do not prevent proliferation of UVB-irradiated cultured human fibroblasts, Photochem. Photobiol., 2004, 79, 145–151.

    Article  CAS  PubMed  Google Scholar 

  130. T. Douki, A. Reynaud-Angelin, J. Cadet and E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42, 9221–9226.

    Article  CAS  PubMed  Google Scholar 

  131. C. A. Chadwick, C. S. Potten, O. Nikaido, T. Matsunaga, C. Proby and A. R. Young, The detection of cyclobutane thymine dimers, (6-4) photolesions and the Dewar valence photoisomers in sections of UV-irradiated human skin using specific antibodies, and the demonstration of depth penetration effects, J. Photochem. Photobiol., B, 1995, 28, 163–170.

    Article  CAS  Google Scholar 

  132. A. Besaratinia, T. W. Synold, H.-H. Chen, C. Chang, B. Xi, A. Riggs and G. P. Pfeifer, DNA lesions induced by UVA1 and B radiation in human cells: comparative analyses in the overall genome and in the p53, tumor suppressor gene, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 10058–10063.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. S. E. Freeman, H. Hacham, R. W. Gange, D. J. Maytum, J. C. Sutherland and B. M. Sutherland, Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 5605–5609.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. S. E. Freeman and S. L. Ryan, Wavelength dependence for UV-induced pyrimidine dimer formation in DNA of human peripheral blood lymphocytes, Mutat. Res., 1990, 235, 181–186.

    Article  CAS  PubMed  Google Scholar 

  135. P. J. Rochette, J.-P. Therrien, R. Drouin, D. Perdiz, N. Bastien, E. A. Drobetsky and E. Sage, UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells, Nucleic Acids Res., 2003, 31, 2786–2794.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. A. R. Young, C. S. Potten, O. Nikaido, P. G. Parsons, J. Boenders, J. M. Ramsden and C. A. Chadmick, Human melanocytes and keratinocytes exposed to UVB or UVA in vivo show comparable levels of thymine dimers, J. Invest. Dermatol., 1998, 111, 936–940.

    Article  CAS  PubMed  Google Scholar 

  137. S. Mouret, P. Bogdanowicz, M. J. Haure, N. Castex-Rizzi, J. Cadet, A. Favier and T. Douki, Assessment of the photo protection properties of sunscreens by chromatographic measurement of DNA damage in skin explants, Photochem. Photobiol., 2011, 87, 109–116.

    Article  CAS  PubMed  Google Scholar 

  138. S. Mouret, A. Forestier and T. Douki, The specificity of UVA-induced DNA damage in human melanocytes, Photochem. Photobiol. Sci., 2012, 11, 155–162.

    Article  CAS  PubMed  Google Scholar 

  139. A. P. Schuch, R. D. Galhardo, K. M. de Lima-Bessa, N. J. Schuch and C. F. M. Menck, Development of a DNAdosimeter system for monitoring the effects of solar-ultraviolet radiation, Photochem. Photobiol. Sci., 2009, 8, 111–120.

    Article  CAS  PubMed  Google Scholar 

  140. S. Courdavault, C. Baudouin, M. Charveron, A. Favier, J. Cadet and T. Douki, Larger yield of cyclobutane dimers than 8 oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells, Mutat. Res., 2004, 556, 135–142.

    Article  CAS  PubMed  Google Scholar 

  141. Z. Kuluncsics, D. Perdiz, E. Brulay, B. Muel and E. Sage, Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts, J. Photochem. Photobiol., B, 1999, 49, 71–80.

    Article  CAS  Google Scholar 

  142. H. Ikehata, K. Kawai, J. Komura, K. Sakatsume, L. C. Wang, M. Imai, S. Higashi, O. Nikaido, K. Yamamoto, K. Hieda, M. Watanabe, H. Kasai and T. Ono, UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin, J. Invest. Dermatol., 2008, 128, 2289–2296.

    Article  CAS  PubMed  Google Scholar 

  143. U. P. Kappes, D. Luo, M. Potter, K. Schulmeister and T. M. Rünger, Short- and long-wave light (UVB and UVA) induce similar mutations in human skin cells, J. Invest. Dermatol., 2006, 126, 667–675.

    Article  CAS  PubMed  Google Scholar 

  144. E. Sage, P. M. Girard and S. Francesconi, Unravelling UVA-induced mutagenesis, Photochem. Photobiol. Sci., 2012, 11, 74–80.

    Article  CAS  PubMed  Google Scholar 

  145. H. T. Wang, B. Choi and M. S. Tang, Melanocytes are deficient in repair of oxidative DNA damage and UV-induced photoproducts, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 12180–12185.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. A. Tewari, M. M. Grage, G. I. Harrison, R. Sarkany and A. R. Young, UVA1 is skin deep: molecular and clinical implications, Photochem. Photobiol. Sci., 2013, 12, 95–103.

    Article  CAS  PubMed  Google Scholar 

  147. F. P. Noonan, M. R. Zaidi, A. Wolnicka-Glubisz, M. R. Anver, J. Bahn, A. Wielgus, J. Cadet, T. Douki, S. Mouret, M. A. Tucker, A. Popratiloff, G. Merlino and E. C. De Fabo, Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment, Nat. Commun., 2012, 3, 884.

    Article  CAS  PubMed  Google Scholar 

  148. F. Bourre, G. Renault, P. C. Seawell and A. Sarasin, Distribution of ultraviolet-induced lesions in simian virus 40 DNA, Biochimie, 1985, 67, 293–299.

    Article  CAS  PubMed  Google Scholar 

  149. D. L. Mitchell, J. Jen and J. E. Cleaver, Sequence specificity of cyclobutane pyrimidine dimers in DNA treated with solar (ultraviolet B) radiation, Nucleic Acids Res., 1992, 20, 225–229.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. J.-H. Yoon, C.-S. Lee, T. R. O’Connor, A. Yasui and G. P. Pfeifer, The DNA damage spectrum produced by simulated sunlight, J. Mol. Biol., 2000, 299, 681–693.

    Article  CAS  PubMed  Google Scholar 

  151. P. Mao, M. J. Smerdon, S. A. Roberts and J. J. Wyrick, Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, 9057–9062.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. N. Bastien, J. P. Therrien and R. Drouin, Cytosine containing dipyrimidine sites can be hotspots of cyclobutane pyrimidine dimer formation after UVB exposure, Photochem. Photobiol. Sci., 2013, 12, 1544–1554.

    Article  CAS  PubMed  Google Scholar 

  153. P. H. Clingen, C. F. Arlett, L. Roza, T. Mori, O. Nikaido and M. H. L. Green, Induction of cyclobutane pyrimidine dimers, pyrimidine(6-4)pyrimidone photoproducts, and Dewar valence isomers by natural sunlight in normal human mononuclear cells, Cancer Res., 1995, 55, 2245–2248.

    CAS  PubMed  Google Scholar 

  154. X. S. Qin, S. M. Zhang, M. Zarkovic, Y. Nakatsuru, S. Shimizu, Y. Yamazaki, H. Oda, O. Nikaido and T. Ishikawa, Detection of ultraviolet photoproducts in mouse skin exposed to natural sunlight, Jpn. J. Cancer Res., 1996, 87, 685–690.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. D. Bacqueville, T. Douki, L. Duprat, S. Rebelo-Moreira, B. Guiraud, H. Dromigny, V. Perier, S. Bessou-Touya and H. Duplan, A new hair follicle-derived human epidermal model for the evaluation of sunscreen genoprotection, J. Photochem. Photobiol., B, 2015, 151, 31–38.

    Article  CAS  Google Scholar 

  156. D. W. Brown, L. J. Libertini, C. Suquet, E. W. Small and M. J. Smerdon, Unfolding of nucleosome cores dramatically changes the distribution of ultraviolet photoproducts in DNA, Biochemistry, 1993, 32, 10527–10531.

    Article  CAS  PubMed  Google Scholar 

  157. J. M. Gale, K. A. Nissen and M. J. Smerdon, UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 6644–6648.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. K. Wang and J. A. Taylor, Modulation of cyclobutane thymine photodimer formation in T11-tracts in rotationally phased nucleosome core particles and DNA minicircles, Nucleic Acids Res., 2017, 45, 7031–7041.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. J. M. Gale and M. J. Smerdon, UV induced (6-4) photoproducts are distributed differently than cyclobutane dimers in nucleosome, Photochem. Photobiol., 1990, 51, 411–417.

    Article  CAS  PubMed  Google Scholar 

  160. S. Adar, J. Hu, J. D. Lieb and A. Sancar, Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, E2124–E2133.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. G. P. Pfeifer, R. Drouin, A. D. Riggs and G. P. Holmquist, Binding of transcription factors creates hot-spots for UV photoproducts in vivo, Mol. Cell. Biol., 1992, 12, 1798–1804.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. P. J. Rochette and D. E. Brash, Human telomeres are hypersensitive to UV-induced DNA Damage and refractory to repair, PLoS Genet., 2010, 6, e1000926.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. G. P. Pfeifer, R. Drouin and G. P. Holmquist, Detection of DNA adducts at the DNA sequence level by ligation-mediated PCR, Mutat. Res., 1993, 288, 39–46.

    Article  CAS  PubMed  Google Scholar 

  164. Z. Pan, M. Hariharan, J. D. Arkin, A. S. Jalilov, M. McCullagh, G. C. Schatz and F. D. Lewis, Electron donor-acceptor interactions with flanking purines influence the efficiency of thymine photodimerization, J. Am. Chem. Soc., 2011, 133, 20793–20798.

    Article  CAS  PubMed  Google Scholar 

  165. J. Hu, S. Adar, C. P. Selby, D. C. Liebler and A. Sancar, Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution, Genes Dev., 2015, 29, 948–960.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. D. Surjana, G. M. Halliday and D. L. Damian, Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in human keratinocytes and ex vivo skin, Carcinogenesis, 2013, 34, 1144–1149.

    Article  CAS  PubMed  Google Scholar 

  167. M. Norval, P. Kellett and C. Y. Wright, The incidence and body site of skin cancers in the population groups of South Africa, Photodermatol., Photoimmunol. Photomed., 2014, 30, 262–265.

    Article  Google Scholar 

  168. T. Hore, E. Robinson and R. C. W. Martin, Malignant Melanoma Amongst Maori and New Zealand Europeans, 2000-2004, World J. Surg., 2010, 34, 1788–1792.

    Article  PubMed  Google Scholar 

  169. S. Del Bino and F. Bernerd, Variations in skin colour and the biological consequences of ultraviolet radiation exposure, Br.J. Dermatol., 2013, 169, 33–40.

    Article  CAS  PubMed  Google Scholar 

  170. D. Fajuyigbe and A. R. Young, The impact of skin colour on human photobiological responses, Pigment Cell Melanoma Res., 2016, 29, 607–618.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. S. Del Bino, J. Sok, E. Bessac and F. Bernerd, Relationship between skin response to ultraviolet exposure and skin color type, Pigm. Cell Res., 2006, 19, 606–614.

    Article  CAS  Google Scholar 

  172. F. Rijken, P. L. B. Bruijnzeel, H. V. Weelden and R. C. M. Kiekens, Responses of black and white skin to solar-simulating radiation: Differences in DNA photodamage, infiltrating neutrophils, proteolytic enzymes induced, keratinocyte activation, and IL-10 expression, J. Invest. Dermatol., 2004, 122, 1448–1455.

    Article  CAS  PubMed  Google Scholar 

  173. S. Del Bino, J. Sok and F. Bernerd, Assessment of ultra violet-radiation-induced DNA damage within melanocytes in skin of different constitutive pigmentation, Br.J. Dermatol., 2013, 168, 1120–1123.

    Article  CAS  PubMed  Google Scholar 

  174. S. J. Felton, M. S. Cooke, R. Kift, J. L. Berry, A. R. Webb, P. M. W. Lam, F. R. de Gruijl, A. Vail and L. E. Rhodes, Concurrent beneficial (vitamin D production) and hazardous (cutaneous DNA damage) impact of repeated low-level summer sunlight exposures, Br. J. Dermatol., 2016, 175, 1320–1328.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. S. Mouret, M. T. Leccia, J. L. Bourrain, T. Douki and J. C. Beani, Individual photosensitivity of human skin and UVA-induced pyrimidine dimers in DNA, J. Invest. Dermatol., 2011, 131, 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  176. T. Tadokoro, N. Kobayashi, B. Z. Zmudzka, S. Ito, K. Wakamatsu, Y. Yamaguchi, K. S. Korossy, S. A. Miller, J. Z. Beer and V. J. Hearing, UV-induced DNA damage and melanin content in human skin differing in racial/ethnic origin, FASEBJ., 2003, 17, 1177–1179.

    Article  CAS  Google Scholar 

  177. J. M. Sheehan, N. Cragg, C. A. Chadwick, C. S. Potten and A. R. Young, Repeated ultraviolet exposure affords the same protection against DNA photodamage and erythema in human skin types II and IV but is associated with faster DNA repair in skin type IV, J. Invest. Dermatol., 2002, 118, 825–829.

    Article  CAS  PubMed  Google Scholar 

  178. J. M. Sheehan, C. S. Potten and A. R. Young, Tanning in human skin types II and III offers modest photoprotection against erythema, Photochem. Photobiol., 1998, 68, 588–592.

    Article  CAS  PubMed  Google Scholar 

  179. A. R. Young, C. S. Potten, C. A. Chadwick, G. M. Murphy, J. L. Hawk and A. J. Cohen, Photoprotection and 5-MOP photochemoprotection from UVR-induced DNA damage in humans: the role of skin type, J. Invest. Dermatol., 1991, 97, 942–948.

    Article  CAS  PubMed  Google Scholar 

  180. S. G. Coelho, L. Yin, C. Smuda, A. Mahns, L. Kolbe and V. J. Hearing, Photobiological implications of melanin photoprotection after UVB-induced tanning of human skin but not UVA-induced tanning, Pigment Cell Melanoma Res., 2014, 28, 210–216.

    Article  CAS  Google Scholar 

  181. S. E. Freeman, R. D. Ley and K. D. Ley, Sunscreen protection against UV-induced pyrimidine dimers in DNA of human skin in situ, Photodermatology, 1988, 5, 243–247.

    CAS  PubMed  Google Scholar 

  182. M. C. van Praag, L. Roza, B. W. Boom, C. Out-Luijting, J. B. Henegouwen, B. J. Vermeer and A. M. Mommaas, Determination of the photoprotective efficacy of a topical sunscreen against UVB-induced DNA damage in human epidermis, J. Photochem. Photobiol., B, 1993, 19, 129–134.

    Article  Google Scholar 

  183. A. R. Young, J. M. Sheehan, C. A. Chadwick and C. S. Potten, Protection by ultraviolet A and B sunscreens against in situ dipyrimidine photolesions in human epidermis is comparable to protection against sunburn, J. Invest. Dermatol., 2000, 115, 37–41.

    Article  CAS  PubMed  Google Scholar 

  184. V. Bissonauth, R. Drouin, D. L. Mitchell, M. Rhainds, J. Claveau and M. Rouabhia, The efficacy of a broad-spectrum sunscreen to protect engineered human skin from tissue and DNA damage induced by solar ultraviolet exposure, Clin. Cancer Res., 2000, 6, 4128–4135.

    CAS  PubMed  Google Scholar 

  185. M. Rouabhia, D. L. Mitchell, M. Rhainds, J. Claveau and R. Drouin, A physical sunscreen protects engineered human skin against artificial solar ultraviolet radiation-induced tissue and DNA damage, Photochem. Photobiol. Sci., 2002, 1, 471–477.

    Article  CAS  PubMed  Google Scholar 

  186. S. Arase and E. G. Jung, In vitro evaluation of the photo-protective efficacy of sunscreens against DNA damage by UVB, Photodermatology, 1986, 3, 56–59.

    CAS  PubMed  Google Scholar 

  187. L. Chen, J. Y. Hu and S. Q. Wang, The role of antioxidants in photoprotection: a critical review, J. Am. Acad. Dermatol., 2012, 67, 1013–1024.

    Article  CAS  PubMed  Google Scholar 

  188. M. McVean and D. C. Liebler, Inhibition of UVB induced DNA photodamage in mouse epidermis by topically applied alpha-tocopherol, Carcinogenesis, 1997, 18, 1617–1622.

    Article  CAS  PubMed  Google Scholar 

  189. M. McVean and D. C. Liebler, Prevention of DNA photodamage by vitamin E compounds and sunscreens: roles of ultraviolet absorbance and cellular uptake, Mol. Carcinog., 1999, 24, 169–176.

    Article  CAS  PubMed  Google Scholar 

  190. S. Q. Wang, J. W. Stanfield and U. Osterwalder, In vitro assessments of UVA protection by popular sunscreens available in the United States, J. Am. Acad. Dermatol., 2008, 59, 934–942.

    Article  PubMed  Google Scholar 

  191. C. M. Olsen, L. F. Wilson, A. C. Green, N. Biswas, J. Loyalka and D. C. Whiteman, Prevention of DNA damage in human skin by topical sunscreens, Photodermatol., Photoimmunol. Photomed., 2017, 33, 135–142.

    Article  CAS  Google Scholar 

  192. A. Green, G. Williams, R. Neale, V. Hart, D. Leslie, P. Parsons, G. C. Marks, P. Gaffney, D. Battistutta, C. Frost, C. Lang and A. Russell, Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial, Lancet, 1999, 354, 723–729.

    Article  CAS  PubMed  Google Scholar 

  193. A. C. Green, G. M. Williams, V. Logan and G. M. Strutton, Reduced melanoma after regular sunscreen use: randomized trial follow-up, J. Clin. Oncol., 2011, 29, 257–263.

    Article  CAS  PubMed  Google Scholar 

  194. P. Autier, J. F. Dore, M. S. Cattaruzza, F. Renard, H. Luther, F. Gentiloni-Silverj, E. Zantedeschi, M. Mezzetti, I. Monjaud, M. Andry, J. F. Osborn and A. R. Grivegnee, Sunscreen use, wearing clothes, and number of nevi in 6- to 7-year-old European children. European Organization for Research and Treatment of Cancer Melanoma Cooperative Group, J. Natl. Cancer Inst., 1998, 90, 1873–1880.

    Article  CAS  PubMed  Google Scholar 

  195. R. C. Wachsmuth, F. Turner, J. H. Barrett, R. Gaut, J. A. Randerson-Moor, D. T. Bishop and J. A. Bishop, The effect of sun exposure in determining nevus density in UK adolescent twins, J. Invest. Dermatol., 2005, 124, 56–62.

    Article  CAS  PubMed  Google Scholar 

  196. P. Autier, M. Boniol and J. F. Dore, Sunscreen use and increased duration of intentional sun exposure: still a burning issue, Int.J. Cancer, 2007, 121, 1–5.

    Article  CAS  PubMed  Google Scholar 

  197. C. D. Holman, B. K. Armstrong and P. J. Heenan, Relationship of cutaneous malignant melanoma to individual sunlight-exposure habits, J. Natl. Cancer Inst., 1986, 76, 403–414.

    CAS  PubMed  Google Scholar 

  198. A. Reich, M. Harupa, M. Bury, J. Chrzaszcz and A. Starczewska, Application of sunscreen preparations: a need to change the regulations, Photodermatol., Photoimmunol. Photomed., 2009, 25, 242–244.

    Article  Google Scholar 

  199. R. A. Floyd, J. J. Watson, P. K. Wong, D. H. Altmiller and R. C. Rickard, Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanism of formation, Free Radical Res. Commun., 1986, 1, 163–172.

    Article  CAS  Google Scholar 

  200. T. Bessho, K. Tano, S. Nishmura and H. Kasai, Induction of mutations in mouse FM3A cells by treatment with riboflavin plus visible light and its possible relation with formation of 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) in DNA, Carcinogenesis, 1993, 14, 1069–1071.

    Article  CAS  PubMed  Google Scholar 

  201. F. Yamamoto, S. Nishimura and H. Kasai, Photosensitized formation of 8-hydroxydeoxyguanosine in cellular DNA by riboflavin, Biochem. Biophys. Res. Commun., 1992, 187, 809–813.

    Article  CAS  PubMed  Google Scholar 

  202. J. Cadet, M. Berger, T. Douki and J.-L. Ravanat, Oxidative damage to DNA: formation, measurement and biological significance, Rev. Physiol., Biochem. Pharmacol., 1997, 131, 1–87.

    CAS  Google Scholar 

  203. J. Cadet, T. Douki and J. L. Ravanat, Oxidatively generated damage to the guanine moiety of DNA: Mechanistic aspects and formation in cells, Acc. Chem. Res., 2008, 41, 1075–1083.

    Article  CAS  PubMed  Google Scholar 

  204. J. Cadet, T. Douki and J. L. Ravanat, Oxidatively generated base damage to cellular DNA, Free Radical Biol. Med., 2010, 49, 9–21.

    Article  CAS  Google Scholar 

  205. H. Kasai, Z. Yamaizumi, M. Berger and J. Cadet, Photosensitized formation of 7,8-dihydro-8-oxo-2′-deoxy-guanosine (8-hydroxy-2′-deoxyguanosine) in DNA by riboflavin: a non singlet oxygen mediated reaction, J. Am. Chem. Soc., 1992, 114, 9692–9694.

    Article  CAS  Google Scholar 

  206. J. Cadet and J. R. Wagner, DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation, Cold Spring Harbor Perspect. Biol., 2013, 5(2), a012559.

    Article  CAS  Google Scholar 

  207. P. C. Dedon, The chemical toxicology of 2-deoxyribose oxidation in DNA, Chem. Res. Toxicol., 2008, 21, 206–219.

    Article  PubMed  Google Scholar 

  208. C. van Sonntag, Free-radical-induced DNA damage and its repair, Springer-Verlag, Berlin, Heidelberg, 2006.

    Book  Google Scholar 

  209. J. R. Wagner and J. Cadet, Oxidation reactions of cytosine DNA components by hydroxyl radical and one-electron oxidants in aerated aqueous solutions, Acc. Chem. Res., 2010, 43, 564–571.

    Article  CAS  PubMed  Google Scholar 

  210. V. A. Ivanchenko, A. I. Titschenko, E. I. Budowsky, N. A. Simukova and N. S. Wulfson, The photochemistry of purine components of nucleic acids. I. The efficiency of photolysis of adenine and guanine derivatives in aqueous solution, Nucleic Acids Res., 1975, 2, 1365–1373.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  211. V. A. Ivanchenko, E. I. Budowsky, N. A. Simukova, N. S. Vul’fson, A. I. Tishchenko and D. B. Askerov, The photochemistry of purine components of nucleic acids. II. Photolysis of deoxyguanosine, Nucleic Acids Res., 1977, 4, 955–968.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  212. C. E. Crespo-Hernandez, D. M. Close, L. Gorb and J. Leszczynski, Determination of redox potentials for the Watson-Crick base pairs, DNA nucleosides, and relevant nucleoside analogues, J. Phys. Chem. B, 2007, 111, 5386–5395.

    Article  CAS  PubMed  Google Scholar 

  213. Y. Paukku and G. Hill, Theoretical determination of one-electron redox potentials for DNA bases, base pairs, and stacks, J. Phys. Chem. A, 2011, 115, 4804–4810.

    Article  CAS  PubMed  Google Scholar 

  214. F. Prat, K. N. Houk and C. S. Foote, Effect of guanine stacking on the oxidation of 8-oxoguanine in B-DNA, J. Am. Chem. Soc., 1998, 120, 845–846.

    Article  CAS  Google Scholar 

  215. A. Banyasz, T. M. Ketola, A. Munoz-Losa, S. Rishi, A. Adhikary, M. D. Sevilla, L. Martinez-Fernandez, R. Improta and D. Markovitsi, UV-induced adenine radicals induced in DNA A-tracts: Spectral and dynamical characterization, J. Phys. Chem. Lett., 2016, 7, 3949–3953.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  216. M. Gomez-Mendoza, A. Banyasz, T. Douki, D. Markovitsi and J. L. Ravanat, Direct oxidative damage of naked DNA generated upon absorption of UV radiation by nucleobases, J. Phys. Chem. Lett., 2016, 7, 3945–3948.

    Article  CAS  PubMed  Google Scholar 

  217. A. Banyasz, L. Martinez-Fernandez, C. Balty, M. Perron, T. Douki, R. Improta and D. Markovitsi, Absorption of low-energy uv radiation by human telomere G-quadruplexes generates long-lived guanine radical cations, J. Am. Chem. Soc., 2017, 139, 10561–10568.

    Article  CAS  PubMed  Google Scholar 

  218. J. Cadet, T. Douki and J. L. Ravanat, One-electron oxidation of DNA and inflammation processes, Nat. Chem. Biol., 2006, 2, 348–349.

    Article  CAS  PubMed  Google Scholar 

  219. T. Douki and J. Cadet, Modification of DNA bases by photosensitized one-electron oxidation, Int. J. Radiat. Biol., 1999, 75, 571–581.

    Article  CAS  PubMed  Google Scholar 

  220. L. P. Candeias and S. Steenken, Reaction of HO’ with guanine derivatives in aqueous solution: formation of two different redox-active OH-adduct radicals and their uni-molecular transformation reactions. Properties of G(-H), Chem. - Eur.J., 2000, 6, 475–484.

    Article  CAS  PubMed  Google Scholar 

  221. R. Misiaszek, C. Crean, A. Joffe, N. E. Geacintov and V. Shafirovich, Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair mechanisms via radical trapping, J. Biol. Chem., 2004, 279, 32106–32115.

    Article  CAS  PubMed  Google Scholar 

  222. J. Cadet, M. Berger, G. W. Buchko, P. C. Joshi, S. Raoul and J.-L. Ravanat, 2,2-Diamino-4-[(3,5-di-O-acetyl-2-deoxy-ß-D-erythro-pentofuranosyl)amino]-5-(2H)-oxazolone: a novel and predominant radical oxidation product of 3′,5′-di-O-acetyl-2′-deoxyguanosine, J. Am. Chem. Soc., 1994, 116, 7403–7404.

    Article  CAS  Google Scholar 

  223. Y. Rokhlenko, J. Cadet, N. E. Geacintov and V. Shafirovich, Mechanistic aspects of hydration of guanine radical cations in DNA, J. Am. Chem. Soc., 2014, 136, 5956–5962.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  224. S. Perrier, J. Hau, D. Gasparutto, J. Cadet, A. Favier and J.-L. Ravanat, Characterization of lysine-guanine crosslinks upon one-electron oxidation of a guanine-containing oligonucleotide in the presence of a trilysine peptide, J. Am. Chem. Soc., 2006, 128, 5703–5710.

    Article  CAS  PubMed  Google Scholar 

  225. S. Silerme, L. Bobyk, M. Taverna-Porro, C. Cuier, C. SaintPierre and J. L. Ravanat, DNA-polyamine cross-links generated upon one electron oxidation of DNA, Chem. Res. Toxicol., 2014, 27, 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  226. J. Cadet, J. L. Ravanat, M. TavernaPorro, H. Menoni and D. Angelov, Oxidatively generated complex DNA damage: tandem and clustered lesions, Cancer Lett., 2012, 327, 5–15.

    Article  CAS  PubMed  Google Scholar 

  227. J. Cadet and J. R. Wagner, Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: similarities and differences, Arch. Biochem. Biophys., 2014, 557, 47–54.

    Article  CAS  PubMed  Google Scholar 

  228. C. Crean, Y. Uvaydov, N. E. Geacintov and V. Shafirovich, Oxidation of single-stranded oligonucleotides by carbonate radical anions: generating intrastrand cross-links between guanine and thymine bases separated by cytosines, Nucleic Acids Res., 2008, 36, 742–755.

    Article  CAS  PubMed  Google Scholar 

  229. G. S. Madugundu, J. R. Wagner, J. Cadet, K. Kropachev, B. H. Yun, N. E. Geacintov and V. Shafirovich, Generation of guanine-thymine cross-links in human cells by one-electron oxidation mechanisms, Chem. Res. Toxicol., 2013, 26, 1031–1033.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  230. D. Angelov, A. Spassky, M. Berger and J. Cadet, High-intensity UV laser photolysis of DNA and purine 2′-deoxyribonucleo-sides: Formation of 8-oxopurine damage and oligonucleotide strand cleavage as revealed by HPLC and gel electrophoresis studies, J. Am. Chem. Soc., 1997, 119, 11373–11380.

    Article  CAS  Google Scholar 

  231. T. Douki, D. Angelov and J. Cadet, UV Laser photolysis of DNA: effect of duplex stability on charge-transfer efficiency, J. Am. Chem. Soc., 2001, 123, 11360–11366.

    Article  CAS  PubMed  Google Scholar 

  232. T. Douki, J. L. Ravanat, D. Angelov, J. R. Wagner and J. Cadet, in Long-Range Charge Transfer in DNA I, SpringerVerlag, Berlin, 2004, pp. 1–25.

    Book  Google Scholar 

  233. T. Douki, J.-L. Ravanat, J.-P. Pouget, I. Testart and J. Cadet, Minor contribution of direct ionization to DNA base damage induced by heavy ions, Int. J. Radiat. Biol., 2006, 82, 119–127.

    Article  CAS  PubMed  Google Scholar 

  234. M. Fujitsuka and T. Majima, Charge transfer dynamics in DNA revealed by time-resolved spectroscopy, Chem. Sci., 2017, 8, 1752–1762.

    Article  CAS  PubMed  Google Scholar 

  235. B. Giese, J. Amaudrut, A. K. Kohler, M. Spormann and S. Wessely, Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling, Nature, 2001, 412, 318–320.

    Article  CAS  PubMed  Google Scholar 

  236. C. Dohno, K. Nakatani and I. Saito, Guanine of the third strand of C.G*G triplex serves as an effective hole trap, J. Am. Chem. Soc., 2002, 124, 14580–14585.

    Article  CAS  PubMed  Google Scholar 

  237. J. Cadet, C. Decarroz, S. Y. Wang and W. R. Midden, Mechanisms and products of photosensitized degradation of nucleic-acids and related model compounds, Isr. J. Chem., 1983, 23, 420–429.

    Article  CAS  Google Scholar 

  238. B. Epe, DNA damage spectra induced by photosensitization, Photochem. Photobiol. Sci., 2012, 11, 98–106.

    Article  CAS  PubMed  Google Scholar 

  239. M. S. Baptista, J. Cadet, P. Di Mascio, A. A. Ghogare, A. Greer, M. R. Hamblin, C. Lorente, S. C. Nunez, M. S. Ribeiro, A. H. Thomas, M. Vignoni and T. M. Yoshimura, Type I and type II photosensitized oxidation reactions: Guidelines and mechanistic pathways, Photochem. Photobiol., 2017, 93, 912–919.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  240. C. S. Foote, Definition of type I and type II photosensitized oxidation, Photochem. Photobiol., 1991, 54, 659.

    Article  CAS  PubMed  Google Scholar 

  241. J. Cadet, M. Berger, C. Decarroz, J. R. Wagner, J. E. van Lier, Y. M. Ginot and P. Vigny, Photosensitized reactions of nucleic acids, Biochimie, 1986, 68, 813–834.

    Article  CAS  PubMed  Google Scholar 

  242. J. Cadet, S. Loft, R. Olinski, M. D. Evans, K. Bialkowski, J. Richard Wagner, P. C. Dedon, P. Moller, M. M. Greenberg and M. S. Cooke, Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyri-bose in nucleic acids, Free Radical Res., 2012, 46, 367–381.

    Article  CAS  Google Scholar 

  243. A. Aroun, J. L. Zhong, R. M. Tyrrell and C. Pourzand, Iron, oxidative stress and the example of solar ultraviolet A radiation, Photochem. Photobiol. Sci., 2012, 11, 118–134.

    Article  CAS  PubMed  Google Scholar 

  244. C. Pourzand, R. D. Watkin, J. E. Brown and R. M. Tyrrell, Ultraviolet A radiation induces immediate release of iron in human primary skin fibroblasts: The role of ferritin, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 6751–6756.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  245. B. Kalyanaraman, Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms, Redox Biol., 2013, 1, 244–257.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  246. T. Douki, T. Delatour, F. Paganon and J. Cadet, Measurement of oxidative damage at pyrimidine bases in y-irradiated DNA, Chem. Res. Toxicol., 1996, 9, 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  247. S. Frelon, T. Douki, J.-L. Ravanat, C. Tornabene and J. Cadet, High performance liquid chromatography - tandem mass spectrometry measurement of radiation- induced base damage to isolated and cellular DNA, Chem. Res. Toxicol., 2000, 13, 1002–1010.

    Article  CAS  PubMed  Google Scholar 

  248. F. Samson-Thibault, G. S. Madugundu, S. Gao, J. Cadet and J. R. Wagner, Profiling cytosine oxidation in DNA by LC-MS/MS, Chem. Res. Toxicol., 2012, 25, 1902–1911.

    Article  CAS  PubMed  Google Scholar 

  249. F. Bergeron, F. Auvre, J. P. Radicella and J. L. Ravanat, HO’ radicals induce an unexpected high proportion of tandem base lesions refractory to repair by DNA glycosylases, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 5528–5533.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  250. T. Douki, J. Rivière and J. Cadet, DNA tandem lesions containing 8-oxo-7,8-dihydroguanine and formamido residues arise from intramolecular addition of thymine peroxyl radical to guanine, Chem. Res. Toxicol., 2002, 15, 445–454.

    Article  CAS  PubMed  Google Scholar 

  251. G. S. Madugundu, J. Cadet and J. R. Wagner, Hydroxylradical-induced oxidation of 5-methylcytosine in isolated and cellular DNA, Nucleic Acids Res., 2014, 42, 7450–7460.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  252. C. Dupont, C. Patel, J. L. Ravanat and E. Dumont, Addressing the competitive formation of tandem DNA lesions by a nucleobase peroxyl radical: a DFT-D screening, Org. Biomol. Chem., 2013, 11, 3038–3045.

    Article  CAS  PubMed  Google Scholar 

  253. P. Regulus, B. Duroux, P. A. Bayle, A. Favier, J. Cadet and J.-L. Ravanat, Oxidation of the sugar moiety of DNA by ionizing radiation or bleomycin could induce the formation of a cluster DNA lesion, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 14032–14037.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  254. J. T. Sczepanski, A. C. Jacobs, A. Majumdar and M. M. Greenberg, Scope and mechanism of interstrand cross-link formation by the C4′-oxidized abasic site, J. Am. Chem. Soc., 2009, 131, 11132–11139.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  255. O. Will, E. Gocke, I. Eckert, I. Schulz, M. Pflaum, H. C. Mahler and B. Epe, Oxidative DNA damage and mutations induced by a polar photosensitizer, Ro19-8022, Mutat. Res., 1999, 435, 89–101.

    Article  CAS  PubMed  Google Scholar 

  256. P. Di Mascio, G. R. Martinez, S. Miyamoto, G. E. Ronsein, M. H. Medeiros and J. Cadet, Singlet molecular oxygen: Dusseldorf - Sao Paulo, the Brazilian connection, Arch. Biochem. Biophys., 2016, 595, 161–175.

    Article  CAS  PubMed  Google Scholar 

  257. P. C. Lee and M. A. Rodgers, Laser flash photokinetic studies of rose bengal sensitized photodynamic interactions of nucleotides and DNA, Photochem. Photobiol., 1987, 45, 79–86.

    Article  CAS  PubMed  Google Scholar 

  258. C. Sheu and C. S. Foote, Reactivity toward singlet oxygen of a 7,8-dihydro-8-oxo-guanosine (“8-hydroxyguanosine”) formed by photooxidation of a guanosine derivative, J. Am. Chem. Soc., 1995, 117, 6439–6442.

    Article  CAS  Google Scholar 

  259. C. Sheu and C. S. Foote, Solvent and electronic effects on the reaction of guanosine derivatives with singlet oxygen, J. Org. Chem., 1995, 60, 4498–4503.

    Article  CAS  Google Scholar 

  260. F. Prat, C. C. Hou and C. S. Foote, Determination of the quenching rate constants of singlet oxygen by derivatized nucleosides in nonaqueous solution, J. Am. Chem. Soc., 1997, 119, 5051–5052.

    Article  CAS  Google Scholar 

  261. J.-L. Ravanat, C. Saint-Pierre, P. Di Mascio, G. R. Martinez, M. H. Medeiros and J. Cadet, Damage to isolated DNA mediated by singlet oxygen, Helv. Chim. Acta, 2001, 84, 3702–3709.

    Article  CAS  Google Scholar 

  262. E. Dumont, R. Gruber, E. Bignon, C. Morell, J. Aranda, J. L. Ravanat and I. Tunon, Singlet Oxygen Attack on Guanine: Reactivity and Structural Signature within the B-DNA Helix, Chem. - Eur.J., 2016, 22, 12358–12362.

    Article  CAS  PubMed  Google Scholar 

  263. E. Dumont, R. Gruber, E. Bignon, C. Morell, Y. Moreau, A. Monari and J. L. Ravanat, Probing the reactivity of singlet oxygen with purines, Nucleic Acids Res., 2016, 44, 56–62.

    Article  CAS  PubMed  Google Scholar 

  264. B. Thapa, B. H. Munk, C. J. Burrows and H. B. Schlegel, Computational Study of Oxidation of Guanine by Singlet Oxygen (1 Deltag) and Formation of Guanine:Lysine Cross-Links, Chem. - Eur. J., 2017, 23, 5804–5813.

    Article  CAS  PubMed  Google Scholar 

  265. X. Zou, X. Dai, K. Liu, H. Zhao, D. Song and H. Su, Photophysical and photochemical properties of 4-thioura-cil: time-resolved IR spectroscopy and DFT studies, J. Phys. Chem. B, 2014, 118, 5864–5872.

    Article  CAS  PubMed  Google Scholar 

  266. G. R. Martinez, M. H. Medeiros, J.-L. Ravanat, J. Cadet and P. Di Mascio, [18O]-labeled singlet oxygen as a tool for mechanistic studies of 8-oxo-7,8-dihydroguanine oxidative damage: Detection of spiroiminodihydantoin, imidazolone and oxazolone derivatives, Biol. Chem., 2002, 383, 607–617.

    Article  CAS  PubMed  Google Scholar 

  267. G. R. Martinez, J. L. Ravanat, J. Cadet, M. H. de Medeiros and P. Di Mascio, Spiroiminodihydantoin nucleoside formation from 2′-deoxyguanosine oxidation by [(18)O-labeled] singlet molecular oxygen in aqueous solution, J. Mass Spectrom., 2007, 42, 1326–1332.

    Article  CAS  PubMed  Google Scholar 

  268. J. C. Niles, J. S. Wishnock and S. R. Tannenbaum, Spiroiminodihydantoin is the major product of 8-oxo-7,8-dihydroguanosine reaction with peroxynitrite in the presence of thiols and guanosine photoxidation by methylene blue, Org. Lett., 2001, 3, 963–966.

    CAS  PubMed  Google Scholar 

  269. J. L. Ravanat, G. R. Martinez, M. H. G. Medeiros, P. Di Mascio and J. Cadet, Singlet oxygen oxidation of 2 ‘-deoxyguanosine. Formation and mechanistic insights, Tetrahedron, 2006, 62, 10709–10715.

    Article  CAS  Google Scholar 

  270. C. Pierlot, J. M. Aubry, K. Briviba, H. Sies and P. Di Mascio, Naphthalene endoperoxides as generators of singlet oxygen in biological media, Methods Enzymol., 2000, 319, 3–20.

    Article  CAS  PubMed  Google Scholar 

  271. G. R. Martinez, J. L. Ravanat, M. H. G. Medeiros, J. Cadet and P. Di Mascio, Synthesis of a naphthalene endoperoxide as a source of O-18-labeled singlet oxygen for mechanistic studies, J. Am. Chem. Soc., 2000, 122, 10212–10213.

    Article  CAS  Google Scholar 

  272. C. Sheu and C. S. Foote, Endoperoxide formation in a guanosine derivative, J. Am. Chem. Soc., 1993, 115, 10446–10447.

    Article  CAS  Google Scholar 

  273. R. Gruber, A. Monari and E. Dumont, Stability of the guanine endoperoxide intermediate: a computational challenge for density functional theory, J. Phys. Chem. A, 2014, 118, 11612–11619.

    Article  CAS  PubMed  Google Scholar 

  274. M. S. Cooke, S. Loft, R. Olinski, M. D. Evans, K. Bialkowski, J. R. Wagner, P. C. Dedon, P. Moller, M. M. Greenberg and J. Cadet, Recommendations for standardized description of and nomenclature concerning oxidatively damaged nucleobases in DNA, Chem. Res. Toxicol., 2010, 23, 705–707.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  275. A. M. Fleming and C. J. Burrows, Formation and processing of DNA damage substrates for the hNEIL enzymes, Free Radical Biol. Med., 2017, 107, 35–52.

    Article  CAS  Google Scholar 

  276. Y. Ye, J. G. Muller, W. Luo, C. L. Mayne, A. J. Shallop, A. R. Jones and C. J. Burrows, Formation of 13C-, 15N-, and 18O-labeled guanidinohydantoin from guanosine oxidation with singlet oxygen. Implications for structure and mechanism, J. Am. Chem. Soc., 2003, 125, 13926–13927.

    Article  CAS  PubMed  Google Scholar 

  277. T. P. Devasagayam, S. Steenken, M. S. Obendorf, W. A. Schulz and H. Sies, Formation of 8-hydroxy(deoxy) guanosine and generation of strand breaks at guanine residues in DNA by singlet oxygen, Biochemistry, 1991, 30, 6283–6289.

    Article  CAS  PubMed  Google Scholar 

  278. S. Raoul and J. Cadet, Photosensitized reaction of 8-oxo-7,8-dihydro-2′-deoxyguanosine: identification of 1-(2-deoxy-ß-D-erythro-pentafuranosyl)cyanuric acid as the major singlet oxygen oxidation product, J. Am. Chem. Soc., 1996, 118, 1892–1898.

    Article  CAS  Google Scholar 

  279. J. L. Ravanat, G. Remaud and J. Cadet, Measurement of the main photooxidation products of 2 ‘-deoxyguanosine using chromatographic methods coupled to mass spectrometry, Arch. Biochem. Biophys., 2000, 374, 118–127.

    Article  CAS  PubMed  Google Scholar 

  280. H. Wei, Q. Cai, L. Tian and M. Lebwohl, Tamoxifen reduces endogenous and UV light-induced oxidative damage to DNA, lipid and protein in vitro and in vivo, Carcinogenesis, 1998, 19, 1013–1018.

    Article  CAS  PubMed  Google Scholar 

  281. J. E. Rosen, A. K. Prahalad and G. M. Williams, 8-Oxodeoxyguanosine formation in the DNA of cultured cells after exposure to H2O2 alone or with UVB or UVA irradiation, Photochem. Photobiol., 1996, 64, 117–122.

    Article  CAS  PubMed  Google Scholar 

  282. M. S. Stewart, G. S. Cameron and B. C. Pence, Antioxidant nutrients protect against UVB-induced oxidative damage to DNA of mouse keratinocytes in culture, J. Invest. Dermatol., 1996, 106, 1086–1089.

    Article  CAS  PubMed  Google Scholar 

  283. T. Douki, D. Perdiz, P. Grof, Z. Kulucsics, E. Moustacchi, J. Cadet and E. Sage, Oxidation of guanine in cellular DNA by solar UV radiation: biological role, Photochem. Photobiol., 1999, 70, 184–190.

    Article  CAS  PubMed  Google Scholar 

  284. E. Pelle, X. Huang, T. Mammone, K. Marenus, D. Maes and K. Frenkel, Ultraviolet-B-induced oxidative DNA base damage in primary normal human epidermal keratinocytes and inhibition by a hydroxyl radical scavenger, J. Invest. Dermatol., 2003, 121, 177–183.

    Article  CAS  PubMed  Google Scholar 

  285. G. Garcin, T. Douki, P. E. Stoebner, J. Guesnet, A. Guezennec, J. Martinez, J. Cadet and L. Meunier, Cell surface expression of melanocortin-1 receptor on HaCaT keratinocytes and alpha-melanocortin stimulation do not affect the formation and repair of UVB-induced DNA photoproducts, Photochem. Photobiol. Sci., 2007, 6, 585–593.

    Article  CAS  PubMed  Google Scholar 

  286. C. Kielbassa and B. Epe, DNA damage induced by ultraviolet and visible light and its wavelength dependence, Methods Enzymol., 2000, 319, 436–445.

    Article  CAS  PubMed  Google Scholar 

  287. H. Orimo, Y. Tokura, R. Hino and H. Kasai, Formation of 8-hydroxy-2′-deoxyguanosine in the DNA of cultured human keratinocytes by clinically used doses of narrowband and broadband ultraviolet B and psoralen plus ultraviolet A, Cancer Sci., 2006, 97, 99–105.

    Article  CAS  PubMed  Google Scholar 

  288. S. M. Bishop, M. Malone, D. Phillips, A. W. Parker and C. R. Symons, Singlet oxygen sensitisation by excited state DNA, J. Chem. Soc., Chem. Commun., 1994, 871–872.

    Google Scholar 

  289. T. Mohammad and H. Morrison, Evidence for the photosensitized formation of singlet oxygen by UVB irradiation of 2′-deoxyguanosine 5′-monophosphate, J. Am. Chem. Soc., 1996, 118, 1221–1222.

    Article  CAS  Google Scholar 

  290. J. L. Ravanat, S. Sauvaigo, S. Caillat, G. R. Martinez, M. H. Medeiros, P. Di Mascio, A. Favier and J. Cadet, Singlet oxygen-mediated damage to cellular DNA determined by the comet assay associated with DNA repair enzymes, Biol. Chem., 2004, 385, 17–20.

    Article  CAS  PubMed  Google Scholar 

  291. M. Horikawa-Miura, N. Matsuda, M. Yoshida, Y. Okumura, T. Mori and M. Watanabe, The greater lethality of UVB radiation to cultured human cells is associated with the specific activation of a DNA damage-independent signaling pathway, Radiat. Res., 2007, 167, 655–662.

    Article  CAS  PubMed  Google Scholar 

  292. S. M. Beak, Y. S. Lee and J. A. Kim, NADPH oxidase and cyclooxygenase mediate the ultraviolet B-induced generation of reactive oxygen species and activation of nuclear factor-kappaB in HaCaT human keratinocytes, Biochimie, 2004, 86, 425–429.

    Article  CAS  PubMed  Google Scholar 

  293. H. Wang and I. E. Kochevar, Involvement of UVB-induced reactive oxygen species in TGF-beta biosynthesis and activation in keratinocytes, Free Radical Biol. Med., 2005, 38, 890–897.

    Article  CAS  Google Scholar 

  294. C. V. Suschek, C. Mahotka, O. Schnorr and V. KolbBachofen, UVB radiation-mediated expression of inducible nitric oxide synthase activity and the augmenting role of co-induced TNF-alpha in human skin endothelial cells, J. Invest. Dermatol., 2004, 123, 950–957.

    Article  CAS  PubMed  Google Scholar 

  295. R. Radi, Peroxynitrite, a stealthy biological oxidant, J. Biol. Chem., 2013, 288, 26464–26472.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  296. V. Shafirovich, A. Dourandin, W. Huang and N. E. Geacintov, The carbonate radical is a site-selective oxidizing agent of guanine in double-stranded oligonucleotides, J. Biol. Chem., 2001, 276, 24621–24626.

    Article  CAS  PubMed  Google Scholar 

  297. W. Baumler, J. Regensburger, A. Knak, A. Felgentrager and T. Maisch, UVA and endogenous photosensitizers-the detection of singlet oxygen by its luminescence, Photochem. Photobiol. Sci., 2012, 11, 107–117.

    Article  PubMed  Google Scholar 

  298. J. Cadet, E. Sage and T. Douki, Ultraviolet radiation-mediated damage to cellular DNA, Mutat. Res., 2005, 571, 3–17.

    Article  CAS  PubMed  Google Scholar 

  299. B. Cortat, C. C. M. Garcia, A. Quinet, A. P. Schuch, K. M. de Lima-Bessa and C. F. M. Menck, The relative roles of DNA damage induced by UVA irradiation in human cells, Photochem. Photobiol. Sci., 2013, 12, 1483–1495.

    Article  CAS  PubMed  Google Scholar 

  300. C. Suschek, H. Rothe, K. Fehsel, J. Enczmann and V. KolbBachofen, Induction of a macrophage-like nitric oxide synthase in cultured rat aortic endothelial cells. IL-1 beta-mediated induction regulated by tumor necrosis factor-alpha and IFN-gamma, J. Immunol., 1993, 151, 3283–3291.

    CAS  PubMed  Google Scholar 

  301. A. Valencia and I. E. Kochevar, Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes, J. Invest. Dermatol., 2008, 128, 214–222.

    Article  CAS  PubMed  Google Scholar 

  302. R. W. Redmond, A. Rajadurai, D. Udayakumar, E. V. Sviderskaya and H. Tsao, Melanocytes are selectively vulnerable to UVA-mediated bystander oxidative signaling, J. Invest. Dermatol., 2014, 134, 1083–1090.

    Article  CAS  PubMed  Google Scholar 

  303. J. R. Whiteside and T. J. McMillan, A bystander effect is induced in human cells treated with UVA radiation but not UVB radiation, Radiat. Res., 2009, 171, 204–211.

    Article  CAS  PubMed  Google Scholar 

  304. R. Belli, P. Amerio, L. Brunetti, G. Orlando, P. Toto, G. Proietto, M. Vacca and A. Tulli, Elevated 8-isoprostane levels in basal cell carcinoma and in UVA irradiated skin, Int.J. Immunopathol. Pharmacol., 2005, 18, 497–502.

    Article  CAS  PubMed  Google Scholar 

  305. J. Cadet, T. Douki and J. L. Ravanat, Measurement of oxidatively generated base damage in cellular DNA, Mutat. Res., 2011, 711, 3–12.

    Article  CAS  PubMed  Google Scholar 

  306. E. Kvam and R. M. Tyrrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18, 2379–2384.

    Article  CAS  PubMed  Google Scholar 

  307. E. Kvam and R. M. Tyrrell, The role of melanin in the induction of oxidative DNA base damage by ultraviolet A irradiation of DNA or melanoma cells, J. Invest. Dermatol., 1999, 113, 209–213.

    Article  CAS  PubMed  Google Scholar 

  308. W. G. Wamer and R. R. Wei, In vitro photooxidation of nucleic acids by ultraviolet A radiation, Photochem. Photobiol., 1997, 65, 560–563.

    Article  CAS  PubMed  Google Scholar 

  309. X. S. Zhang, B. S. Rosenstein, Y. Wang, M. Lebwohl, D. M. Mitchell and H. C. Wei, Induction of 8-oxo-7,8-dihydro-2′-deoxyguanosine by ultraviolet radiation in calf thymus DNA and HeLa cells, Photochem. Photobiol., 1997, 65, 119–124.

    Article  CAS  PubMed  Google Scholar 

  310. T. Negishi, K. Kawai, R. Arakawa, S. Higashi, T. Nakamura, M. Watanabe, H. Kasai and K. Fujikawa, Increased levels of 8-hydroxy-2′-deoxyguanosine in Drosophila larval DNA after irradiation with 364 nm laser light but not with X-rays, Photochem. Photobiol., 2007, 83, 658–663.

    Article  CAS  PubMed  Google Scholar 

  311. L. J. Fell, N. D. Paul and T. J. McMillan, Role for non-homologous end-joining in the repair of UVA-induced DNA damage, Int. J. Radiat. Biol., 2002, 78, 1023–1027.

    Article  CAS  PubMed  Google Scholar 

  312. A. Rapp and K. O. Greulich, After double-strand break induction by UV-A, homologous recombination and non-homologous end joining cooperate at the same DSB if both systems are available, J. Cell Sci., 2004, 117, 4935–4945.

    Article  CAS  PubMed  Google Scholar 

  313. K. Wischermann, S. Popp, S. Moshir, K. Scharfetter-Kochanek, M. Wlaschek, F. de Gruijl, W. Hartschuh, R. Greinert, B. Volkmer, A. Faust, A. Rapp, P. Schmezer and P. Boukamp, UVA radiation causes DNA strand breaks, chromosomal aberrations and tumorigenic trans formation in HaCaT skin keratinocytes, Oncogene, 2008, 27, 4269–4280.

    Article  CAS  PubMed  Google Scholar 

  314. E. Sage and N. Shikazono, Radiation-induced clustered DNA lesions: Repair and mutagenesis, Free Radical Biol. Med., 2017, 107, 125–135.

    Article  CAS  Google Scholar 

  315. J. Cadet and T. Douki, Oxidatively generated damage to DNA by UVA radiation in cells and human skin, J. Invest. Dermatol., 2011, 131, 1005–1007.

    Article  CAS  PubMed  Google Scholar 

  316. J. L. Rizzo, J. Dunn, A. Rees and T. M. Runger, No formation of DNA double-strand breaks and no activation of recombination repair with UVA, J. Invest. Dermatol., 2010, 131, 1139–1148.

    Article  CAS  PubMed  Google Scholar 

  317. G. A. Garinis, J. R. Mitchell, M. J. Moorhouse, K. Hanada, H. de Waard, D. Vandeputte, J. Jans, K. Brand, M. Smid, P. J. van der Spek, J. H. Hoeijmakers, R. Kanaar and G. T. van der Horst, Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks, EMBO J., 2005, 24, 3952–3962.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  318. J. L. Ravanat, P. Di Mascio, G. R. Martinez, M. H. Medeiros and J. Cadet, Singlet oxygen induces oxidation of cellular DNA, J. Biol. Chem., 2001, 276, 40601–40604.

    Article  CAS  PubMed  Google Scholar 

  319. A. Jimenez-Banzo, M. L. Sagrista, M. Mora and S. Nonell, Kinetics of singlet oxygen photosensitization in human skin fibroblasts, Free Radical Biol. Med., 2008, 44, 1926–1934.

    Article  CAS  Google Scholar 

  320. R. W. Redmond and I. E. Kochevar, Spatially resolved cellular responses to singlet oxygen, Photochem. Photobiol., 2006, 82, 1178–1186.

    Article  CAS  PubMed  Google Scholar 

  321. N. S. Agar, G. M. Halliday, E. S. C. Barnetson, H. N. Ananthaswamy, M. Wheeler and A. M. Jones, The basal layer in human squamous tumors harbors more UVA than UVB fingerprints mutations: A for UVA in human skin carcinogenensis, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 4954–4959.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  322. G. M. Halliday and J. Cadet, It’s all about position: the basal layer of human epidermis is particularly susceptible to different types of sunlight-induced DNA damage, J. Invest. Dermatol., 2012, 132, 265–267.

    Article  CAS  PubMed  Google Scholar 

  323. E. Wenczl, G. P. Van der Schans, L. Roza, R. M. Kolb, A. J. Timmerman, N. P. Smit, S. Pavel and A. A. Schothorst, (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes, J. Invest. Dermatol., 1998, 111, 678–682.

    Article  CAS  PubMed  Google Scholar 

  324. M. R. Chedekel, P. P. Agin and R. M. Sayre, Photochemistry of pheomelanin - Action spectrum for superoxide production, Photochem. Photobiol., 1980, 31, 553–555.

    Article  CAS  Google Scholar 

  325. O. Chiarelli-Neto, C. Pavani, A. S. Ferreira, A. F. Uchoa, D. Severino and M. S. Baptista, Generation and suppression of singlet oxygen in hair by photosensitization of melanin, Free Radical Biol. Med., 2011, 51, 1195–1202.

    Article  CAS  Google Scholar 

  326. S. Ito, M. Kikuta, S. Koike, G. Szewczyk, M. Sarna, A. Zadlo, T. Sarna and K. Wakamatsu, Roles of reactive oxygen species in UVA-induced oxidation of 5,6-dihydrox-yindole-2-carboxylic acid-melanin as studied by differen tial spectrophotometric method, Pigment Cell Melanoma Res., 2016, 29, 340–351.

    Article  CAS  PubMed  Google Scholar 

  327. G. Szewczyk, A. Zadlo, M. Sarna, S. Ito, K. Wakamatsu and T. Sarna, Aerobic photoreactivity of synthetic eumelanins and pheomelanins: generation of singlet oxygen and superoxide anion, Pigment Cell Melanoma Res., 2016, 29, 669–678.

    Article  CAS  PubMed  Google Scholar 

  328. M. Tada, M. Kohno and Y. Niwano, Scavenging or quenching effect of melanin on superoxide anion and singlet oxygen, J. Clin. Biochem. Nutr., 2010, 46, 224–228.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  329. S. Premi and D. E. Brash, Chemical excitations of electrons: A dark path to melanoma, DNA Repair, 2016, 44, 169–177.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  330. L. Denat, A. L. Kadekaro, L. Marrot, S. A. Leachman and Z. A. Abdel-Malek, Melanocytes as instigators and victims of oxidative stress, J. Invest. Dermatol., 2014, 134, 1512–1518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  331. O. Chiarelli-Neto, A. S. Ferreira, W. K. Martins, C. Pavani, D. Severino, F. Faiao-Flores, S. S. Maria-Engler, E. Aliprandini, G. R. Martinez, P. Di Mascio, M. H. Medeiros and M. S. Baptista, Melanin photosensitization and the effect of visible light on epithelial cells, PLoS One, 2014, 9, e113266.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  332. S. Boiteux, F. Coste and B. Castaing, Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases, Free Radical Biol. Med., 2017, 107, 179–201.

    Article  CAS  Google Scholar 

  333. Y. Hattori-Nakakuki, C. Nishigori, K. Okamoto, S. Imamura, H. Hiai and S. Toyokuni, Formation of 8-hydroxy-2′-deoxyguanosine in epidermis of hairless mice exposed to near-UV, Biochem. Biophys. Res. Commun., 1994, 201, 1132–1139.

    Article  CAS  PubMed  Google Scholar 

  334. A. Besaratinia, S. I. Kim and G. P. Pfeifer, Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells, FASEBJ., 2008, 22, 2379–2392.

    Article  CAS  Google Scholar 

  335. S. Kozmin, G. Slezak, A. Reynaud-Anglin, C. Elie, Y. de Rycke, S. Boiteux and E. Sage, UVA radiation is highly mutagenic in cells that are unable to repair 7,8-dihydro-8-oxoguanine in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 13538–13543.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  336. A. Campalans, R. Amouroux, A. Bravard, B. Epe and J. P. Radicella, UVA irradiation induces relocalisation of the DNA repair protein hOGG1 to nuclear speckles, J. Cell Sci., 2007, 120, 23–32.

    Article  CAS  PubMed  Google Scholar 

  337. A. Javeri, X. X. Huang, F. Bernerd, R. S. Mason and G. M. Halliday, Human 8-oxoguanine-DNA glycosylase 1 protein and gene are expressed more abundantly in the superficial than basal layer of human epidermis, DNA Repair, 2008, 7, 1542–1550.

    Article  CAS  PubMed  Google Scholar 

  338. P. Karran and R. Brem, Protein oxidation, UVA and human DNA repair, DNA Repair, 2016, 44, 178–185.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  339. R. Jansen, U. Osterwalder, S. Q. Wang, M. Burnett and H. W. Lim, Photoprotection: part II. Sunscreen: development, efficacy, and controversies, J. Am. Acad. Dermatol., 2013, 69, 867e1–867e14.

    Article  Google Scholar 

  340. H. W. Lim, M. I. Arellano-Mendoza and F. Stengel, Current challenges in photoprotection, J. Am. Acad. Dermatol., 2017, 76, S91–S99.

    Article  CAS  PubMed  Google Scholar 

  341. A. Kazantzidis, A. Smedley, R. Kift, J. Rimmer, J. L. Berry, L. E. Rhodes and A. R. Webb, A modeling approach to determine how much UV radiation is available across the UK and Ireland for health risk and benefit studies, Photochem. Photobiol. Sci., 2015, 14, 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  342. S. R. Tsai and M. R. Hamblin, Biological effects and medical applications of infrared radiation, J. Photochem. Photobiol., B, 2017, 170, 197–207.

    Article  CAS  Google Scholar 

  343. T. S. C. Poon, R. S. C. Barnetson and G. M. Halliday, Sunlight-induced immunosuppression in humans is initially because of UVB, then UVA, followed by interactive effects, J. Invest. Dermatol., 2005, 125, 840–846.

    Article  CAS  PubMed  Google Scholar 

  344. T. Douki, M. Court, S. Sauvaigo, F. Odin and J. Cadet, Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry, J. Biol. Chem., 2000, 275, 11678–11685.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean Cadet or Thierry Douki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadet, J., Douki, T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci 17, 1816–1841 (2018). https://doi.org/10.1039/c7pp00395a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00395a

Navigation