Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

UTRN on chromosome 6q24 is mutated in multiple tumors

Abstract

Though deletion of the long arm of chromosome 6 is one of the most common aberrations in tumors, its targeted gene(s) has not been convincingly identified. Using a functional screening approach, we found that UTRN (which encodes utrophin, a dystrophin-related protein) at 6q24, when expressed in an antisense orientation, induced cellular transformation, consistent with a tumor suppressor role. Northern blot analysis, semiquantitative reverse transcription–polymerase chain reaction (RT–PCR), and gene expression arrays all showed that UTRN expression was downregulated in primary tumors compared with matched normal tissues. Several UTRN neighbor genes were not affected in some tumors with UTRN downregulation, suggesting that UTRN was specifically targeted. RT–PCR, coupled with an in vitro transcription and translation assay, revealed inactivation mutations in 21/62 breast cancers, 4/20 neuroblastomas and 4/15 malignant melanomas. Most of the mutations were deletions involving one or more exons that led to the truncation of utrophin. Splicing errors were found in two cases, and nonsense mutation in one case. Overexpression of a wild-type UTRN in breast cancer cells inhibited tumor cell growth in vitro and reduced their tumor potential in nude mice. Our studies suggest that UTRN is a candidate tumor suppressor gene.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abe T, Makino N, Furukawa T, Ouyang H, Kimura M, Yatsuoka T et al. (1999). Identification of three commonly deleted regions on chromosome arm 6q in human pancreatic cancer. Genes Chromosomes Cancer 25: 60–64.

    Article  CAS  Google Scholar 

  • Acevedo CM, Henriquez M, Emmert-Buck MR, Chuaqui RF . (2002). Loss of heterozygosity on chromosome arms 3p and 6q in microdissected adenocarcinomas of the uterine cervix and adenocarcinoma in situ. Cancer 94: 793–802.

    Article  Google Scholar 

  • Atkin NB, Jackson Z . (1996). Clonal chromosome changes including a del(6q) in a possible early lymphoma. Cancer Genet Cytogenet 92: 87–89.

    Article  CAS  Google Scholar 

  • Barghorn A, Speel EJ, Farspour B, Saremaslani P, Schmid S, Perren A et al. (2001). Putative tumor suppressor loci at 6q22 and 6q23–q24 are involved in the malignant progression of sporadic endocrine pancreatic tumors. Am J Pathol 158: 1903–1911.

    Article  CAS  Google Scholar 

  • Biroccio A, Leonetti C, Zupi G . (2003). The future of antisense therapy: combination with anticancer treatments. Oncogene 22: 6579–6588.

    Article  CAS  Google Scholar 

  • Blake DJ, Schofield JN, Zuellig RA, Gorecki DC, Phelps SR, Barnard EA et al. (1995). G-utrophin, the autosomal homologue of dystrophin Dp116, is expressed in sensory ganglia and brain. Proc Natl Acad Sci USA 92: 3697–3701.

    Article  CAS  Google Scholar 

  • Brault E, Gautreau A, Lamarine M, Callebaut I, Thomas G, Goutebroze L . (2001). Normal membrane localization and actin association of the NF2 tumor suppressor protein are dependent on folding of its N-terminal domain. J Cell Sci 114: 1901–1912.

    CAS  PubMed  Google Scholar 

  • Chappell SA, Walsh T, Walker RA, Shaw JA . (1997). Loss of heterozygosity at chromosome 6q in preinvasive and early invasive breast carcinomas. Br J Cancer 75: 1324–1329.

    Article  CAS  Google Scholar 

  • Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC, Metzinger L et al. (1997). Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90: 717–727.

    Article  CAS  Google Scholar 

  • Fujioka Y, Taira T, Maeda Y, Tanaka S, Nishihara H, Iguchi-Ariga SM et al. (2001). MM-1, a c-Myc-binding protein, is a candidate for a tumor suppressor in leukemia/lymphoma and tongue cancer. J Biol Chem 276: 45137–45144.

    Article  CAS  Google Scholar 

  • Gutmann DH, Sherman L, Seftor L, Haipek C, Hoang LK, Hendrix M . (1999). Increased expression of the NF2 tumor suppressor gene product, merlin, impairs cell motility, adhesionand spreading. Hum Mol Genet 8: 267–275.

    Article  CAS  Google Scholar 

  • Hoffman PJ, Milliken DB, Gregg LC, Davis RR, Gregg JP . (2004). Molecular characterization of uterine fibroids and its implication for underlying mechanisms of pathogenesis. Fertil Steril 82: 639–649.

    Article  CAS  Google Scholar 

  • Hu J, Schuster AE, Fritsch MK, Schneider DT, Lauer S, Perlman EJ . (2001). Deletion mapping of 6q21-26 and frequency of 1p36 deletion in childhood endodermal sinus tumors by microsatellite analysis. Oncogene 20: 8042–8044.

    Article  CAS  Google Scholar 

  • Huang LW, Garrett AP, Muto MG, Colitti CV, Bell DA, Welch WR et al. (2000). Identification of a novel 9 cM deletion unit on chromosome 6q23–24 in papillary serous carcinoma of the peritoneum. Hum Pathol 31: 367–373.

    Article  CAS  Google Scholar 

  • Jensen RH, Tiirikainen M, You L, Ginzinger D, He B, Uematsu K et al. (2003). Genomic alterations in human mesothelioma including high resolution mapping of common regions of DNA loss in chromosome arm 6q. Anticancer Res 23: 2281–2289.

    CAS  PubMed  Google Scholar 

  • Li L, Cohen SN . (1996). Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85: 319–329.

    Article  CAS  Google Scholar 

  • Mertens F, Johansson B, Hoglund M, Mitelman F . (1997). Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Res 57: 2765–2780.

    CAS  PubMed  Google Scholar 

  • Morris GE, Sedgwick SG, Ellis JM, Pereboev A, Chamberlain JS, Nguyen TM . (1998). An epitope structure for the C-terminal domain of dystrophin and utrophin. Biochemistry 37: 11117–11127.

    Article  CAS  Google Scholar 

  • Moser H . (1984). Duchenne muscular dystrophy: pathogenetic aspects and genetic prevention. Hum Genet 66: 17–40.

    Article  CAS  Google Scholar 

  • Negrini M, Sabbioni S, Possati L, Rattan S, Corallini A, Barbanti-Brodano G et al. (1994). Suppression of tumorigenicity of breast cancer cells by microcell-mediated chromosome transfer: studies on chromosomes 6 and 11. Cancer Res 54: 1331–1336.

    CAS  PubMed  Google Scholar 

  • Noviello C, Courjal F, Theillet C . (1996). Loss of heterozygosity on the long arm of chromosome 6 in breast cancer: possibly four regions of deletion. Clin Cancer Res 2: 1601–1606.

    CAS  PubMed  Google Scholar 

  • Offit K, Louie DC, Parsa NZ, Filippa D, Gangi M, Siebert R et al. (1994). Clinical and morphologic features of B-cell small lymphocytic lymphoma with del(6)(q21q23). Blood 83: 2611–2618.

    CAS  PubMed  Google Scholar 

  • Offit K, Parsa NZ, Gaidano G, Filippa DA, Louie D, Pan D et al. (1993). 6q deletions define distinct clinico-pathologic subsets of non-Hodgkin's lymphoma. Blood 82: 2157–2162.

    CAS  PubMed  Google Scholar 

  • Pearce M, Blake DJ, Tinsley JM, Byth BC, Campbell L, Monaco AP et al. (1993). The utrophin and dystrophin genes share similarities in genomic structure. Hum Mol Genet 2: 1765–1772.

    Article  CAS  Google Scholar 

  • Pozzoli U, Sironi M, Cagliani R, Comi GP, Bardoni A, Bresolin N . (2002). Comparative analysis of the human dystrophin and utrophin gene structures. Genetics 160: 793–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qu XY, Hauptschein RS, Rzhetsky A, Scotto L, Chien MC, Ye X et al. (1998). Analysis of a 69-kb contiguous genomic sequence at a putative tumor suppressor gene locus on human chromosome 6q27. DNA Seq 9: 189–204.

    Article  CAS  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6: 1–6.

    Article  CAS  Google Scholar 

  • Roque L, Rodrigues R, Pinto A, Moura-Nunes V, Soares J . (2003). Chromosome imbalances in thyroid follicular neoplasms: a comparison between follicular adenomas and carcinomas. Genes Chromosomes Cancer 36: 292–302.

    Article  CAS  Google Scholar 

  • Schofield J, Houzelstein D, Davies K, Buckingham M, Edwards YH . (1993). Expression of the dystrophin-related protein (utrophin) gene during mouse embryogenesis. Dev Dyn 198: 254–264.

    Article  CAS  Google Scholar 

  • Theile M, Seitz S, Arnold W, Jandrig B, Frege R, Schlag PM et al. (1996). A defined chromosome 6q fragment (at D6S310) harbors a putative tumor suppressor gene for breast cancer. Oncogene 13: 677–685.

    CAS  PubMed  Google Scholar 

  • Tibiletti MG, Bernasconi B, Furlan D, Bressan P, Cerutti R, Facco C et al. (2001). Chromosome 6 abnormalities in ovarian surface epithelial tumors of borderline malignancy suggest a genetic continuum in the progression model of ovarian neoplasms. Clin Cancer Res 7: 3404–3409.

    CAS  PubMed  Google Scholar 

  • Tibiletti MG, Bernasconi B, Furlan D, Riva C, Trubia M, Buraggi G et al. (1996). Early involvement of 6q in surface epithelial ovarian tumors. Cancer Res 56: 4493–4498.

    CAS  PubMed  Google Scholar 

  • Tibiletti MG, Sessa F, Bernasconi B, Cerutti R, Broggi B, Furlan D et al. (2000). A large 6q deletion is a common cytogenetic alteration in fibroadenomas, pre-malignant lesions, and carcinomas of the breast. Clin Cancer Res 6: 1422–1431.

    CAS  PubMed  Google Scholar 

  • Trent JM, Stanbridge EJ, McBride HL, Meese EU, Casey G, Araujo DE et al. (1990). Tumorigenicity in human melanoma cell lines controlled by introduction of human chromosome 6. Science 247: 568–571.

    Article  CAS  Google Scholar 

  • Wan M, Sun T, Vyas R, Zheng J, Granada E, Dubeau L . (1999). Suppression of tumorigenicity in human ovarian cancer cell lines is controlled by a 2 cM fragment in chromosomal region 6q24–q25. Oncogene 18: 1545–1551.

    Article  CAS  Google Scholar 

  • Welch DR, Chen P, Miele ME, McGary CT, Bower JM, Stanbridge EJ et al. (1994). Microcell-mediated transfer of chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenicity. Oncogene 9: 255–262.

    CAS  PubMed  Google Scholar 

  • Yamada H, Wake N, Fujimoto S, Barrett JC, Oshimura M . (1990). Multiple chromosomes carrying tumor suppressor activity for a uterine endometrial carcinoma cell line identified by microcell-mediated chromosome transfer. Oncogene 5: 1141–1147.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Defense Breast Cancer Research Program (to SX). We are grateful to Dr Glenn E Morris at North East Wales Institute for providing the anti-utrophin antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Xiao.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Huang, J., Zhao, YL. et al. UTRN on chromosome 6q24 is mutated in multiple tumors. Oncogene 26, 6220–6228 (2007). https://doi.org/10.1038/sj.onc.1210432

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210432

Keywords

This article is cited by

Search

Quick links