Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Irradiation-induced G2/M checkpoint response requires ERK1/2 activation

Abstract

Following DNA damage, cells undergo G2/M cell cycle arrest, allowing time for DNA repair. G2/M checkpoint activation involves activation of Wee1 and Chk1 kinases and inhibition of Cdc25A and Cdc25C phosphatases, which results in inhibition of Cdc2 kinase. Results presented in this report indicate that γ-irradiation (IR) exposure of MCF-7 cells resulted in extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation and induction of G2/M arrest. Furthermore, inhibition of ERK1/2 signaling resulted in 85% attenuation in IR-induced G2/M arrest and concomitant diminution of IR-induced activation of ataxia telangiectasia mutated- and rad3-related (ATR), Chk1 and Wee1 kinases as well as phosphorylation of Cdc25A-Thr506, Cdc25C-Ser216 and Cdc2-Tyr15. Moreover, incubation of cells with caffeine, which inhibits ataxia telangiectasia mutated (ATM)/ATR, or transfection of cells with short interfering RNA targeting ATR abrogated IR-induced Chk1 phosphorylation and G2/M arrest but had no effect on IR-induced ERK1/2 activation. In contrast, inhibition of ERK1/2 signaling resulted in marked attenuation in IR-induced ATR activity with little, if any, effect on IR-induced ATM activation. These results implicate IR-induced ERK1/2 activation as an important regulator of G2/M checkpoint response to IR in MCF-7 cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

ATM:

ataxia telangiectasia mutated

ATR:

ATM- and rad3-related

DMSO:

dimethyl sulfoxide

FACS:

fluorescence-activated cell sorting

ERK:

extracellular signal regulated protein kinase

MAPK:

mitogen-activated protein kinase

MEK1/2:

mitogen-activated protein kinase kinase 1 and 2

pERK:

phosphorylated-extracellular signal regulated protein kinase

PI:

propidium iodide

References

  • Abbott DW, Holt JT . (1999). Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J Biol Chem 274: 2732–2742.

    Article  CAS  PubMed  Google Scholar 

  • Ahn JY, Schwarz JK, Piwnica-Worms H, Canman CE . (2000). Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res 60: 5934–5936.

    CAS  PubMed  Google Scholar 

  • Bulavin DV, Higashimoto Y, Demidenko ZN, Meek S, Graves P, Phillips C et al. (2003). Dual phosphorylation controls Cdc25 phosphatases and mitotic entry. Nat Cell Biol 5: 545–551.

    Article  CAS  PubMed  Google Scholar 

  • Chen MS, Ryan CE, Piwnica-Worms H . (2003). Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol 23: 7488–7497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Sanchez Y . (2004). Chk1 in the DNA damage response: conserved roles from yeasts to mammals. DNA Repair (Amsterdam) 3: 1025–1032.

    Article  CAS  Google Scholar 

  • Cui W, Yazlovitskaya EM, Mayo MS, Pelling JC, Persons DL . (2000). Cisplatin-induced response of c-jun N-terminal kinase 1 and extracellular signal--regulated protein kinases 1 and 2 in a series of cisplatin-resistant ovarian carcinoma cell lines. Mol Carcinog 29: 219–228.

    Article  CAS  PubMed  Google Scholar 

  • Dart DA, Adams KE, Akerman I, Lakin ND . (2004). Recruitment of the cell cycle checkpoint kinase ATR to chromatin during S-phase. J Biol Chem 279: 16433–16440.

    Article  CAS  PubMed  Google Scholar 

  • Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S . (2003). MAPK pathways in radiation responses. Oncogene 22: 5885–5896.

    Article  CAS  PubMed  Google Scholar 

  • Graves PR, Lovly CM, Uy GL, Piwnica-Worms H . (2001). Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene 20: 1839–1851.

    Article  CAS  PubMed  Google Scholar 

  • Iliakis G, Wang Y, Guan J, Wang H . (2003). DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22: 5834–5847.

    Article  CAS  PubMed  Google Scholar 

  • Kharbanda S, Saleem A, Datta R, Yuan ZM, Weichselbaum R, Kufe D . (1994). Ionizing radiation induces rapid tyrosine phosphorylation of p34cdc2. Cancer Res 54: 1412–1414.

    CAS  PubMed  Google Scholar 

  • Koundrioukoff S, Polo S, Almouzni G . (2004). Interplay between chromatin and cell cycle checkpoints in the context of ATR/ATM-dependent checkpoints. DNA Repair (Amsterdam) 3: 969–978.

    Article  CAS  Google Scholar 

  • Kristjansdottir K, Rudolph J . (2004). Cdc25 phosphatases and cancer. Chem Biol 11: 1043–1051.

    Article  CAS  PubMed  Google Scholar 

  • Lundgren K, Walworth N, Booher R, Dembski M, Kirschner M, Beach D . (1991). mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 64: 1111–1122.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ . (2000). Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 97: 10389–10394.

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa H, Keng P, Maki C, Yu Y, Little JB . (1998). Absence of a radiation-induced first-cycle G1-S arrest in p53+ human tumor cells synchronized by mitotic selection. Cancer Res 58: 2036–2041.

    CAS  PubMed  Google Scholar 

  • O'Connell MJ, Cimprich KA . (2005). G2 damage checkpoints: what is the turn-on? J Cell Sci 118: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • O'Connell MJ, Raleigh JM, Verkade HM, Nurse P . (1997). Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J 16: 545–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker LL, Atherton-Fessler S, Piwnica-Worms H . (1992). p107wee1 is a dual-specificity kinase that phosphorylates p34cdc2 on tyrosine 15. Proc Natl Acad Sci USA 89: 2917–2921.

    Article  CAS  PubMed  Google Scholar 

  • Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H . (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277: 1501–1505.

    Article  CAS  PubMed  Google Scholar 

  • Rhind N, Furnari B, Russell P . (1997). Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev 11: 504–511.

    Article  CAS  PubMed  Google Scholar 

  • Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM et al. (1999). Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59: 4375–4382.

    CAS  PubMed  Google Scholar 

  • Smits VA, Medema RH . (2001). Checking out the G(2)/M transition. Biochim Biophys Acta 1519: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG et al. (1999). The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99: 577–587.

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B et al. (2002). ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem 277: 12710–12717.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, McGowan CH, Zhao M, He L, Downey JS, Fearns C et al. (2000). Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol Cell Biol 20: 4543–4552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward I, Chen J . (2004). Early events in the DNA damage response. Curr Top Dev Biol 63: 1–35.

    Article  CAS  PubMed  Google Scholar 

  • Wellbrock C, Weisser C, Geissinger E, Troppmair J, Schartl M . (2002). Activation of p59(Fyn) leads to melanocyte dedifferentiation by influencing MKP-1-regulated mitogen-activated protein kinase signaling. J Biol Chem 277: 6443–6454.

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Kastan MB . (2004). Analyzing cell cycle checkpoints after ionizing radiation. Methods Mol Biol 281: 283–292.

    CAS  PubMed  Google Scholar 

  • Xu B, Kim S, Kastan MB . (2001). Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 21: 3445–3450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Haas JP, Kim M, Sgagias MK, Cowan KH . (2002). BRCA1-induced apoptosis involves inactivation of ERK1/2 activities. J Biol Chem 277: 33422–33430.

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Spieker RS, Kim M, Stoeger SM, Cowan KH . (2005). BRCA1-mediated G2/M cell cycle arrest requires ERK1/2 kinase activation. Oncogene 24: 3285–3296.

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Piwnica-Worms H . (2001). ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21: 4129–4139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Watkins JL, Piwnica-Worms H . (2002). Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci USA 99: 14795–14800.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Helen Piwnica-Worms for GST-Cdc25C construct, Dr Junjie Chen for GST-Chk1 construct, Dr Charles A Kuzynski and Linda A Wilkie for assistance on the flow cytometry analysis, Janice Taylor for assistance with Zeiss LSM510 confocal laser scanning microscope and Dr Janina Baranowska-Kortylewicz for assistance on the operation of Mark I 68A Cesium-137 Irradiator. This work was supported by NSF EPSCoR IDeA Award and Nebraska DHHS-LB506 Grant 2007-45 to YY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K H Cowan.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Y., Black, C. & Cowan, K. Irradiation-induced G2/M checkpoint response requires ERK1/2 activation. Oncogene 26, 4689–4698 (2007). https://doi.org/10.1038/sj.onc.1210268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210268

Keywords

This article is cited by

Search

Quick links