Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Telomere maintenance without telomerase

Abstract

Recombination-dependent maintenance of telomeres, first discovered in budding yeast, has revealed an alternative pathway for telomere maintenance that does not require the enzyme telomerase. Experiments conducted in two budding yeasts, S. cerevisiae and K. lactis, have shown recombination can replenish terminal G-rich telomeric tracts that would otherwise shorten in the absence of telomerase, as well as disperse and amplify sub-telomeric repeat elements. Investigation of the genetic requirements for this process have revealed that at least two different recombination pathways, defined by RAD50 and RAD51, can promote telomere maintenance. Although critically short telomeres are very recombinogenic, recombination among telomeres that have only partially shortened in the absence of telomerase can also contribute to telomerase-independent survival. These observations provide new insights into the mechanism(s) by which recombination can restore telomere function in yeast, and suggest future experiments for the investigation of potentially similar pathways in human cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Baird DM, Coleman J, Rosser ZH, Royle NJ . 2000 Am. J. Hum. Genet. 66: 235–250

  • Baird DM, Jeffreys AJ, Royle NJ . 1995 EMBO J. 14: 5433–5443

  • Bernards A, Michels PA, Lincke CR, Borst P . 1983 Nature 303: 592–597

  • Biessmann H, Mason JM . 1997 Chromosoma 106: 63–69

  • Blackburn EH . 2001 Cell 106: 661–673

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE . 1998 Science 279: 349–352

  • Bosco G, Haber JE . 1998 Genetics 150: 1037–1047

  • Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR . 1997 Nat. Med. 3: 1271–1274

  • Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR . 1995 EMBO J. 14: 4240–4248

  • Bucholc M, Park Y, Lustig AJ . 2001 Mol. Cell. Biol. 21: 6559–6573

  • Cerone MA, Londono-Vallejo JA, Bacchetti S . 2001 Hum. Mol. Genet. 10: 1945–1952

  • Chan CS, Tye BK . 1983 J. Mol. Biol. 168: 505–523

  • Chen Q, Ijpma A, Greider CW . 2001 Mol. Cell. Biol. 21: 1819–1827

  • Cohen H, Sinclair DA . 2001 Proc. Natl. Acad. Sci. USA 98: 3174–3179

  • Dunham MA, Neumann AA, Fasching CL, Reddel RR . 2000 Nat. Genet. 26: 447–450

  • Dunn B, Szauter P, Pardue ML, Szostak JW . 1984 Cell 39: 191–201

  • Ford LP, Zou Y, Pongracz K, Gryaznov SM, Shay JW, Wright WE . 2001 J. Biol. Chem. 276: 32198–32203

  • Formosa T, Alberts BM . 1986 J. Biol. Chem. 261: 6107–6118

  • Greider CW . 1996 Annu. Rev. Biochem. 65: 337–365

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T . 1999 Cell 97: 503–514

  • Grobelny JV, Kulp-McEliece M, Broccoli D . 2001 Hum. Mol. Genet. 10: 1953–1961

  • Hackett JA, Feldser DM, Greider CW . 2001 Cell 106: 275–286

  • Horowitz H, Haber JE . 1985 Mol. Cell. Biol. 5: 2369–2380

  • Huang P, Pryde FE, Lester D, Maddison RL, Borts RH, Hickson ID, Louis EJ . 2001 Curr. Biol. 11: 125–129

  • Hughes TR, Evans SK, Weilbaecher RG, Lundblad V . 2000 Curr. Biol. 10: 809–812

  • Johnson FB, Marciniak RA, McVey M, Stewart SA, Hahn WC, Guarente L . 2001 EMBO J. 20: 905–913

  • Kass-Eisler A, Greider CW . 2000 Trends Biochem. Sci. 25: 200–204

  • Kramer KM, Haber JE . 1993 Genes Dev. 7: 2345–2356

  • Kraus E, Leung WY, Haber JE . 2001 Proc. Natl. Acad. Sci. USA 98: 8255–8262

  • Le S, Moore JK, Haber JE, Greider CW . 1999 Genetics 152: 143–152

  • Lendvay TS, Morris DK, Sah J, Balasubramanian B, Lundblad V . 1996 Genetics 144: 1399–1412

  • Li B, Lustig AJ . 1996 Genes Dev. 10: 1310–1326

  • Luder A, Mosig G . 1982 Proc. Natl. Acad. Sci. USA 79: 1101–1105

  • Lundblad V . 2000 Mutat. Res. 451: 227–240

  • Lundblad V, Blackburn EH . 1993 Cell 73: 347–360

  • Lundblad V, Szostak JW . 1989 Cell 57: 633–643

  • Malkova A, Signon L, Schaefer CB, Naylor ML, Theis JF, Newlon CS, Haber JE . 2001 Genes Dev. 15: 1055–1060

  • McEachern MJ, Blackburn EH . 1995 Nature 376: 403–409

  • McEachern MJ, Blackburn EH . 1996 Genes Dev. 10: 1822–1834

  • McEachern MJ, Iyer S . 2001 Mol. Cell. 7: 695–704

  • McEachern MJ, Krauskopf A, Blackburn EH . 2000 Annu. Rev. Genet. 34: 331–358

  • Meltzer PS, Guan XY, Trent JM . 1993 Nature Genet. 4: 252–255

  • Morin GB . 1989 Cell 59: 521–529

  • Morris DK, Lundblad V . 1997 Curr. Biol. 7: 969–976

  • Munoz-Jordan JL, Cross GA, de Lange T, Griffith JD . 2001 EMBO J. 20: 579–588

  • Novick RP . 1998 Trends Biochem. Sci. 23: 434–438

  • Perrem K, Colgin LM, Neumann AA, Yeager TR, Reddel RR . 2001 Mol. Cell. Biol. 21: 3862–3875

  • Reddel RR, Bryan TM, Colgin LM, Perrem KT, Yeager TR . 2001 Radiat. Res. 155: 194–200

  • Rizki A, Lundblad V . 2001 Nature 411: 713–716

  • Sandell LL, Zakian VA . 1993 Cell 75: 729–739

  • Shay JW, Bacchetti S . 1997 Eur. J. Cancer 33: 787–791

  • Signon L, Malkova A, Naylor ML, Klein H, Haber JE . 2001 Mol. Cell. Biol. 21: 2048–2056

  • Singer MS, Gottschling DE . 1994 Science 266: 404–409

  • Teng CS, Chang J, McCowan B, Zakian AV . 2000 Mol. Cell. 6: 947–952

  • Teng SC, Zakian VA . 1999 Mol. Cell. Biol. 19: 8083–8093

  • Walmsley RW, Chan CS, Tye BK, Petes TD . 1984 Nature 310: 157–160

  • Wilkie AO, Higgs DR, Rack KA, Buckle VJ, Spurr NK, Fischel-Ghodsian N, Ceccherini I, Brown WR, Harris PC . 1991 Cell 64: 595–606

  • Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR . 1999 Cancer Res. 59: 4175–4179

  • Zhu XD, Kuster B, Mann M, Petrini JH, Lange T . 2000 Nat. Genet. 25: 347–352

Download references

Acknowledgements

I thank Jim Haber and Jenny Hackett for explaining the subtleties of the genetic requirements of BIR to me, Sara Evans for excellent editorial assistance and figure preparation, and Lou Zumstein, Rachel Cervantes and Erin Pennock for critical reading of the manuscript. Work in the author’s laboratory is supported by grants from the NIH and the Ellison Medical Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Lundblad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundblad, V. Telomere maintenance without telomerase. Oncogene 21, 522–531 (2002). https://doi.org/10.1038/sj.onc.1205079

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205079

Keywords

This article is cited by

Search

Quick links