Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

The Wilms’ tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis

Abstract

The Wilms’ tumor gene WT1 is overexpressed in most of human leukemias regardless of disease subtypes. To characterize the expression pattern of WT1 during normal and neoplastic hematopoiesis, we generated a knock-in reporter green fluorescent protein (GFP) mouse (WT1GFP/+) and assayed for WT1 expression in normal and leukemic hematopoietic cells. In normal hematopoietic cells, WT1 was expressed in none of the long-term (LT) hematopoietic stem cells (HSC) and very few (<1%) of the multipotent progenitor cells. In contrast, in murine leukemias induced by acute myeloid leukemia 1 (AML1)/ETO+TEL/PDGFβR or BCR/ABL, WT1 was expressed in 40.5 or 38.9% of immature c-kit+linSca-1+ (KLS) cells, which contained a subset, but not all, of transplantable leukemic stem cells (LSCs). WT1 expression was minimal in normal fetal liver HSCs and mobilized HSCs, both of which are stimulated for proliferation. In addition, overexpression of WT1 in HSCs did not result in proliferation or expansion of HSCs and their progeny in vivo. Thus, the mechanism by which expansion of WT1-expressing cells occurs in leukemia remains unclear. Nevertheless, our results demonstrate that the WT1GFP/+ mouse is a powerful tool for analyzing WT1-expressing cells, and they highlight the potential of WT1, as a specific therapeutic target that is expressed in LSCs but not in normal HSCs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 1990; 60: 509–520.

    Article  CAS  PubMed  Google Scholar 

  2. Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GA . Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 1990; 343: 774–778.

    Article  CAS  PubMed  Google Scholar 

  3. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 1994; 84: 3071–3079.

    CAS  PubMed  Google Scholar 

  4. Bergmann L, Miething C, Maurer U, Brieger J, Karakas T, Weidmann E et al. High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 1997; 90: 1217–1225.

    CAS  PubMed  Google Scholar 

  5. Miwa H, Beran M, Saunders GF . Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia 1992; 6: 405–409.

    CAS  PubMed  Google Scholar 

  6. Menssen HD, Renkl HJ, Rodeck U, Maurer J, Notter M, Schwartz S et al. Presence of Wilms’ tumor gene (wt1) transcripts and the WT1 nuclear protein in the majority of human acute leukemias. Leukemia 1995; 9: 1060–1067.

    CAS  PubMed  Google Scholar 

  7. King-Underwood L, Renshaw J, Pritchard-Jones K . Mutations in the Wilms’ tumor gene WT1 in leukemias. Blood 1996; 87: 2171–2179.

    CAS  PubMed  Google Scholar 

  8. King-Underwood L, Pritchard-Jones K . Wilms’ tumor (WT1) gene mutations occur mainly in acute myeloid leukemia and may confer drug resistance. Blood 1998; 91: 2961–2968.

    CAS  PubMed  Google Scholar 

  9. Ogawa H, Tamaki H, Ikegame K, Soma T, Kawakami M, Tsuboi A et al. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood 2003; 101: 1698–1704.

    Article  CAS  PubMed  Google Scholar 

  10. Lapillonne H, Renneville A, Auvrignon A, Flamant C, Blaise A, Perot C et al. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol 2006; 24: 1507–1515.

    Article  CAS  PubMed  Google Scholar 

  11. Cilloni D, Gottardi E, De Micheli D, Serra A, Volpe G, Messa F et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia 2002; 16: 2115–2121.

    Article  CAS  PubMed  Google Scholar 

  12. Kreuzer KA, Saborowski A, Lupberger J, Appelt C, Na IK, le Coutre P et al. Fluorescent 5′-exonuclease assay for the absolute quantification of Wilms’ tumour gene (WT1) mRNA: implications for monitoring human leukaemias. Br J Haematol 2001; 114: 313–318.

    Article  CAS  PubMed  Google Scholar 

  13. Ohminami H, Yasukawa M, Fujita S . HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 2000; 95: 286–293.

    CAS  PubMed  Google Scholar 

  14. Gao L, Bellantuono I, Elsasser A, Marley SB, Gordon MY, Goldman JM et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 2000; 95: 2198–2203.

    CAS  PubMed  Google Scholar 

  15. Gaiger A, Reese V, Disis ML, Cheever MA . Immunity to WT1 in the animal model and in patients with acute myeloid leukemia. Blood 2000; 96: 1480–1489.

    CAS  PubMed  Google Scholar 

  16. Oka Y, Udaka K, Tsuboi A, Elisseeva OA, Ogawa H, Aozasa K et al. Cancer immunotherapy targeting Wilms’ tumor gene WT1 product. J Immunol 2000; 164: 1873–1880.

    Article  CAS  PubMed  Google Scholar 

  17. Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 2004; 101: 13885–13890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oka Y, Tsuboi A, Murakami M, Hirai M, Tominaga N, Nakajima H et al. Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis. Int J Hematol 2003; 78: 56–61.

    Article  CAS  PubMed  Google Scholar 

  19. Mailander V, Scheibenbogen C, Thiel E, Letsch A, Blau IW, Keilholz U . Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia 2004; 18: 165–166.

    Article  CAS  PubMed  Google Scholar 

  20. Hosen N, Sonoda Y, Oji Y, Kimura T, Minamiguchi H, Tamaki H et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms’ tumour gene WT1 at levels similar to those in leukaemia cells. Br J Haematol 2002; 116: 409–420.

    Article  CAS  PubMed  Google Scholar 

  21. Haber DA, Sohn RL, Buckler AJ, Pelletier J, Call KM, Housman DE . Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc Natl Acad Sci USA 1991; 88: 9618–9622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D et al. WT-1 is required for early kidney development. Cell 1993; 74: 679–691.

    Article  CAS  PubMed  Google Scholar 

  23. Christensen JL, Weissman IL . Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci USA 2001; 98: 14541–14546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akashi K, Traver D, Miyamoto T, Weissman IL . A clonogenic common myeloid progenitor that give rise to all myeloid lineages. Nature 2000; 404: 193–197.

    Article  CAS  PubMed  Google Scholar 

  25. Grisolano JL, O'Neal J, Cain J, Tomasson MH . An activated receptor tyrosine kinase, TEL/PDGFβR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA 2003; 100: 9506–9511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving p210 bcr/abl-transduced bone marrow. Blood 1998; 92: 3780–3792.

    CAS  PubMed  Google Scholar 

  27. Zhang X, Ren R . Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998; 92: 3829–3840.

    CAS  PubMed  Google Scholar 

  28. Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, Thrasher AJ et al. Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol 1998; 103: 335–342.

    Article  CAS  PubMed  Google Scholar 

  29. Menssen HD, Renkl HJ, Entezami M, Thiel E . Wilms’ tumor gene expression in human CD34+ hematopoietic progenitors during fetal development and early clonogenic growth. Blood 1997; 89: 3486–3487.

    CAS  PubMed  Google Scholar 

  30. Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL . The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci USA 1995; 92: 10302–10306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Passegue E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL . Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 2005; 202: 1599–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spangrude GJ, Heimfeld S, Weissman IL . Purification and characterization of mouse hematopoietic stem cells. Science 1988; 241: 58–62.

    Article  CAS  PubMed  Google Scholar 

  33. Oji Y, Miyoshi S, Maeda H, Hayashi S, Tamaki H, Nakatsuka S et al. Overexpression of the Wilms’ tumor gene WT1 in de novo lung cancers. Int J Cancer 2002; 100: 297–303.

    Article  CAS  PubMed  Google Scholar 

  34. Oji Y, Yamamoto H, Nomura M, Nakano Y, Ikeba A, Nakatsuka S et al. Overexpression of the Wilms’ tumor gene WT1 in colorectal adenocarcinoma. Cancer Sci 2003; 94: 712–717.

    Article  CAS  PubMed  Google Scholar 

  35. Pelletier J, Bruening W, Li FP, Haber DA, Glaser T, Housman DE . WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature 1991; 353: 431–434.

    Article  CAS  PubMed  Google Scholar 

  36. Wagner KD, Wagner N, Vidal VP, Schley G, Wilhelm D, Schedl A et al. The Wilms’ tumor gene Wt1 is required for normal development of the retina. EMBO J 2002; 21: 1398–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wagner KD, Wagner N, Bondke A, Nafz B, Flemming B, Theres H et al. The Wilms’ tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction. FASEB J 2002; 16: 1117–1119.

    Article  CAS  PubMed  Google Scholar 

  38. Moore AW, Schedl A, McInnes L, Doyle M, Hecksher-Sorensen J, Hastie ND . YAC transgenic analysis reveals Wilms’ tumour 1 gene activity in the proliferating coelomic epithelium, developing diaphragm and limb. Mech Dev 1998; 79: 169–184.

    Article  CAS  PubMed  Google Scholar 

  39. Kanato K, Hosen N, Yanagihara M, Nakagata N, Shirakata T, Nakazawa T et al. The Wilms’ tumor gene WT1 is a common marker of progenitor cells in fetal liver. Biochem Biophys Res Commun 2005; 326: 836–843.

    Article  CAS  PubMed  Google Scholar 

  40. Alberta JA, Springett GM, Rayburn H, Natoli TA, Loring J, Kreidberg JA et al. Role of the WT1 tumor suppressor in murine hematopoiesis. Blood 2003; 101: 2570–2574.

    Article  CAS  PubMed  Google Scholar 

  41. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  42. Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B . Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA 1992; 89: 2804–2808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ . Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 1997; 89: 3104–3112.

    CAS  PubMed  Google Scholar 

  44. Miyamoto T, Weissman IL, Akashi K . AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8:21 chromosomal translocation. Proc Natl Acad Sci USA 2000; 97: 7521–7526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Inoue K, Ogawa H, Sonoda Y, Kimura T, Sakabe H, Oka Y et al. Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood 1997; 89: 1405–1412.

    CAS  PubMed  Google Scholar 

  46. Svedberg H, Richter J, Gullberg U . Forced expression of the Wilms tumor 1 (WT1) gene inhibits proliferation of human hematopoietic CD34(+) progenitor cells. Leukemia 2001; 15: 914–922.

    Article  Google Scholar 

  47. Ellisen LW, Carlesso N, Cheng T, Scadden DT, Haber DA . The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J 2001; 17: 1897–1909.

    Article  Google Scholar 

  48. Nishida S, Hosen N, Shirakata T, Kanato K, Yanagihara M, Nakatsuka S et al. AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with the Wilms tumor gene, WT1. Blood 2006; 107: 3303–3312.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M Thomasson (Washington University) for MSCV-TEL/PDGFβR-ires-AML1/ETO, W Pear (University of Pennsylvania) for MSCV-p210BCR/ABL-ires-GFP, G Nolan (Stanford University) for Phoenix virus producer cell line, T Kitamura (Tokyo University, Japan) for Plat-E producer cell line, T Egawa (New York University) for technical advise, R Majeti for critical reading of this paper, L Jerabek for excellent laboratory management, C Muscat for antibody preparation; L Hidalgo, D Escoto and J Dollaga for animal care. We also appreciate E Passegue (University of California, San Francisco) and all the members of Weissman Lab for great discussion and technical help. The research was supported by the NIH (CA55209, CA86017 to ILW). NH was supported by the Japanese Society of Promotion of Science Fellowship, Yamada Memorial Foundation and Mitsubishi Pharma Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Hosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosen, N., Shirakata, T., Nishida, S. et al. The Wilms’ tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia 21, 1783–1791 (2007). https://doi.org/10.1038/sj.leu.2404752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404752

Keywords

This article is cited by

Search

Quick links