Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

Analysis of clonogenic growth in vitro

Abstract

The clonogenic assay measures the capacity of single cells to form colonies in vitro. It is widely used to identify and quantify self-renewing mammalian cells derived from in vitro cultures as well as from ex vivo tissue preparations of different origins. Varying research questions and the heterogeneous growth requirements of individual cell model systems led to the development of several assay principles and formats that differ with regard to their conceptual setup, 2D or 3D culture conditions, optional cytotoxic treatments and subsequent mathematical analysis. The protocol presented here is based on the initial clonogenic assay protocol as developed by Puck and Marcus more than 60 years ago. It updates and extends the 2006 Nature Protocols article by Franken et al. It discusses different strategies and principles to analyze clonogenic growth in vitro and presents the clonogenic assay in a modular protocol framework enabling a diversity of formats and measures to optimize determination of clonogenic growth parameters. We put particular focus on the phenomenon of cellular cooperation and consideration of how this can affect the mathematical analysis of survival data. This protocol is applicable to any mammalian cell model system from which single-cell suspensions can be prepared and which contains at least a small fraction of cells with self-renewing capacity in vitro. Depending on the cell system used, the entire procedure takes ~2–10 weeks, with a total hands-on time of <20 h per biological replicate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview on the different assay formats and assay principles to determine clonogenic growth.
Fig. 2: Comparison of different assay principles to assess clonal cell growth.
Fig. 3: Schematic overview of the different clonogenic assay procedures.
Fig. 4: Scheme depicting the principle of power regression–based clonogenic survival data analysis.
Fig. 5: An example of the assay optimization procedure for a breast cancer cell line grown in adherent 2D growth.
Fig. 6: Colony morphology displays substantial inter- and intra-cell line heterogeneity.
Fig. 7: High colony density limits the reliability of the colony-counting procedure.
Fig. 8: Intra-assay heterogeneity adds complexity to accurate colony counting.
Fig. 9: Examples of clonogenic survival data analysis.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All colony-counting raw data of clonogenic survival experiments in this article (i.e., S-C value pairs of all biological replicates) are provided in the Source Data for Figs. 5 and 9. Some of the clonogenic survival data displayed in Figs. 5 and 9 were taken from ref. 17, as noted in the corresponding figure legends. Schematic graphs in Figs. 2, 4 and 9d were generated from hypothetical datasets. All other data supporting the findings of this study are available within the article and its supplementary information files. Additional information can be provided by the corresponding author upon request.

Code availability

The paper is accompanied by two MS Excel template files for the presented analysis workflows: Supplementary Table 1 for the power regression–based analysis approach and Supplementary Table 2 for PE-based normalization. The R-package CFAcoop is available at https://cran.r-project.org/web/packages/CFAcoop.

References

  1. Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J. & van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315–2319 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Puck, T. T. & Marcus, P. I. Action of x-rays on mammalian cells. J. Exp. Med. 103, 653–666 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Puck, T. T., Marcus, P. I. & Cieciura, S. J. Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J. Exp. Med. 103, 273–283 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Puck, T. T. & Marcus, P. I. A rapid method for viable cell titration and clone production with hela cells in tissue culture: the use of X-irradiated cells to supply conditioning factors. Proc. Natl Acad. Sci. USA 41, 432–437 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rheinwald, J. G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–343 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Phillips, T. M., McBride, W. H. & Pajonk, F. The response of CD24-/low/CD44+ breast cancer-initiating cells to radiation. J. Natl Cancer Inst. 98, 1777–1785 (2006).

    Article  PubMed  Google Scholar 

  8. Wink, D. A. et al. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc. Natl Acad. Sci. U. S. A. 90, 9813–9817 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liebmann, J. E. et al. Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines. Br. J. Cancer 68, 1104–1109 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, Q. et al. UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J. Natl Cancer Inst. 88, 956–965 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Elkind, M. M. & Sutton, H. Radiation response of mammalian cells grown in culture. 1. Repair of X-ray damage in surviving Chinese hamster cells. Radiat. Res. 13, 556–593 (1960).

    Article  CAS  PubMed  Google Scholar 

  12. Huang, P. et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 32, 9796–9809 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Elgendy, M., Sheridan, C., Brumatti, G. & Martin, S. J. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell 42, 23–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Alimova, I. N. et al. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8, 909–915 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Rochat, A., Kobayashi, K. & Barrandon, Y. Location of stem cells of human hair follicles by clonal analysis. Cell 76, 1063–1073 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Sanford, K. K., Earle, W. R. & Likely, G. D. The growth in vitro of single isolated tissue cells. J. Natl Cancer Inst. 9, 229–246 (1948).

    CAS  PubMed  Google Scholar 

  17. Brix, N. et al. The clonogenic assay: robustness of plating efficiency-based analysis is strongly compromised by cellular cooperation. Radiat. Oncol. 15, 248 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Orth, M., Unger, K., Schoetz, U., Belka, C. & Lauber, K. Taxane-mediated radiosensitization derives from chromosomal missegregation on tripolar mitotic spindles orchestrated by AURKA and TPX2. Oncogene 37, 52–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Hess, J. et al. Genomic amplification of Fanconi anemia complementation group A (FancA) in head and neck squamous cell carcinoma (HNSCC): cellular mechanisms of radioresistance and clinical relevance. Cancer Lett. 386, 87–99 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Puck, T. T., Cieciura, S. J. & Fisher, H. W. Clonal growth in vitro of human cells with fibroblastic morphology; comparison of growth and genetic characteristics of single epithelioid and fibroblast-like cells from a variety of human organs. J. Exp. Med. 106, 145–158 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fisher, H. W. & Puck, T. T. On the functions of x-irradiated “feeder” cells in supporting growth of single mammalian cells. Proc. Natl Acad. Sci. USA 42, 900–906 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Terasima, T. & Tolmach, L. J. Changes in x-ray sensitivity of HeLa cells during the division cycle. Nature 190, 1210–1211 (1961).

    Article  CAS  PubMed  Google Scholar 

  23. Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Till, J. E. & McCulloch, C. E. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14, 213–222 (1961).

    Article  CAS  PubMed  Google Scholar 

  26. Becker, A. J., McCulloch, C. E. & Till, J. E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197, 452–454 (1963).

    Article  CAS  PubMed  Google Scholar 

  27. Park, C. H., Bergsagel, D. E. & McCulloch, E. A. Mouse myeloma tumor stem cells: a primary cell culture assay. J. Natl Cancer Inst. 46, 411–422 (1971).

    CAS  PubMed  Google Scholar 

  28. Courtenay, V. D. & Mills, J. An in vitro colony assay for human tumours grown in immune-suppressed mice and treated in vivo with cytotoxic agents. Br. J. Cancer 37, 261–268 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamburger, A. W. & Salmon, S. E. Primary bioassay of human tumor stem cells. Science 197, 461–463 (1977).

    Article  CAS  PubMed  Google Scholar 

  30. Whitlock, C. A. & Witte, O. N. Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc. Natl Acad. Sci. USA 79, 3608–3612 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Matsui, W. et al. Characterization of clonogenic multiple myeloma cells. Blood 103, 2332–2336 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Eliason, J. F., Aapro, M. S., Decrey, D. & Brink-Petersen, M. Non-linearity of colony formation by human tumour cells from biopsy samples. Br. J. Cancer 52, 311–318 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pomp, J. et al. Cell density dependent plating efficiency affects outcome and interpretation of colony forming assays. Radiother. Oncol. 40, 121–125 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Veldwijk, M. R., Zhang, B., Wenz, F. & Herskind, C. The biological effect of large single doses: a possible role for non-targeted effects in cell inactivation. PLoS One 9, e84991 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Adrian, G., Ceberg, C., Carneiro, A. & Ekblad, L. Rescue effect inherited in colony formation assays affects radiation response. Radiat. Res. 189, 44–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Dakhore, S., Nayer, B. & Hasegawa, K. Human pluripotent stem cell culture: current status, challenges, and advancement. Stem Cells Int. 2018, 7396905 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Repetto, G., del Peso, A. & Zurita, J. L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 3, 1125–1131 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Lindhagen, E., Nygren, P. & Larsson, R. The fluorometric microculture cytotoxicity assay. Nat. Protoc. 3, 1364–1369 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Riss, T. L. et al. Cell viability assays. in Assay Guidance Manual (eds. Markossian S. et al.) (Eli Lilly and the National Center for Advancing Translational Sciences, 2004).

  41. Rampersad, S. N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors (Basel) 12, 12347–12360 (2012).

    Article  CAS  Google Scholar 

  42. Lundin, A., Hasenson, M., Persson, J. & Pousette, A. Estimation of biomass in growing cell lines by adenosine triphosphate assay. Methods Enzymol. 133, 27–42 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. Temple, S. Division and differentiation of isolated CNS blast cells in microculture. Nature 340, 471–473 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Davis, A. A. & Temple, S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372, 263–266 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Ploemacher, R. E., van der Sluijs, J. P., Voerman, J. S. & Brons, N. H. An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood 74, 2755–2763 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Sutherland, H. J., Lansdorp, P. M., Henkelman, D. H., Eaves, A. C. & Eaves, C. J. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc. Natl Acad. Sci. USA 87, 3584–3588 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fogg, D. K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Riether, C. et al. Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents. Nat. Med. 26, 1459–1467 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Hu, Y. & Smyth, G. K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Fiebig, H. H., Maier, A. & Burger, A. M. Clonogenic assay with established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur. J. Cancer 40, 802–820 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Borowicz, S. et al. The soft agar colony formation assay. J. Vis. Exp. 92, e51998 (2014).

    Google Scholar 

  53. Leivas, A. et al. Natural killer cells efficiently target multiple myeloma clonogenic tumor cells. Cancer Immunol. Immunother. (in the press).

  54. Kukreja, A. et al. Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J. Exp. Med. 203, 1859–1865 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eke, I., Hehlgans, S., Sandfort, V. & Cordes, N. 3D matrix-based cell cultures: automated analysis of tumor cell survival and proliferation. Int. J. Oncol 48, 313–321 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Nielson, L., Smyth, G. & Greenfield, P. Hemacytometer cell count distributions: implications of non-Poisson behavior. Biotechnol. Prog. 7, 560–563 (1991).

    Article  Google Scholar 

  57. Harnicek, D. et al. Hyperthermia adds to trabectedin effectiveness and thermal enhancement is associated with BRCA2 degradation and impairment of DNA homologous recombination repair. Int. J. Cancer 139, 467–479 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Weiss, E. M. et al. High hydrostatic pressure treatment generates inactivated mammalian tumor cells with immunogeneic features. J. Immunotoxicol. 7, 194–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Preciado, S. et al. The incorporation of extracellular vesicles from mesenchymal stromal cells into CD34+ cells increases their clonogenic capacity and bone marrow lodging ability. Stem Cells 37, 1357–1368 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yao, T. & Asayama, Y. Animal-cell culture media: history, characteristics, and current issues. Reprod. Med. Biol. 16, 99–117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nuryadi, E., Mayang Permata, T. B., Komatsu, S., Oike, T. & Nakano, T. Inter-assay precision of clonogenic assays for radiosensitivity in cancer cell line A549. Oncotarget 9, 13706–13712 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lacerda, L. et al. Simvastatin radiosensitizes differentiated and stem-like breast cancer cell lines and is associated with improved local control in inflammatory breast cancer patients treated with postmastectomy radiation. Stem Cells Transl. Med. 3, 849–856 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dahle, J., Kakar, M., Steen, H. B. & Kaalhus, O. Automated counting of mammalian cell colonies by means of a flat bed scanner and image processing. Cytometry A 60, 182–188 (2004).

    Article  PubMed  Google Scholar 

  64. Choudhry, P. High-throughput method for automated colony and cell counting by digital image analysis based on edge detection. PLoS One 11, e0148469 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Bewes, J. M., Suchowerska, N. & McKenzie, D. R. Automated cell colony counting and analysis using the circular Hough image transform algorithm (CHiTA). Phys. Med. Biol. 53, 5991–6008 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Meijering, E., Carpenter, A. E., Peng, H., Hamprecht, F. A. & Olivo-Marin, J. C. Imagining the future of bioimage analysis. Nat. Biotechnol. 34, 1250–1255 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Segebarth, D. et al. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses. eLife 9, e59780 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Parker, W. S. & Risbey, J. S. False precision, surprise and improved uncertainty assessment. Philos. Trans. A Math. Phys. Eng. Sci. 373, 20140453 (2015).

    PubMed  Google Scholar 

  70. Kellerer, A. M. & Rossi, H. H. A generalized formulation of dual radiation action. Radiat. Res. 75, 471–488 (1978).

    Article  Google Scholar 

  71. Unkel, S., Belka, C. & Lauber, K. On the analysis of clonogenic survival data: statistical alternatives to the linear-quadratic model. Radiat. Oncol. 11, 11 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vembadi, A., Menachery, A. & Qasaimeh, M. A. Cell cytometry: review and perspective on biotechnological advances. Front. Bioeng. Biotechnol. 7, 147 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gerweck, L. E., Dullea, R., Zaidi, S. T., Budach, W. & Hartford, A. Influence of experimental factors on intrinsic radiosensitivity assays at low doses of radiation: cell multiplicity. Radiat. Res. 138, 361–366 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Rockwell, S. Effects of clumps and clusters on survival measurements with clonogenic assays. Cancer Res. 45, 1601–1607 (1985).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft DFG (SFB1321, Project-ID 329628492, P16), the Bundesministerium fuer Bildung und Forschung BMBF (ZiSStrans NUK047A, NUK047C, METABOLiST NUK061C and DKTK) and the International graduate program iTarget (Elitenetzwerk Bayern).

Author information

Authors and Affiliations

Authors

Contributions

N.B. and K.L. conceived and designed the protocol with support from D.S., H.Z. and C.B. N.B. acquired the data. D.S. provided mathematical consultation and developed and programmed the R-package CFAcoop. The MS Excel template files for power regression–based and PE-based survival analysis were generated by N.B. and D.S. N.B. and K.L. wrote the manuscript, and all authors commented on and discussed the final version of the manuscript.

Corresponding author

Correspondence to Kirsten Lauber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Tatsuya Ohno, Daniel Wahl and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Related links

Key references using this protocol

Brix, N. et al. Radiat. Oncol. 15, 248 (2020): https://doi.org/10.1186/s13014-020-01697-y

Orth, M. et al. Oncogene 37, 52 (2018): https://doi.org/10.1038/onc.2017.304

Hess, J. et al. Cancer Lett. 386, 87 (2017): https://doi.org/10.1016/j.canlet.2016.11.014

This protocol is an extension to: Nat. Protoc. 1, 2315–2319 (2006): https://doi.org/10.1038/nprot.2006.339

Supplementary information

Reporting Summary

Supplementary Table 1

MS Excel template file for power regression–based analysis of clonogenic survival

Supplementary Table 2

MS Excel template file for PE-based analysis of clonogenic survival

Source data

Source Data Fig. 5

All colony-counting raw data

Source Data Fig. 9

All colony-counting raw data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brix, N., Samaga, D., Belka, C. et al. Analysis of clonogenic growth in vitro. Nat Protoc 16, 4963–4991 (2021). https://doi.org/10.1038/s41596-021-00615-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00615-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer