Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using TTchem-seq for profiling nascent transcription and measuring transcript elongation

Abstract

The dynamics of transcription can be studied genome wide by high-throughput sequencing of nascent and newly synthesized RNA. 4-thiouridine (4SU) labeling in vivo enables the specific capture of such new transcripts, with 4SU residues being tagged by biotin linkers and captured using streptavidin beads before library production and high-throughput sequencing. To achieve high-resolution profiles of transcribed regions, an RNA fragmentation step before biotin tagging was introduced, in an approach known as transient transcriptome sequencing (TT-seq). We recently introduced a chemical approach for RNA fragmentation that we refer to as TTchem-seq. We describe how TTchem-seq can be used in combination with transient inhibition of early elongation using the reversible CDK9 inhibitor, 5,6-dichlorobenzimidazole 1-β-d-ribofuranoside (DRB), to measure RNA polymerase II (RNAPII) elongation rates in vivo, a technique we call DRB/TTchem-seq. Here, we provide detailed protocols for carrying out TTchem-seq and DRB/TTchem-seq, including computational analysis. Experiments and data analysis can be performed over a period of 10–13 d and require molecular biology and bioinformatics skills.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of TTchem-seq and DRB/TTchem-seq.
Fig. 2: Control for 4SU incorporation, RNA fragmentation and 4SU-RNA pull-down.
Fig. 3: Example of TTchem-seq results.
Fig. 4: Example of DRB/TTchem-seq results.

Similar content being viewed by others

Data availability

All sequencing data are available under GEO no. GSE121826.

Code availability

All code used to analyze TTchem-seq and DRB/TTchem-seq is available at https://github.com/crickbabs/DRB_TT-seq/releases/tag/v1.2 and https://github.com/crickbabs/DRB_TT-seq.

References

  1. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Windhager, L. et al. Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Res. 22, 2031–2042 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dolken, L. et al. High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14, 1959–1972 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Duffy, E. E. et al. Tracking distinct RNA populations using efficient and reversible covalent chemistry. Mol. Cell 59, 858–866 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fuchs, G. et al. 4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation frequencies within cells. Genome Biol. 15, R69 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gregersen, L. H. et al. MOV10 is a 5ʹ to 3ʹ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3ʹ UTRs. Mol. Cell 54, 573–585 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Herzog, V. A. et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods 14, 1198–1204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rabani, M. et al. High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell 159, 1698–1710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwalb, B. et al. TT-seq maps the human transient transcriptome. Science 352, 1225–1228 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  PubMed  CAS  Google Scholar 

  11. Gregersen, L. H. et al. SCAF4 and SCAF8, mRNA anti-terminator proteins. Cell 177, 1797–1813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duffy, E. E., Canzio, D., Maniatis, T. & Simon, M. D. Solid phase chemistry to covalently and reversibly capture thiolated RNA. Nucleic Acids Res. 46, 6996–7005 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duffy, E. E. & Simon, M. D. Enriching s4 U-RNA using methane thiosulfonate (MTS) chemistry. Curr. Protoc. Chem. Biol. 8, 234–250 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Michel, M. et al. TT-seq captures enhancer landscapes immediately after T-cell stimulation. Mol. Syst. Biol. 13, 920 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cleary, M. D., Meiering, C. D., Jan, E., Guymon, R. & Boothroyd, J. C. Biosynthetic labeling of RNA with uracil phosphoribosyltransferase allows cell-specific microarray analysis of mRNA synthesis and decay. Nat. Biotechnol. 23, 232–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Saponaro, M. et al. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 157, 1037–1049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fuchs, G. et al. Simultaneous measurement of genome-wide transcription elongation speeds and rates of RNA polymerase II transition into active elongation with 4sUDRB-seq. Nat. Protoc. 10, 605–618 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Chodosh, L. A., Fire, A., Samuels, M. & Sharp, P. A. 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J. Biol. Chem. 264, 2250–2257 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Marshall, N. F. & Price, D. H. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J. Biol. Chem. 270, 12335–12338 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Churchman, L. S. & Weissman, J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Mayer, A. et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 161, 541–554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nojima, T. et al. Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161, 526–540 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Milligan, L. et al. Strand-specific, high-resolution mapping of modified RNA polymerase II. Mol. Syst. Biol. 12, 874 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Schaughency, P., Merran, J. & Corden, J. L. Genome-wide mapping of yeast RNA polymerase II termination. PLoS Genet. 10, e1004632 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Core, L. J. et al. Defining the status of RNA polymerase at promoters. Cell Rep. 2, 1025–1035 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Riml, C. et al. Osmium-mediated transformation of 4-thiouridine to cytidine as key to study RNA dynamics by sequencing. Angew. Chem. Int. Ed. Engl. 56, 13479–13483 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Schofield, J. A., Duffy, E. E., Kiefer, L., Sullivan, M. C. & Simon, M. D. TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat. Methods 15, 221–225 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh, J. & Padgett, R. A. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16, 1128–1133 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jonkers, I., Kwak, H. & Lis, J. T. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. Elife 3, e02407 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Veloso, A. et al. Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Res. 24, 896–905 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Danko, C. G. et al. Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol. Cell 50, 212–222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zylicz, J. J. et al. The implication of early chromatin changes in X chromosome inactivation. Cell 176, 182–197 e123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gressel, S. et al. CDK9-dependent RNA polymerase II pausing controls transcription initiation. Elife 6, e29736 (2017).

  35. Miller, M. R., Robinson, K. J., Cleary, M. D. & Doe, C. Q. TU-tagging: cell type-specific RNA isolation from intact complex tissues. Nat. Methods 6, 439–441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, T. & van Steensel, B. Comprehensive analysis of nucleocytoplasmic dynamics of mRNA in Drosophila cells. PLoS Genet. 13, e1006929 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Pai, A. A. et al. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture. Elife 6, e32537 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gay, L. et al. Mouse TU tagging: a chemical/genetic intersectional method for purifying cell type-specific nascent RNA. Genes Dev. 27, 98–115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wachutka, L., Caizzi, L., Gagneur, J. & Cramer, P. Global donor and acceptor splicing site kinetics in human cells. Elife 8, e45056 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mukherjee, N. et al. Integrative classification of human coding and noncoding genes through RNA metabolism profiles. Nat. Struct. Mol. Biol. 24, 86–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Burger, K. et al. 4-thiouridine inhibits rRNA synthesis and causes a nucleolar stress response. RNA Biol. 10, 1623–1630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miller, C. et al. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol. Syst. Biol. 7, 458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Munchel, S. E., Shultzaberger, R. K., Takizawa, N. & Weis, K. Dynamic profiling of mRNA turnover reveals gene-specific and system-wide regulation of mRNA decay. Mol. Biol. Cell 22, 2787–2795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun, M. et al. Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation. Genome Res. 22, 1350–1359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marzi, M. J. et al. Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. Genome Res. 26, 554–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Andrews, S. FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

  47. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Hunt, S. E. et al. Ensembl variation resources. Database (Oxford) 2018, https://doi.org/10.1093/database/bay119 (2018).

  49. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mammana, A. H., Extract read count signals from bam files. R package v.1.12.11 https://doi.org/10.18129/B9.bioc.bamsignals (2016).

Download references

Acknowledgements

This work was supported by the Francis Crick Institute (which receives its core funding from Cancer Research UK (FC001166), the UK Medical Research Council (FC001166) and the Wellcome Trust (FC001166)) and by a grant from the European Research Council (agreement 693327 (TRANSDAM)). L.H.G. was supported by the EMBO-LTF program (EMBO ALTF 1026-2014). We thank A. Herlihy for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.H.G. and J.Q.S. conceived the experimental setup. L.H.G. performed all optimization steps and experiments. R.M. developed the bioinformatics pipeline for analysis of TTchem-seq and DRB/TTchem-seq. J.Q.S. supervised various aspects of the work. L.H.G. and J.Q.S wrote the manuscript with assistance from R.M.

Corresponding author

Correspondence to Jesper Q. Svejstrup.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Didier Devys and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

Key reference using this protocol

Gregersen, L. H. et al. Cell 177, 1797–1813.e18 (2019): https://doi.org/10.1016/j.cell.2019.04.038

Integrated supplementary information

Supplementary Figure 1 Control for DRB inhibition and release, as well as proportion of yeast spike-ins in TTchem-seq.

(a) Slot blot of RNA from HEK293 cells treated with 100 μM DRB for 3.5 hrs either without release, or with release for the indicated time period together with 10 min 1 mM 4SU labelling. (b) Bioanalyzer result of fragmented purified 4SU-RNA from cells treated with 100 μM DRB for 3.5 hrs either with or without release for the indicated time. All samples were labelled with 1 mM 4SU for 10 min prior to harvest. Gel like images of the electropherogram are shown on the top. (c) Percent of sequencing reads mapping to the yeast genome when using 1% total yeast RNA as spike-ins.

Supplementary Figure 2 Protocol optimization.

(a) Increasing treatment time of total RNA with sodium hydroxide (0.167 M) results in decreasing RNA fragment size. 1.2% denaturing TBE gel. (b) Bioanalyzer results comparing Qiagen minElute RNA clean-up of 4SU-RNA after streptavidin pull-out using the recommended protocol which selects for RNA > 200 nt or the modified protocol using an increased volume of ethanol.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gregersen, L.H., Mitter, R. & Svejstrup, J.Q. Using TTchem-seq for profiling nascent transcription and measuring transcript elongation. Nat Protoc 15, 604–627 (2020). https://doi.org/10.1038/s41596-019-0262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0262-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing