Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer

Abstract

Epigenetic dysregulation is a common feature of most cancers, often occurring directly through alteration of epigenetic machinery. Over the last several years, a new generation of drugs directed at epigenetic modulators have entered clinical development, and results from these trials are now being disclosed. Unlike first-generation epigenetic therapies, these new agents are selective, and many are targeted to proteins which are mutated or translocated in cancer. This review will provide a summary of the epigenetic modulatory agents currently in clinical development and discuss the opportunities and challenges in their development. As these drugs advance in the clinic, drug discovery has continued with a focus on both novel and existing epigenetic targets. We will provide an overview of these efforts and the strategies being employed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immuno-oncology mechanisms targeted by epigenetic therapies in the clinic.
Fig. 2: Strategies for combining epigenetic modulatory drugs.

Similar content being viewed by others

References

  1. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Dubuc, A. M. et al. Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathol. 125, 373–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Fontebasso, A. M. et al. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol. 125, 659–669 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 43, 875–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones, D. T. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, J. H. et al. Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer. Genome Res. 21, 1028–1041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Le Gallo, M. et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat. Genet. 44, 1310–1315 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lee, W. et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat. Genet. 46, 1227–1232 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zang, Z. J. et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 44, 570–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Pfister, S. X. & Ashworth, A. Marked for death: targeting epigenetic changes in cancer. Nat. Rev. Drug Discov. 16, 241–263 (2017).

  14. Jones, P. A. & Taylor, S. M. Cellular differentiation, cytidine analogs and DNA methylation. Cell 20, 85–93 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Constantinides, P. G., Taylor, S. M. & Jones, P. A. Phenotypic conversion of cultured mouse embryo cells by aza pyrimidine nucleosides. Dev. Biol. 66, 57–71 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. Sorm, F. & Veselý, J. Effect of 5-aza-2′-deoxycytidine against leukemic and hemopoietic tissues in AKR mice. Neoplasma 15, 339–343 (1968).

    CAS  PubMed  Google Scholar 

  17. Yoshida, M., Nomura, S. & Beppu, T. Effects of trichostatins on differentiation of murine erythroleukemia cells. Cancer Res. 47, 3688–3691 (1987).

    CAS  PubMed  Google Scholar 

  18. Vidali, G., Boffa, L. C., Bradbury, E. M. & Allfrey, V. G. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proc. Natl. Acad. Sci. USA 75, 2239–2243 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stahl, M., Gore, S. D., Vey, N. & Prebet, T. Lost in translation? Ten years of development of histone deacetylase inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Expert. Opin. Investig. Drugs 25, 307–317 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Chitambar, C. R. et al. Evaluation of continuous infusion low-dose 5-azacytidine in the treatment of myelodysplastic syndromes. Am. J. Hematol. 37, 100–104 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Issa, J. P. et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103, 1635–1640 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Issa, J. P. & Kantarjian, H. M. Targeting DNA methylation. Clin. Cancer Res. 15, 3938–3946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Whittaker, S. J. et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 28, 4485–4491 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Duvic, M. et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109, 31–39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prebet, T. et al. Prolonged administration of azacitidine with or without entinostat for myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia-related changes: results of the US Leukemia Intergroup trial E1905. J. Clin. Oncol. 32, 1242–1248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Silverman, L. R. et al. A phase II trial of epigenetic modulators vorinostat in combination with azacitidine (azaC) in patients with the myelodysplastic syndrome (MDS): initial results of Study 6898 of the New York Cancer Consortium. Blood 122, 386 (2013).

    Article  CAS  Google Scholar 

  27. Tan, P. et al. Dual epigenetic targeting with panobinostat and azacitidine in acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood Cancer J. 4, e170 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Linnekamp, J. F., Butter, R., Spijker, R., Medema, J. P. & van Laarhoven, H. W. M. Clinical and biological effects of demethylating agents on solid tumours - a systematic review. Cancer Treat. Rev. 54, 10–23 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Suraweera, A., O’Byrne, K. J. & Richard, D. J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front. Oncol. 8, 92 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wiegand, K. C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 41, 521–523 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Nikoloski, G. et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet. 42, 665–667 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Chiba, S. Dysregulation of TET2 in hematologic malignancies. Int. J. Hematol. 105, 17–22 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Russler-Germain, D. A. et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 25, 442–454 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parikh, S. A. et al. NUT midline carcinoma: an aggressive intrathoracic neoplasm. J. Thorac. Oncol. 8, 1335–1338 (2013).

    Article  PubMed  Google Scholar 

  38. Kuo, A. J. et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol. Cell 44, 609–620 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Agrawal, K., Das, V., Vyas, P. & Hajdúch, M. Nucleosidic DNA demethylating epigenetic drugs - a comprehensive review from discovery to clinic. Pharmacol. Ther. 188, 45–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Fenaux, P. et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J. Clin. Oncol. 28, 562–569 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Fenaux, P. et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 10, 223–232 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lübbert, M. et al. Decitabine improves progression-free survival in older high-risk MDS patients with multiple autosomal monosomies: results of a subgroup analysis of the randomized phase III study 06011 of the EORTC Leukemia Cooperative Group and German MDS Study Group. Ann. Hematol. 95, 191–199 (2016).

    Article  PubMed  Google Scholar 

  43. Stewart, D. J. et al. Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin. Cancer Res. 15, 3881–3888 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, W. et al. DNA hypomethylation-mediated activation of cancer/testis antigen 45 (CT45) genes is associated with disease progression and reduced survival in epithelial ovarian cancer. Epigenetics 10, 736–748 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Serrano, A. et al. Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int. J. Cancer. 94, 243–251 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Cruickshank, B. et al. Dying to be noticed: epigenetic regulation of immunogenic cell death for cancer immunotherapy. Front. Immunol. 9, 654 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yang, H. et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28, 1280–1288 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Issa, J. J. et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 16, 1099–1110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoo, C. B. et al. Delivery of 5-aza-2′-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res. 67, 6400–6408 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Kantarjian, H. M. et al. Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: phase 2 results from a multicentre, randomised, phase 1/2 trial. Lancet Oncol. 18, 1317–1326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pappalardi, M.B., et al. Abstr. 2994: Discovery selective, noncovalent small molecule inhibitors DNMT1 an alternative traditional DNA hypomethylating Agent. Proc. AACR Annual Meeting 2018 (2018).

  54. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Bödör, C. et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood 122, 3165–3168 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lohr, J. G. et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl Acad. Sci. USA 109, 3879–3884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Yap, D. B. et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117, 2451–2459 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sneeringer, C. J. et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc. Natl Acad. Sci. USA 107, 20980–20985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wigle, T. J. et al. The Y641C mutation of EZH2 alters substrate specificity for histone H3 lysine 27 methylation states. FEBS Lett. 585, 3011–3014 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Knutson, S. K. et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol. Cancer Ther. 13, 842–854 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Vaswani, R. G. et al. Identification of (R)-N-((4-Methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a potent and selective inhibitor of histone methyltransferase EZH2, suitable for phase I clinical trials for B-cell lymphomas. J. Med. Chem. 59, 9928–9941 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kung, P. P. et al. Optimization of orally bioavailable enhancer of zeste homolog 2 (EZH2) inhibitors using ligand and property-based design strategies: identification of development candidate (R)-5,8-dichloro-7-(methoxy(oxetan-3-yl)methyl)-2-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-3,4-dihydroisoquinolin-1(2H)-one (PF-06821497). J. Med. Chem. 61, 650–665 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Morschhauser, F. et al. Interim report from a phase 2 multicenter study of tazemetostat, an EZH2 inhibitor, in patients with relapsed or refractory b‐cell non‐Hodgkin lymphomas. Hematol. Oncol. 35, 24–25 (2017).

    Article  Google Scholar 

  66. Knutson, S. K. et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc. Natl Acad. Sci. USA 110, 7922–7927 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zauderer, M. G. et al. Phase 2, multicenter study of the EZH2 inhibitor tazemetostat as monotherapy in adults with relapsed or refractory (R/R) malignant mesothelioma (MM) with BAP1 inactivation. J. Clin. Oncol. 36, 8515–8515 (2018).

    Article  Google Scholar 

  68. Gounder, M. et al. A phase 2, multicenter study of the EZH2 inhibitor tazemetostat in adults: (epithelioid sarcoma cohort) (NCT02601950). Ann. Oncol. 29(suppl_8), viii576–viii595 (2018).

    Article  Google Scholar 

  69. Honma, D. et al. Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor. Cancer Sci. 108, 2069–2078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maruyama, D. et al. First-in-human study of the EZH1/2 dual inhibitor DS-3201b in patients with relapsed or refractory non-Hodgkin lymphomas — preliminary results. Blood 130(Suppl 1), 1 (2017).

    Google Scholar 

  71. Kim, K. H. et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat. Med. 21, 1491–1496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Daigle, S. R. et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 122, 1017–1025 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kühn, M. W. et al. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. Cancer Discov. 6, 1166–1181 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Falini, B. et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 352, 254–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Eytan, M. et al. A phase 1 study of the DOT1L inhibitor, pinometostat (EPZ–5676), in adults with relapsed or refractory leukemia: safety, clinical activity, exposure and target inhibition. Blood 126, 2547 (2015).

    Google Scholar 

  76. Neerav Shukla, C. W. et al. Final report of phase 1 study of the DOT1L inhibitor, pinometostat (EPZ-5676), in children with relapsed or refractory MLL-r acute leukemia. Blood 128, 2780 (2016).

    Google Scholar 

  77. Stein, E. M. et al. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 131, 2661–2669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Waters, N. J. Preclinical pharmacokinetics and pharmacodynamics of pinometostat (epz-5676), a first-in-class, small molecule S-adenosyl methionine competitive inhibitor of DOT1L. Eur. J. Drug Metab. Pharmacokinet. 42, 891–901 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Poulard, C., Corbo, L. & Le Romancer, M. Protein arginine methylation/demethylation and cancer. Oncotarget 7, 67532–67550 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gerhart, S. V. et al. Activation of the p53-MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing. Sci. Rep. 8, 9711 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Drew Rasco, A. T. et al. Abstract CT038: A phase I, open-label, dose-escalation study to investigate the safety, pharmacokinetics, pharmacodynamics, and clinical activity of GSK3326595 in subjects with solid tumors and non-Hodgkin’s lymphoma. Cancer Res. 77, Supplement (2017).

  82. Brown, P. J. & Müller, S. Open access chemical probes for epigenetic targets. Future Med. Chem. 7, 1901–1917 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Yuan, Y. et al. A small-molecule probe of the histone methyltransferase G9a induces cellular senescence in pancreatic adenocarcinoma. ACS Chem. Biol. 7, 1152–1157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vedadi, M. et al. A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat. Chem. Biol. 7, 566–574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chang, Y. et al. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat. Struct. Mol. Biol. 16, 312–317 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pappano, W. N. et al. The histone methyltransferase inhibitor A-366 uncovers a role for G9a/GLP in the epigenetics of leukemia. PLoS One 10, e0131716 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Eigl, B. J. et al. A phase II study of the HDAC inhibitor SB939 in patients with castration resistant prostate cancer: NCIC clinical trials group study IND195. Invest. New Drugs 33, 969–976 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Evens, A. M. et al. A phase I/II multicenter, open-label study of the oral histone deacetylase inhibitor abexinostat in relapsed/refractory lymphoma. Clin. Cancer Res. 22, 1059–1066 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Guzman, M. L. et al. Selective activity of the histone deacetylase inhibitor AR-42 against leukemia stem cells: a novel potential strategy in acute myelogenous leukemia. Mol. Cancer Ther. 13, 1979–1990 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Qian, C. et al. Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin. Cancer Res. 18, 4104–4113 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Knipstein, J. & Gore, L. Entinostat for treatment of solid tumors and hematologic malignancies. Expert Opin. Investig. Drugs 20, 1455–1467 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Galli, M. et al. A phase II multiple dose clinical trial of histone deacetylase inhibitor ITF2357 in patients with relapsed or progressive multiple myeloma. Ann. Hematol. 89, 185–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Furlan, A. et al. Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (givinostat). Mol. Med. 17, 353–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Younes, A. et al. Mocetinostat for relapsed classical Hodgkin’s lymphoma: an open-label, single-arm, phase 2 trial. Lancet Oncol. 12, 1222–1228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brunetto, A. T. et al. First-in-human, pharmacokinetic and pharmacodynamic phase I study of Resminostat, an oral histone deacetylase inhibitor, in patients with advanced solid tumors. Clin. Cancer Res. 19, 5494–5504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Santo, L. et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 119, 2579–2589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Leung, D. et al. Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature 518, 350–354 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shen, L. et al. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PLoS One 7, e30815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Woods, D. M. et al. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol. Res. 3, 1375–1385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pili, R. et al. Immunomodulation by entinostat in renal cell carcinoma patients receiving high-dose interleukin 2: a multicenter, single-arm, phase I/II trial (NCI-CTEP#7870). Clin. Cancer Res. 23, 7199–7208 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Heijnen, W. T., De Fruyt, J., Wierdsma, A. I., Sienaert, P. & Birkenhäger, T. K. Efficacy of tranylcypromine in bipolar depression: a systematic review. J. Clin. Psychopharmacol. 35, 700–705 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Baker, G. B., Coutts, R. T., McKenna, K. F. & Sherry-McKenna, R. L. Insights into the mechanisms of action of the MAO inhibitors phenelzine and tranylcypromine: a review. J. Psychiatry Neurosci. 17, 206–214 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Harris, W. J. et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21, 473–487 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Mohammad, H. P. et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 28, 57–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Sankar, S. et al. Reversible LSD1 inhibition interferes with global EWS/ETS transcriptional activity and impedes Ewing sarcoma tumor growth. Clin. Cancer Res. 20, 4584–4597 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sorna, V. et al. High-throughput virtual screening identifies novel N’-(1-phenylethylidene)-benzohydrazides as potent, specific, and reversible LSD1 inhibitors. J. Med. Chem. 56, 9496–9508 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Mould, D. P., McGonagle, A. E., Wiseman, D. H., Williams, E. L. & Jordan, A. M. Reversible inhibitors of LSD1 as therapeutic agents in acute myeloid leukemia: clinical significance and progress to date. Med. Res. Rev. 35, 586–618 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Tim Somervaille, O. S. et al. Safety, phamacokinetics (PK), pharmacodynamics (PD) and emia of Ory-1001, a first-in-class inhibitor of lysine-specific histone demethylase 1A (LSD1/KDM1A): initial results from a first-in-human phase 1 study. Blood 128, 4060 (2016).

    Google Scholar 

  110. Saleque, S., Kim, J., Rooke, H. M. & Orkin, S. H. Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol. Cell 27, 562–572 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Mohammad, H. P. & Kruger, R. G. Antitumor activity of LSD1 inhibitors in lung cancer. Mol. Cell. Oncol. 3, e1117700 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. McGrath, J. P. et al. Pharmacological inhibition of the histone lysine demethylase KDM1A suppresses the growth of multiple acute myeloid leukemia subtypes. Cancer Res. 76, 1975–1988 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Schenk, T. et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat. Med. 18, 605–611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mcallister, T. E. et al. Recent progress in histone demethylase inhibitors. J. Med. Chem. 59, 1308–1329 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Jambhekar, A., Anastas, J. N. & Shi, Y. Histone lysine demethylase inhibitors. Cold Spring Harb. Perspect. Med. 7, a026484 (2017).

  116. Duan, L. et al. KDM4/JMJD2 histone demethylase inhibitors block prostate tumor growth by suppressing the expression of AR and BMYB-regulated genes. Chem. Biol. 22, 1185–1196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gehling, V. S. et al. Identification of potent, selective KDM5 inhibitors. Bioorg. Med. Chem. Lett. 26, 4350–4354 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Hatch, S. B. et al. Assessing histone demethylase inhibitors in cells: lessons learned. Epigenetics Chromatin 10, 9 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Heinemann, B. et al. Inhibition of demethylases by GSK-J1/J4. Nature 514, E1–E2 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488, 404–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vinogradova, M. et al. An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells. Nat. Chem. Biol. 12, 531–538 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. French, C. A. et al. Midline carcinoma of children and young adults with NUT rearrangement. J. Clin. Oncol. 22, 4135–4139 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Stuhlmiller, T. J. et al. Inhibition of lapatinib-induced kinome reprogramming in ERBB2-positive breast cancer by targeting BET family bromodomains. Cell Rep. 11, 390–404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Alekseyenko, A. A. et al. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 29, 1507–1523 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Stathis, A. et al. Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 6, 492–500 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. O’Dwyer, P. J. et al. Abstract CT014: GSK525762, a selective bromodomain (BRD) and extra terminal protein (BET) inhibitor: results from part 1 of a phase I/II open-label single-agent study in patients with NUT midline carcinoma (NMC) and other cancers. Cancer Res. 76, Supplement (2016).

  130. Berthon, C. et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 3, e186–e195 (2016).

    Article  PubMed  Google Scholar 

  131. Mark Dawson, E. M. S. et al. A phase I study of GSK525762, a selective bromodomain (BRD) and extra terminal protein (BET) inhibitor: results from part 1 of phase I/II open label single agent study in patients with acute myeloid leukemia (AML). Blood 130, 1377 (2017).

    Article  CAS  Google Scholar 

  132. Gautam Borthakur, J. E. W. et al. First-in-human study of ABBV-075 (mivebresib), a pan-inhibitor of bromodomain and extra terminal (BET) proteins, in patients (pts) with relapsed/refractory (RR) acute myeloid leukemia (AML): Preliminary data. J. Clin. Oncol. 36, suppl. 7019–7019 (2018).

  133. Blum, K. A. et al. A phase I study of CPI-0610, a bromodomain and extra terminal protein (BET) inhibitor in patients with relapsed or refractory lymphoma. Ann. Oncol. 29, iii7–iii9 (2018).

    Article  Google Scholar 

  134. Amorim, S. et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol. 3, e196–e204 (2016).

    Article  PubMed  Google Scholar 

  135. Amita Patnaik, R. D. C. et al. Phase ib/2a study of PLX51107, a small molecule BET inhibitor, in subjects with advanced hematological malignancies and solid tumors. J. Clin. Oncol. 36, 2550 (2018).

  136. Sarina Anne Piha-Paul, J. C. S. et al. Results of the first-in-human study of ABBV-075 (mivebresib), a pan-inhibitor of bromodomain (BD) and extra terminal (BET) proteins, in patients (pts) with relapsed/refractory (R/R) solid tumors. J. Clin. Oncol. 36, 2510 (2018).

    Article  Google Scholar 

  137. Sapna Pradyuman Patel, J. E. W. et al. Uveal melanoma patients (pts) treated with abbv-075 (mivebresib), a pan-inhibitor of bromodomain and extraterminal (BET) proteins: Results from a phase 1 study. J. Clin. Oncol. 36, e14585 (2018).

    Article  Google Scholar 

  138. Andres Forero-Torres, S. R. et al. Preliminary results from an ongoing phase 1/2 Study of INCB057643, a bromodomain and extraterminal (BET) Protein Inhibitor, in patients (pts) with advanced malignancies. Blood 130, 4048 (2017).

    Google Scholar 

  139. Warren, K. Abstract 4960: A first-in-class highly BDII-selective BET bromodomain inhibitor. Cancer Res. 78, Suppl. (2018).

  140. Tanaka, M. et al. Design and characterization of bivalent BET inhibitors. Nat. Chem. Biol. 12, 1089–1096 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rhyasen, G. W. et al. AZD5153: a novel bivalent BET bromodomain inhibitor highly active against hematologic malignancies. Mol. Cancer Ther. 15, 2563–2574 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Raina, K. et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl Acad. Sci. USA 113, 7124–7129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Winter, G. E. et al. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol. Cell 67, 5–18 e19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Qin, C. et al. Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting chimera (PROTAC) degrader of the bromodomain and extra-terminal (BET) proteins capable of inducing complete and durable tumor regression. J. Med. Chem. 61, 6685–6704 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Iyer, N. G., Ozdag, H. & Caldas, C. p300/CBP and cancer. Oncogene 23, 4225–4231 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Scotto, L. et al. Integrative genomics analysis of chromosome 5p gain in cervical cancer reveals target over-expressed genes, including Drosha. Mol. Cancer 7, 58 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Kandoth, C. et al. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013).

    Article  PubMed  CAS  Google Scholar 

  149. Borah, J. C. et al. A small molecule binding to the coactivator CREB-binding protein blocks apoptosis in cardiomyocytes. Chem. Biol. 18, 531–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chen, P. et al. Discovery and characterization of GSK2801, a selective chemical probe for the bromodomains BAZ2A and BAZ2B. J. Med. Chem. 59, 1410–1424 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Drouin, L. et al. Structure enabled design of BAZ2-ICR, a chemical probe targeting the bromodomains of BAZ2A and BAZ2B. J. Med. Chem. 58, 2553–2559 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bamborough, P. et al. GSK6853, a chemical probe for inhibition of the BRPF1 bromodomain. ACS Med. Chem. Lett. 7, 552–557 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Demont, E. H. et al. 1,3-Dimethyl benzimidazolones are potent, selective inhibitors of the BRPF1 bromodomain. ACS Med. Chem. Lett. 5, 1190–1195 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Palmer, W. S. et al. Structure-guided design of IACS-9571, a selective high-affinity dual TRIM24-BRPF1 bromodomain inhibitor. J. Med. Chem. 59, 1440–1454 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Theodoulou, N. H. et al. Discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition. J. Med. Chem. 59, 1425–1439 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Clark, P. G. et al. LP99: discovery and synthesis of the first selective BRD7/9 bromodomain inhibitor. Angew. Chem. Int. Edn Engl. 54, 6217–6221 (2015).

    Article  CAS  Google Scholar 

  157. Picaud, S. et al. 9H-purine scaffold reveals induced-fit pocket plasticity of the BRD9 bromodomain. J. Med. Chem. 58, 2718–2736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fedorov, O. et al. Selective targeting of the BRG/PB1 bromodomains impairs embryonic and trophoblast stem cell maintenance. Sci. Adv. 1, e1500723 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Moustakim, M. et al. Discovery of a PCAF bromodomain chemical probe. Angew. Chem. Int. Edn Engl. 56, 827–831 (2017).

    Article  CAS  Google Scholar 

  160. Ember, S. W. et al. Acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase inhibitors. ACS Chem. Biol. 9, 1160–1171 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ciceri, P. et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat. Chem. Biol. 10, 305–312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Martin, M. P., Olesen, S. H., Georg, G. I. & Schönbrunn, E. Cyclin-dependent kinase inhibitor dinaciclib interacts with the acetyl-lysine recognition site of bromodomains. ACS Chem. Biol. 8, 2360–2365 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Erb, M. A. et al. Transcription control by the ENL YEATS domain in acute leukaemia. Nature 543, 270–274 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wan, L. et al. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature 543, 265–269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bernard, D. et al. CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene 24, 5543–5551 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Mohammad, H. P. et al. Polycomb CBX7 promotes initiation of heritable repression of genes frequently silenced with cancer-specific DNA hypermethylation. Cancer Res. 69, 6322–6330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Perna, F. et al. Depletion of L3MBTL1 promotes the erythroid differentiation of human hematopoietic progenitor cells: possible role in 20q- polycythemia vera. Blood 116, 2812–2821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang, J. X. et al. SPINDLIN1 promotes cancer cell proliferation through activation of WNT/TCF-4 signaling. Mol. Cancer Res. 10, 326–335 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Ren, C. et al. Structure-guided discovery of selective antagonists for the chromodomain of polycomb repressive protein CBX7. ACS Med. Chem. Lett. 7, 601–605 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Stuckey, J. I. et al. A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1. Nat. Chem. Biol. 12, 180–187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. James, L. I. et al. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nat. Chem. Biol. 9, 184–191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. James, L. I. et al. Small-molecule ligands of methyl-lysine binding proteins: optimization of selectivity for L3MBTL3. J. Med. Chem. 56, 7358–7371 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Robaa, D. et al. Identification and structure-activity relationship studies of small-molecule inhibitors of the methyllysine reader protein Spindlin1. ChemMedChem 11, 2327–2338 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Bae, N. et al. Developing Spindlin1 small-molecule inhibitors by using protein microarrays. Nat. Chem. Biol. 13, 750–756 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Shain, A. H. & Pollack, J. R. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One 8, e55119 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Anglesio, M. S. et al. Cancer-associated mutations in endometriosis without cancer. N. Engl. J. Med. 376, 1835–1848 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Guan, B. et al. Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma. Am. J. Surg. Pathol. 35, 625–632 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Helming, K. C. et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20, 251–254 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wilson, B. G. et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol. Cell. Biol. 34, 1136–1144 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Lu, C. et al. Induction of sarcomas by mutant IDH2. Genes Dev. 27, 1986–1998 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chowdhury, R. et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 12, 463–469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sharma, H. Development of novel therapeutics targeting isocitrate dehydrogenase mutations in cancer. Curr. Top. Med. Chem. 18, 505–524 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Kim, E. S. Enasidenib: first global approval. Drugs 77, 1705–1711 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Stein, E. M. et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130, 722–731 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. LaFave, L. M. et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat. Med. 21, 1344–1349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Campbell, J. E. et al. EPZ011989, a potent, orally-available ezh2 inhibitor with robust in vivo activity. ACS Med. Chem. Lett. 6, 491–495 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Morschhauser, F. et al. Interim update from a phase 2 multicenter study of tazemetostat, an EZH2 inhibitor, in patients with relapsed or refractory (R/R) follicular lymphoma (FL). 23rd congress of the European Hematology Association. Stockholm: EHA Learning Center https://learningcenter.ehaweb.org/eha/2018/stockholm/21443/gilles.salles.interim.update.from.a.phase.2.multicenter.study.of.tazemetostat.html (2018).

  194. Wyce, A. et al. MEK inhibitors overcome resistance to BET inhibition across a number of solid and hematologic cancers. Oncogenesis 7, 35 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kuendgen, A. et al. Efficacy of azacitidine is independent of molecular and clinical characteristics - an analysis of 128 patients with myelodysplastic syndromes or acute myeloid leukemia and a review of the literature. Oncotarget 9, 27882–27894 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21–29 (2015). 21 29.

    PubMed  PubMed Central  Google Scholar 

  198. Ponnaluri, V. K. C. et al. NicE-seq: high resolution open chromatin profiling. Genome Biol. 18, 122 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Broderick, J. M. FDA Halts enrollment on tazemetostat trials. OncLive https://www.onclive.com/web-exclusives/fda-halts-enrollment-on-tazemetostat-trials (2018).

  200. Italiano, A. et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 19, 649–659 (2018).

    Article  CAS  PubMed  Google Scholar 

  201. Chandarlapaty, S. et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19, 58–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Duncan, J. S. et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149, 307–321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zawistowski, J. S. et al. Enhancer remodeling during adaptive bypass to MEK inhibition is attenuated by pharmacologic targeting of the P-TEFb complex. Cancer Discov. 7, 302–321 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Nagarajan, S. et al. Bromodomain protein BRD4 is required for estrogen receptor-dependent enhancer activation and gene transcription. Cell Rep. 8, 460–469 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Feng, Q. et al. An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res. 24, 809–819 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Asangani, I. A. et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510, 278–282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Asangani, I. A. et al. bet bromodomain inhibitors enhance efficacy and disrupt resistance to AR antagonists in the treatment of prostate cancer. Mol. Cancer Res. 14, 324–331 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465–1469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Knutson, S. K. et al. Synergistic anti-tumor activity of EZH2 inhibitors and glucocorticoid receptor agonists in models of germinal center non-hodgkin lymphomas. PLoS One 9, e111840 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Yang, X. P. et al. EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Sci. Rep. 5, 10643 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Goswami, S. et al. Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J. Clin. Invest. 128, 3813–3818 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Qin, Y. et al. Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade. Oncogene 38, 390–405 (2019).

  213. Sheng, W. et al. LSD1 Ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174, 549–563 e519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Zhu, H. et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep. 16, 2829–2837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Harb, W. et al. A phase 1 study of CPI-1205, a small molecule inhibitor of EZH2, preliminary safety in patients with B-cell lymphomas. Ann. Oncol. 29, mdy048.001 (2018).

    Article  Google Scholar 

  216. Maruyama, D. et al. First-in-human study of the EZH1/2 dual inhibitor DS-3201b in patients with relapsed or refractory non-Hodgkin lymphomas — preliminary results. Blood 130, 4070–4070 (2017).

    Google Scholar 

  217. Yap, T. A. et al. A phase I study of GSK2816126, an enhancer of zeste homolog 2(EZH2) inhibitor, in patients (pts) with relapsed/refractory diffuse large B-cell lymphoma (DLBCL), other non-hodgkin lymphomas (NHL), transformed follicular lymphoma (tFL), solid tumors and multiple myeloma (MM). Blood 128, 4203 (2016).

  218. Shukla, N. et al. Final report of phase 1 study of the DOT1L inhibitor, pinometostat (EPZ-5676), in children with relapsed or refractory MLL-r acute leukemia. Blood 128, 2780 (2016).

  219. O’Dwyer, P. J. et al. Abstract CT014: GSK525762, a selective bromodomain (BRD) and extra terminal protein (BET) inhibitor: results from part 1 of a phase I/II open-label single-agent study in patients with NUT midline carcinoma (NMC) and other cancers. Cancer Res. 76, CT014–CT014 (2016).

    Article  Google Scholar 

  220. Somervaille, T. et al. Safety, phamacokinetics (PK), pharmacodynamics (PD) and preliminary activity in acute leukemia of Ory-1001, a first-in-class inhibitor of lysine-specific histone demethylase 1A (LSD1/KDM1A): initial results from a first-in-human phase 1 study. Blood 128, 4060–4060 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caretha L. Creasy.

Ethics declarations

Competing interests

All authors are employees and stockholders of GlaxoSmithKline, a pharmaceutical company that discovers and develops epigenetic therapies for cancer.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, H.P., Barbash, O. & Creasy, C.L. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med 25, 403–418 (2019). https://doi.org/10.1038/s41591-019-0376-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-019-0376-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer