Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Beta cell-specific CD8+ T cells maintain stem cell memory-associated epigenetic programs during type 1 diabetes

Abstract

The pool of beta cell-specific CD8+ T cells in type 1 diabetes (T1D) sustains an autoreactive potential despite having access to a constant source of antigen. To investigate the long-lived nature of these cells, we established a DNA methylation-based T cell ‘multipotency index’ and found that beta cell-specific CD8+ T cells retained a stem-like epigenetic multipotency score. Single-cell assay for transposase-accessible chromatin using sequencing confirmed the coexistence of naive and effector-associated epigenetic programs in individual beta cell-specific CD8+ T cells. Assessment of beta cell-specific CD8+ T cell anatomical distribution and the establishment of stem-associated epigenetic programs revealed that self-reactive CD8+ T cells isolated from murine lymphoid tissue retained developmentally plastic phenotypic and epigenetic profiles relative to the same cells isolated from the pancreas. Collectively, these data provide new insight into the longevity of beta cell-specific CD8+ T cell responses and document the use of this methylation-based multipotency index for investigating human and mouse CD8+ T cell differentiation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of the human CD8+ T cell DNA methylation landscape to assess beta cell-specific CD8+ T cell differentiation.
Fig. 2: Human T cell multipotency index predicts beta cell-specific CD8+ T cells to retain a degree of developmental plasticity comparable to TSCM cells.
Fig. 3: Self-reactive human CD8+ T cells acquire effector-associated epigenetic programs.
Fig. 4: Single-cell ATAC-seq profiling identifies naive and effector epigenetic programming within individual beta cell-specific CD8+ T cells.
Fig. 5: Stemness-associated DNA methylation programs are maintained during in vitro antigen-driven proliferation of human T1D-specific CD8+ T cells.
Fig. 6: Lymphoid-homing murine beta cell-specific CD8+ T cells retain phenotypic and epigenetic programs indicating developmental plasticity.
Fig. 7: Murine multipotency index predicts terminal differentiation of beta cell-specific CD8+ T cells isolated from the pancreas.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request. Whole-genome and ATAC-seq data files are available at the National Center for Biotechnology Information Gene Expression omnibus (GEO) under accession number GSE144693.

Code availability

All code described is publicly available.

References

  1. Sun, D. et al. Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol. 166, 7579–7587 (2001).

    CAS  PubMed  Google Scholar 

  2. Huseby, E. S. et al. A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J. Exp. Med. 194, 669–676 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Vizler, C., Bercovici, N., Cornet, A., Cambouris, C. & Liblau, R. S. Role of autoreactive CD8+ T cells in organ-specific autoimmune diseases: insight from transgenic mouse models. Immunol. Rev. 169, 81–92 (1999).

    CAS  PubMed  Google Scholar 

  4. Coppieters, K. T. et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J. Exp. Med. 209, 51–60 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Willcox, A., Richardson, S. J., Bone, A. J., Foulis, A. K. & Morgan, N. G. Analysis of islet inflammation in human type 1 diabetes. Clin. Exp. Immunol. 155, 173–181 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kronenberg, D. et al. Circulating preproinsulin signal peptide-specific CD8 T cells restricted by the susceptibility molecule HLA-A24 are expanded at onset of type 1 diabetes and kill β-cells. Diabetes 61, 1752–1759 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Skowera, A. et al. CTLs are targeted to kill β cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J. Clin. Invest. 118, 3390–3402 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Knight, R. R. et al. Human β-cell killing by autoreactive preproinsulin-specific CD8 T cells is predominantly granule-mediated with the potency dependent upon T-cell receptor avidity. Diabetes 62, 205–213 (2013).

    CAS  PubMed  Google Scholar 

  9. Buckner, J. H. & Nepom, G. T. Obstacles and opportunities for targeting the effector T cell response in type 1 diabetes. J. Autoimmun. 71, 44–50 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yeo, L. et al. Autoreactive T effector memory differentiation mirrors β cell function in type 1 diabetes. J. Clin. Invest. 128, 3460–3474 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Skowera, A. et al. β-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure. Diabetes 64, 916–925 (2015).

    CAS  PubMed  Google Scholar 

  12. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    CAS  PubMed  Google Scholar 

  13. Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 28, 1057–1068 (2010).

    CAS  PubMed  Google Scholar 

  14. Abdelsamed, H. A. et al. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis. J. Exp. Med. 214, 1593–1606 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pace, L. et al. The epigenetic control of stemness in CD8+ T cell fate commitment. Science 359, 177–186 (2018).

    CAS  PubMed  Google Scholar 

  16. Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 404–409 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157.e19 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Akondy, R. S. et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature 552, 362–367 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8+ T cell differentiation. Nat. Rev. Immunol. 18, 340–356 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Youngblood, B. et al. Cutting edge: prolonged exposure to HIV reinforces a poised epigenetic program for PD-1 expression in virus-specific CD8 T cells. J. Immunol. 191, 540–544 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, W., Kim, H. S., Hwang, S. S. & Lee, G. R. The transcription factor Batf3 inhibits the differentiation of regulatory T cells in the periphery. Exp. Mol. Med. 49, e393 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Liao, J., Humphrey, S. E., Poston, S. & Taparowsky, E. J. Batf promotes growth arrest and terminal differentiation of mouse myeloid leukemia cells. Mol. Cancer Res. 9, 350–363 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Page, N. et al. Expression of the DNA-binding factor TOX promotes the encephalitogenic potential of microbe-induced autoreactive CD8+ T cells. Immunity 48, 937–950.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

    CAS  PubMed  Google Scholar 

  25. Chen, T., Ueda, Y., Xie, S. & Li, E. A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with active de novo methylation. J. Biol. Chem. 277, 38746–38754 (2002).

    CAS  PubMed  Google Scholar 

  26. Manzo, M. et al. Isoform-specific localization of DNMT3A regulates DNA methylation fidelity at bivalent CpG islands. EMBO J. 36, 3421–3434 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tadokoro, Y., Ema, H., Okano, M., Li, E. & Nakauchi, H. De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J. Exp. Med. 204, 715–722 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Malta, T. M. et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173, 338–354.e15 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Burrack, A. L., Martinov, T. & Fife, B. T. Cell-mediated beta cell destruction: autoimmunity and alloimmunity in the context of type 1 diabetes. Front. Endocrinol. (Lausanne) 8, 343 (2017).

    Google Scholar 

  30. Garyu, J. W. et al. Characterization of diabetogenic CD8+ T cells: immune therapy with metabolic blockade. J. Biol. Chem. 291, 11230–11240 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, J. et al. Autoreactive T cells specific for insulin B:11–23 recognize a low-affinity peptide register in human subjects with autoimmune diabetes. Proc. Natl Acad. Sci. USA 111, 14840–14845 (2014).

    CAS  PubMed  Google Scholar 

  32. Levisetti, M. G., Suri, A., Petzold, S. J. & Unanue, E. R. The insulin-specific T cells of nonobese diabetic mice recognize a weak MHC-binding segment in more than one form. J. Immunol. 178, 6051–6057 (2007).

    CAS  PubMed  Google Scholar 

  33. James, E. A. & Kwok, W. W. Low-affinity major histocompatibility complex-binding peptides in type 1 diabetes. Diabetes 57, 1788–1789 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wiedeman, A. E. et al. Autoreactive CD8+ T cell exhaustion distinguishes subjects with slow type 1 diabetes progression. J. Clin. Invest. 130, 480–490 (2020).

    PubMed  Google Scholar 

  35. Daifotis, A. G., Koenig, S., Chatenoud, L. & Herold, K. C. Anti-CD3 clinical trials in type 1 diabetes mellitus. Clin. Immunol. 149, 268–278 (2013).

    CAS  PubMed  Google Scholar 

  36. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    CAS  PubMed  Google Scholar 

  37. Herold, K. C. et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N. Engl. J. Med. 381, 603–613 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Richards, D. M., Kyewski, B. & Feuerer, M. Re-examining the nature and function of self-reactive T cells. Trends Immunol. 37, 114–125 (2016).

    CAS  PubMed  Google Scholar 

  39. Crompton, J. G. et al. Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape. Cell. Mol. Immunol. 13, 502–513 (2016).

    CAS  PubMed  Google Scholar 

  40. Gattinoni, L. et al. A human memory T cell subset with stem cell–like properties. Nat. Med. 17, 1290–1297 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lugli, E. et al. Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat. Protoc. 8, 33–42 (2013).

    CAS  PubMed  Google Scholar 

  42. Utzschneider, D. T. et al. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival. J. Exp. Med. 213, 1819–1834 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Xi, Y. & Li, W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10, 232 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Wu, H. et al. Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res. 43, e141 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. Kumaki, Y., Oda, M. & Okano, M. QUMA: quantification tool for methylation analysis. Nucleic Acids Res. 36, W170–W175 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sokolov, A., Carlin, D. E., Paull, E. O., Baertsch, R. & Stuart, J. M. Pathway-based genomics prediction using generalized elastic net. PLoS Comput. Biol. 12, e1004790 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Dogra for processing samples for methylation profiling. This work was supported by the NIH (grant no. 1R01AI114442 to B.Y.), Immune Tolerance Network (grant no. UM1AI109565 to G.T.N., E.J. and B.Y.), the NIH Loan Repayment Program to C.Z., the American Lebanese Syrian Associated Charities (to B.Y.) and Assisi foundation (to B.Y.).

Author information

Authors and Affiliations

Authors

Contributions

B.Y., G.T.N., S.G.D., R.-P.S. and E.A.J. conceived the project, interpreted results and wrote the manuscript. H.A.A., C.C.Z., H.N. and R.L.R. performed the experiments, interpreted the results and helped write the manuscript. Y.F., H.E.G., J.C.C., A.H.C., M.A.M. and F.A. performed the experiments and interpreted the results. L.A.T. and D.Z. conceived the experiments and interpreted the results. E.S., C.S. and H.J. interpreted the results and coordinated the experiments. S.A., A.H.C., S.K.B., M.E.B., M.S. and S.P.R. performed the experiments.

Corresponding author

Correspondence to Ben Youngblood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Editor recognition statement Zoltan Fehervari was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5.

Reporting Summary

Supplementary Tables

Supplementary Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelsamed, H.A., Zebley, C.C., Nguyen, H. et al. Beta cell-specific CD8+ T cells maintain stem cell memory-associated epigenetic programs during type 1 diabetes. Nat Immunol 21, 578–587 (2020). https://doi.org/10.1038/s41590-020-0633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-020-0633-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research