Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pro-remyelination properties of microglia in the central nervous system

Abstract

Microglia are resident macrophages of the CNS that are involved in its development, homeostasis and response to infection and damage. Microglial activation is a common feature of neurological disorders, and although in some instances this activation can be damaging, protective and regenerative functions of microglia have been revealed. The most prominent example of the regenerative functions is a role for microglia in supporting regeneration of myelin after injury, a process that is critical for axonal health and relevant to numerous disorders in which loss of myelin integrity is a prevalent feature, such as multiple sclerosis, Alzheimer disease and motor neuron disease. Although drugs that are intended to promote remyelination are entering clinical trials, the mechanisms by which remyelination is controlled and how microglia are involved are not completely understood. In this Review, we discuss work that has identified novel regulators of microglial activation — including molecular drivers, population heterogeneity and turnover — that might influence their pro-remyelination capacity. We also discuss therapeutic targeting of microglia as a potential approach to promoting remyelination.

Key points

  • Microglia can support remyelination in the CNS after injury via clearance of debris, secretion of growth factors and cytokines and modulation of the extracellular matrix.

  • Novel drivers of pro-remyelination microglia activation and function have recently been identified.

  • Microglia exhibit heterogeneity in their transcriptome, protein expression, proliferation and function within and between CNS regions, which might influence their pro-remyelination capacity.

  • Active microglia turnover occurs under homeostatic conditions in both the human and rodent CNS; turnover is altered with disease and ageing and can be experimentally targeted to alter pathological outcome.

  • Although no microglia-specific drug targeting strategy currently exists, microglia might be targeted by pro-remyelination drugs that are currently in clinical trials.

  • Challenges in developing microglia-targeted drugs include understanding microglial heterogeneity, avoiding pro-inflammatory effects, developing microglia-specific drug delivery platforms, determining optimal timing of drug delivery and refining tools to monitor microglial responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pro-remyelination functions of microglia.
Fig. 2: Dynamics of microglial turnover.
Fig. 3: Direct and indirect effects of pro-remyelination drugs on microglia responses.

Similar content being viewed by others

References

  1. Aarum, J., Sandberg, K., Haeberlein, S. L. & Persson, M. A. Migration and differentiation of neural precursor cells can be directed by microglia. Proc. Natl Acad. Sci. USA 100, 15983–15988 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ueno, M. et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16, 543–551 (2013).

    CAS  PubMed  Google Scholar 

  3. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Torres, L. et al. Dynamic microglial modulation of spatial learning and social behavior. Brain Behav. Immun. 55, 6–16 (2016).

    PubMed  Google Scholar 

  5. Hagemeyer, N. et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 134, 441–458 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Erblich, B., Zhu, L., Etgen, A. M., Dobrenis, K. & Pollard, J. W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLOS ONE 6, e26317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dagher, N. N. et al. Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J. Neuroinflamm. 12, 139 (2015).

    Google Scholar 

  11. Spangenberg, E. E. et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain 139, 1265–1281 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. Nissen, J. C., Thompson, K. K., West, B. L. & Tsirka, S. E. Csf1R inhibition attenuates experimental autoimmune encephalomyelitis and promotes recovery. Exp. Neurol. 307, 24–36 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mildner, A., Huang, H., Radke, J., Stenzel, W. & Priller, J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia 65, 375–387 (2017).

    PubMed  Google Scholar 

  15. Zrzavy, T. et al. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 140, 1900–1913 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. Butovsky, O. et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    CAS  PubMed  Google Scholar 

  17. Ajami, B. et al. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat. Neurosci. 21, 541–551 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395 (2018).

    CAS  PubMed  Google Scholar 

  19. Holtman, I. R. et al. Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathol. Commun. 3, 31 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Mathys, H. et al. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep. 21, 366–380 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Raj, D. et al. Increased white matter inflammation in aging- and Alzheimer’s disease brain. Front. Mol. Neurosci. 10, 206 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017).

    CAS  PubMed  Google Scholar 

  23. Yin, Z. et al. Immune hyperreactivity of Abeta plaque-associated microglia in Alzheimer’s disease. Neurobiol. Aging 55, 115–122 (2017).

    CAS  PubMed  Google Scholar 

  24. Butovsky, O. & Weiner, H. L. Microglial signatures and their role in health and disease. Nat. Rev. Neurosci. 19, 622–635 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kanazawa, M. et al. Microglia preconditioned by oxygen-glucose deprivation promote functional recovery in ischemic rats. Sci. Rep. 7, 42582 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Stangel, M., Kuhlmann, T., Matthews, P. M. & Kilpatrick, T. J. Achievements and obstacles of remyelinating therapies in multiple sclerosis. Nat. Rev. Neurol. 13, 742–754 (2017).

    PubMed  Google Scholar 

  27. Behrendt, G. et al. Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia 61, 273–286 (2013).

    PubMed  Google Scholar 

  28. Franklin, R. J. M. & Ffrench-Constant, C. Regenerating CNS myelin - from mechanisms to experimental medicines. Nat. Rev. Neurosci. 18, 753–769 (2017).

    CAS  PubMed  Google Scholar 

  29. Olah, M. et al. Identification of a microglia phenotype supportive of remyelination. Glia 60, 306–321 (2012).

    PubMed  Google Scholar 

  30. Kotter, M. R., Li, W. W., Zhao, C. & Franklin, R. J. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci. 26, 328–332 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rawji, K. S. et al. Deficient surveillance and phagocytic activity of myeloid cells within demyelinated lesions in aging mice visualized by ex vivo live multiphoton imaging. J. Neurosci. 38, 1973–1988 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Durafourt, B. A. et al. Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60, 717–727 (2012).

    PubMed  Google Scholar 

  33. Lampron, A. et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J. Exp. Med. 212, 481–495 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Neumann, H., Kotter, M. R. & Franklin, R. J. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132, 288–295 (2009).

    CAS  PubMed  Google Scholar 

  35. Pu, A., Stephenson, E. L. & Yong, V. W. The extracellular matrix: Focus on oligodendrocyte biology and targeting CSPGs for remyelination therapies. Glia 66, 1809–1825 (2018).

    PubMed  Google Scholar 

  36. Miron, V. E. Microglia-driven regulation of oligodendrocyte lineage cells, myelination, and remyelination. J. Leukoc. Biol. 101, 1103–1108 (2017).

    CAS  PubMed  Google Scholar 

  37. Franklin, R. J. Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci. 3, 705–714 (2002).

    CAS  PubMed  Google Scholar 

  38. Patani, R., Balaratnam, M., Vora, A. & Reynolds, R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol. 33, 277–287 (2007).

    CAS  PubMed  Google Scholar 

  39. Wolswijk, G. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain 125, 338–349 (2002).

    PubMed  Google Scholar 

  40. Voss, E. V. et al. Characterisation of microglia during de- and remyelination: can they create a repair promoting environment? Neurobiol. Dis. 45, 519–528 (2012).

    CAS  PubMed  Google Scholar 

  41. Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Locatelli, G. et al. Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model. Nat. Neurosci. 21, 1196–1208 (2018).

    CAS  PubMed  Google Scholar 

  44. Zabala, A. et al. P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Mol. Med. 10, e8743 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Yu, Z. et al. MSX3 switches microglia polarization and protects from inflammation-induced demyelination. J. Neurosci. 35, 6350–6365 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mei, F. et al. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. eLife 5, e18246 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Vogel, D. Y. et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J. Neuroinflamm. 10, 35 (2013).

    CAS  Google Scholar 

  48. Peferoen, L. A. et al. Activation status of human microglia is dependent on lesion formation stage and remyelination in multiple sclerosis. J. Neuropathol. Exp. Neurol. 74, 48–63 (2015).

    CAS  PubMed  Google Scholar 

  49. Bennett, F. C. et al. A combination of ontogeny and CNS environment establishes microglial identity. Neuron 98, 1170–1183 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamasaki, R. et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211, 1533–1549 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Healy, L. M. et al. MerTK is a functional regulator of myelin phagocytosis by human myeloid cells. J. Immunol. 196, 3375–3384 (2016).

    CAS  PubMed  Google Scholar 

  52. Greenhalgh, A. D. et al. Peripherally derived macrophages modulate microglial function to reduce inflammation after CNS injury. PLOS Biol. 16, e2005264 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. Ruckh, J. M. et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10, 96–103 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Olah, M. et al. A transcriptomic atlas of aged human microglia. Nat. Commun. 9, 539 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. Galatro, T. F. et al. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat. Neurosci. 20, 1162–1171 (2017).

    CAS  PubMed  Google Scholar 

  56. Safaiyan, S. et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat. Neurosci. 19, 995–998 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hill, R. A., Li, A. M. & Grutzendler, J. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat. Neurosci. 21, 683–695 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cantuti-Castelvetri, L. et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science 359, 684–688 (2018).

    CAS  PubMed  Google Scholar 

  59. Skripuletz, T. et al. Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain 136, 147–167 (2013).

    PubMed  Google Scholar 

  60. Cantoni, C. et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 129, 429–447 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Poliani, P. L. et al. TREM2 sustains microglial expansion during aging and response to demyelination. J. Clin. Invest. 125, 2161–2170 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Beckmann, N. et al. Brain region-specific enhancement of remyelination and prevention of demyelination by the CSF1R kinase inhibitor BLZ945. Acta Neuropathol. Commun. 6, 9 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Bruce, K. D. et al. Lipoprotein lipase is a feature of alternatively-activated microglia and may facilitate lipid uptake in the CNS during demyelination. Front. Mol. Neurosci. 11, 57 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Laflamme, N. et al. mCSF-induced microglial activation prevents myelin loss and promotes its repair in a mouse model of multiple sclerosis. Front. Cell. Neurosci. 12, 178 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Church, J. S., Kigerl, K. A., Lerch, J. K., Popovich, P. G. & McTigue, D. M. TLR4 deficiency impairs oligodendrocyte formation in the injured spinal cord. J. Neurosci. 36, 6352–6364 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Natrajan, M. S. et al. Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination. Brain 138, 3581–3597 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Dillenburg, A. et al. Activin receptors regulate the oligodendrocyte lineage in health and disease. Acta Neuropathol. 135, 887–906 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Pasquini, L. A. et al. Galectin-3 drives oligodendrocyte differentiation to control myelin integrity and function. Cell Death Differ. 18, 1746–1756 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Arnett, H. A. et al. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat. Neurosci. 4, 1116–1122 (2001).

    CAS  PubMed  Google Scholar 

  70. Hlavica, M. et al. Intrathecal insulin-like growth factor 1 but not insulin enhances myelin repair in young and aged rats. Neurosci. Lett. 648, 41–46 (2017).

    CAS  PubMed  Google Scholar 

  71. Mason, J. L., Suzuki, K., Chaplin, D. D. & Matsushima, G. K. Interleukin-1beta promotes repair of the CNS. J. Neurosci. 21, 7046–7052 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lalive, P. H. et al. TGF-beta-treated microglia induce oligodendrocyte precursor cell chemotaxis through the HGF-c-Met pathway. Eur. J. Immunol. 35, 727–737 (2005).

    CAS  PubMed  Google Scholar 

  73. Dziembowska, M. et al. A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia 50, 258–269 (2005).

    CAS  PubMed  Google Scholar 

  74. Nicholas, R. S., Wing, M. G. & Compston, A. Nonactivated microglia promote oligodendrocyte precursor survival and maturation through the transcription factor NF-kappa B. Eur. J. Neurosci. 13, 959–967 (2001).

    CAS  PubMed  Google Scholar 

  75. Giera, S. et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. eLife 7, e33385 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. Van Strien, M. E. et al. Tissue transglutaminase activity is involved in the differentiation of oligodendrocyte precursor cells into myelin-forming oligodendrocytes during CNS remyelination. Glia 59, 1622–1634 (2011).

    PubMed  Google Scholar 

  77. Lawson, L. J., Perry, V. H., Dri, P. & Gordon, S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151–170 (1990).

    CAS  PubMed  Google Scholar 

  78. Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ayata, P. et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat. Neurosci. 21, 1049–1060 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. De Biase, L. M. et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95, 341–356 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Bottcher, C. et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat. Neurosci. 22, 78–90 (2019).

    PubMed  Google Scholar 

  82. Kondo, Y. & Duncan, I. D. Selective reduction in microglia density and function in the white matter of colony-stimulating factor-1-deficient mice. J. Neurosci. Res. 87, 2686–2695 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Remington, L. T., Babcock, A. A., Zehntner, S. P. & Owens, T. Microglial recruitment, activation, and proliferation in response to primary demyelination. Am. J. Pathol. 170, 1713–1724 (2007).

    PubMed  PubMed Central  Google Scholar 

  84. Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).

    PubMed  Google Scholar 

  85. Li, Q. et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101, 207–223 (2019).

    CAS  PubMed  Google Scholar 

  86. Tay, T. L., Sagar, Dautzenberg, J., Grun, D. & Prinz, M. Unique microglia recovery population revealed by single-cell RNAseq following neurodegeneration. Acta Neuropathol. Commun. 6, 87 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. Skripuletz, T. et al. Cerebellar cortical demyelination in the murine cuprizone model. Brain Pathol. 20, 301–312 (2010).

    CAS  PubMed  Google Scholar 

  88. Askew, K. et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 18, 391–405 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tay, T. L. et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat. Neurosci. 20, 793–803 (2017).

    CAS  PubMed  Google Scholar 

  90. Reu, P. et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 20, 779–784 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Fuger, P. et al. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat. Neurosci. 20, 1371–1376 (2017).

    PubMed  Google Scholar 

  92. Lawson, L. J., Perry, V. H. & Gordon, S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48, 405–415 (1992).

    CAS  PubMed  Google Scholar 

  93. Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    CAS  PubMed  Google Scholar 

  94. Bruttger, J. et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43, 92–106 (2015).

    CAS  PubMed  Google Scholar 

  95. Elmore, M. R. et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380–397 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Huang, Y. et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat. Neurosci. 21, 530–540 (2018).

    CAS  PubMed  Google Scholar 

  97. Hillmer, A. T. et al. Microglial depletion and activation: A [(11)C]PBR28 PET study in nonhuman primates. EJNMMI Res. 7, 59 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Zhang, Y. et al. Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation. Sci. Adv. 4, eaap8492 (2018).

    PubMed  Google Scholar 

  99. Huang, Y. et al. Dual extra-retinal origins of microglia in the model of retinal microglia repopulation. Cell Discov. 4, 9 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Cronk, J. C. et al. Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J. Exp. Med. 215, 1627–1647 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yao, Y. et al. Dynamics of spinal microglia repopulation following an acute depletion. Sci. Rep. 6, 22839 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Najafi, A. R. et al. A limited capacity for microglial repopulation in the adult brain. Glia 66, 2385–2396 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Rice, R. A. et al. Microglial repopulation resolves inflammation and promotes brain recovery after injury. Glia 65, 931–944 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Szalay, G. et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat. Commun. 7, 11499 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Jin, W. N. et al. Depletion of microglia exacerbates postischemic inflammation and brain injury. J. Cereb. Blood Flow Metab. 37, 2224–2236 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rubino, S. J. et al. Acute microglia ablation induces neurodegeneration in the somatosensory system. Nat. Commun. 9, 4578 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. Butowski, N. et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-oncology 18, 557–564 (2016).

    PubMed  Google Scholar 

  108. Elmore, M. R. P. et al. Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice. Aging Cell 17, e12832 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. Mosher, K. I. & Wyss-Coray, T. Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem. Pharmacol. 88, 594–604 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Samanani, S. et al. Screening for inhibitors of microglia to reduce neuroinflammation. CNS Neurol. Disord. Drug Targets 12, 741–749 (2013).

    CAS  PubMed  Google Scholar 

  111. Sarkar, S. et al. Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Ann. Neurosci. 20, 154 (2013).

    PubMed  Google Scholar 

  112. Doring, A. et al. Stimulation of monocytes, macrophages, and microglia by amphotericin B and macrophage colony-stimulating factor promotes remyelination. J. Neurosci. 35, 1136–1148 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. Skihar, V. et al. Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. Proc. Natl Acad. Sci. USA 106, 17992–17997 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Jackson, S. J., Giovannoni, G. & Baker, D. Fingolimod modulates microglial activation to augment markers of remyelination. J. Neuroinflamm. 8, 76 (2011).

    CAS  Google Scholar 

  115. Durafourt, B. A. et al. Differential responses of human microglia and blood-derived myeloid cells to FTY720. J. Neuroimmunol. 230, 10–16 (2011).

    CAS  PubMed  Google Scholar 

  116. Li, W. W., Setzu, A., Zhao, C. & Franklin, R. J. Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. J. Neuroimmunol. 158, 58–66 (2005).

    CAS  PubMed  Google Scholar 

  117. Moller, T. et al. Critical data-based re-evaluation of minocycline as a putative specific microglia inhibitor. Glia 64, 1788–1794 (2016).

    PubMed  Google Scholar 

  118. Green, A. J. et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 390, 2481–2489 (2017).

    CAS  PubMed  Google Scholar 

  119. Mei, F. et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat. Med. 20, 954–960 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Norenberg, W. et al. Clemastine potentiates the human P2X7 receptor by sensitizing it to lower ATP concentrations. J. Biol. Chem. 286, 11067–11081 (2011).

    PubMed  PubMed Central  Google Scholar 

  121. Apolloni, S., Fabbrizio, P., Parisi, C., Amadio, S. & Volonte, C. Clemastine confers neuroprotection and induces an anti-inflammatory phenotype in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Mol. Neurobiol. 53, 518–531 (2016).

    CAS  PubMed  Google Scholar 

  122. Xiao, L. et al. Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes. Mol. Psychiatry 13, 697–708 (2008).

    CAS  PubMed  Google Scholar 

  123. Zhang, Y. et al. Quetiapine alleviates the cuprizone-induced white matter pathology in the brain of C57BL/6 mouse. Schizophr. Res. 106, 182–191 (2008).

    PubMed  Google Scholar 

  124. Wang, H. et al. Quetiapine inhibits microglial activation by neutralizing abnormal STIM1-mediated intercellular calcium homeostasis and promotes myelin repair in a cuprizone-induced mouse model of demyelination. Front. Cell. Neurosci. 9, 492 (2015).

    PubMed  PubMed Central  Google Scholar 

  125. Zhang, M. et al. Thyroid hormone alleviates demyelination induced by cuprizone through its role in remyelination during the remission period. Exp. Biol. Med. (Maywood) 240, 1183–1196 (2015).

    CAS  Google Scholar 

  126. Lima, F. R. et al. Regulation of microglial development: a novel role for thyroid hormone. J. Neurosci. 21, 2028–2038 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Mori, Y. et al. Effects of 3,3′,5-triiodothyronine on microglial functions. Glia 63, 906–920 (2015).

    PubMed  Google Scholar 

  128. Mullin, A. P. et al. rHIgM22 enhances remyelination in the brain of the cuprizone mouse model of demyelination. Neurobiol. Dis. 105, 142–155 (2017).

    CAS  PubMed  Google Scholar 

  129. Zorina, Y., Stricker, J., Caggiano, A. O. & Button, D. C. Human IgM antibody rHIgM22 promotes phagocytic clearance of myelin debris by microglia. Sci. Rep. 8, 9392 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. Durafourt, B. A., Moore, C. S., Blain, M. & Antel, J. P. Isolating, culturing, and polarizing primary human adult and fetal microglia. Methods Mol. Biol. 1041, 199–211 (2013).

    CAS  PubMed  Google Scholar 

  131. Muffat, J. et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22, 1358–1367 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278–293 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Haenseler, W. et al. A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Rep. 8, 1727–1742 (2017).

    CAS  Google Scholar 

  134. Pandya, H. et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat. Neurosci. 20, 753–759 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Bohlen, C. J. et al. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94, 759–773 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, eaal3222 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Ormel, P. R. et al. Microglia innately develop within cerebral organoids. Nat. Commun. 9, 4167 (2018).

    PubMed  PubMed Central  Google Scholar 

  138. Lewis, N., Hill, J., Juchem, K., Stefanopoulos, D. & Modis, L. RNA sequencing of microglia and monocyte-derived macrophages from mice with experimental autoimmune encephalomyelitis illustrates a changing phenotype with disease course. J. Neuroimmunol. 277, 26–38 (2014).

    CAS  PubMed  Google Scholar 

  139. Brown, R. A., Narayanan, S. & Arnold, D. L. Imaging of repeated episodes of demyelination and remyelination in multiple sclerosis. Neuroimage Clin. 6, 20–25 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Cusick, M. F., Libbey, J. E., Patel, D. C., Doty, D. J. & Fujinami, R. S. Infiltrating macrophages are key to the development of seizures following virus infection. J. Virol. 87, 1849–1860 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mizutani, M. et al. The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J. Immunol. 188, 29–36 (2012).

    CAS  PubMed  Google Scholar 

  142. O’Koren, E. G., Mathew, R. & Saban, D. R. Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Sci. Rep. 6, 20636 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Vainchtein, I. D. et al. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed. Glia 62, 1724–1735 (2014).

    CAS  PubMed  Google Scholar 

  144. Saederup, N. et al. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLOS ONE 5, e13693 (2010).

    PubMed  PubMed Central  Google Scholar 

  145. Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat. Neurosci. 16, 1618–1626 (2013).

    CAS  PubMed  Google Scholar 

  146. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, J., Siffert, M., Spiliotis, M. & Gottstein, B. Repeated long-term DT application in the DEREG mouse induces a neutralizing anti-DT antibody response. J. Immunol. Res. 2016, 1450398 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

V.E.M. is funded by a Career Development Award from the Medical Research Council and the United Kingdom Multiple Sclerosis Society (MR/M020827/1), as well as from funds from the Medical Research Council Centre for Reproductive Health (MR/N02256/1).

Reviewer information

Nature Reviews Neurology thanks D. Fitzgerald, S. Rivest, M. Stangel and V. W. Yong for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of the article.

Corresponding author

Correspondence to Veronique E. Miron.

Ethics declarations

Competing interests

V.E.M. has received research funds related to remyelination within the past 5 years from Biogen, BVBioMed, Clene Nanomedicine, GlaxoSmithKline and Rewind Therapeutics.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Oligodendrocyte progenitor cells

(OPCs). A glial subtype derived from neuroepithelium that can differentiate into mature oligodendrocytes, astrocytes and Schwann cells.

iNOS

(Inducible nitric oxide synthase). An enzyme that catalyses the generation of nitric oxide from l-arginine and competes with arginase 1 (ARG1) for the same substrate.

TNF

(Tumour necrosis factor). A pro-inflammatory cytokine that can have deleterious and beneficial effects on the oligodendrocyte lineage.

CD16–CD32

Low-affinity immunoglobulin Fc receptors FcγIIA/B (CD16) and FcγIIIA/B (CD32); involved in phagocytosis, microorganism toxicity, stimulation of cytokine production and antibody-dependent cell-mediated cytotoxicity.

ARG1

(Arginase 1). An enzyme that catalyses the generation of ornithine and urea from l-arginine and competes with iNOS for the same substrate, thus indirectly reducing production of nitric oxide.

IGF1

(Insulin-like growth factor 1). A growth factor that stimulates oligodendrocyte differentiation and remyelination.

CD206

Also known as mannose receptor. A transmembrane glycoprotein that binds to mannosylated molecules and probably plays a role in clearance of pathogens.

Repopulation

Re-establishment of a cell population following depletion or loss; microglia repopulation following robust depletion (80–99%) can occur within 1 week.

Single-cell sequencing

A next-generation sequencing approach that allows transcriptomic profiling of individual cells, providing information regarding heterogeneity of a population.

Induced pluripotent stem cells

(iPSCs). Pluripotent stem cells derived from reprogramming of somatic cells; iPSC-derived microglia react to inflammatory stimuli and phagocytose in a similar manner to primary microglia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lloyd, A.F., Miron, V.E. The pro-remyelination properties of microglia in the central nervous system. Nat Rev Neurol 15, 447–458 (2019). https://doi.org/10.1038/s41582-019-0184-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-019-0184-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing