Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The many functions of ESCRTs

Abstract

Cellular membranes can form two principally different involutions, which either exclude or contain cytosol. The ‘classical’ budding reactions, such as those occurring during endocytosis or formation of exocytic vesicles, involve proteins that assemble on the cytosol-excluding face of the bud neck. Inverse membrane involution occurs in a wide range of cellular processes, supporting cytokinesis, endosome maturation, autophagy, membrane repair and many other processes. Such inverse membrane remodelling is mediated by a heteromultimeric protein machinery known as endosomal sorting complex required for transport (ESCRT). ESCRT proteins assemble on the cytosolic (or nucleoplasmic) face of the neck of the forming involution and cooperate with the ATPase VPS4 to drive membrane scission or sealing. Here, we review similarities and differences of various ESCRT-dependent processes, with special emphasis on mechanisms of ESCRT recruitment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of ESCRT-mediated biological processes.
Fig. 2: Cytokinetic abscission and neuronal pruning.
Fig. 3: ESCRT recruitment and function in repair and budding of the plasma membrane.
Fig. 4: ESCRT recruitment and functions at the nuclear envelope.
Fig. 5: ESCRT recruitment and function at MVEs, phagophores and lysosomes.
Fig. 6: ESCRT-mediated viral budding and replication.

Similar content being viewed by others

References

  1. Mettlen, M., Chen, P. H., Srinivasan, S., Danuser, G. & Schmid, S. L. Regulation of clathrin-mediated endocytosis. Annu. Rev. Biochem. 87, 871–896 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001). Identification and characterization of ESCRT-I, and demonstration of the involvement of the ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. This paper also coined the ‘ESCRT’ acronym.

    CAS  PubMed  Google Scholar 

  3. Schoneberg, J., Lee, I. H., Iwasa, J. H. & Hurley, J. H. Reverse-topology membrane scission by the ESCRT proteins. Nat. Rev. Mol. Cell Biol. 18, 5–17 (2017).

    CAS  PubMed  Google Scholar 

  4. Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT- II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3, 283–289 (2002). Identification and characterization of ESCRT-II, and demonstration of its function in ILV biogenesis.

    CAS  PubMed  Google Scholar 

  5. Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T. & Emr, S. D. ESCRT-III: an endosome-associated heterooligomeric protein complex required for MVB sorting. Dev. Cell 3, 271–282 (2002). Identification and characterization of ESCRT-III, and demonstration of its function in ILV biogenesis.

    CAS  PubMed  Google Scholar 

  6. Kostelansky, M. J. et al. Structural and functional organization of the ESCRT-I trafficking complex. Cell 125, 113–126 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hierro, A. et al. Structure of the ESCRT-II endosomal trafficking complex. Nature 431, 221–225 (2004).

    CAS  PubMed  Google Scholar 

  8. Teis, D., Saksena, S. & Emr, S. D. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev. Cell 15, 578–589 (2008).

    CAS  PubMed  Google Scholar 

  9. Saksena, S., Wahlman, J., Teis, D., Johnson, A. E. & Emr, S. D. Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136, 97–109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mierzwa, B. E. et al. Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nat. Cell Biol. 19, 787–798 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Adell, M. A. et al. Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation. J. Cell Biol. 205, 33–49 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiaruttini, N. et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163, 866–879 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007). First demonstration that ESCRTs mediate cytokinetic abscission, and that TSG101 and ALIX are recruited to the midbody ring by binding CEP55.

    CAS  PubMed  Google Scholar 

  14. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007). Together with Carlton et al.13, this paper established the function of ESCRT proteins in cytokinetic abscission, and that TSG101 and ALIX are recruited to the midbody ring by binding CEP55.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lens, S. M. A. & Medema, R. H. Cytokinesis defects and cancer. Nat. Rev. Cancer 19, 32–45 (2019).

    CAS  PubMed  Google Scholar 

  16. Zhao, W. M., Seki, A. & Fang, G. Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis. Mol. Biol. Cell 17, 3881–3896 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bastos, R. N. & Barr, F. A. Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. J. Cell Biol. 191, 751–760 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Carlton, J. G., Agromayor, M. & Martin-Serrano, J. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc. Natl Acad. Sci. USA 105, 10541–10546 (2008).

    CAS  PubMed  Google Scholar 

  19. Lee, H. H., Elia, N., Ghirlando, R., Lippincott-Schwartz, J. & Hurley, J. H. Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 322, 576–580 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mierzwa, B. & Gerlich, D. W. Cytokinetic abscission: molecular mechanisms and temporal control. Dev. Cell 31, 525–538 (2014).

    CAS  PubMed  Google Scholar 

  21. Goliand, I., Nachmias, D., Gershony, O. & Elia, N. Inhibition of ESCRT-II-CHMP6 interactions impedes cytokinetic abscission and leads to cell death. Mol. Biol. Cell 25, 3740–3748 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Christ, L. et al. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J. Cell Biol. 212, 499–513 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang, S. et al. ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. eLife 5, e15507 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. Agromayor, M. et al. Essential role of hIST1 in cytokinesis. Mol. Biol. Cell 20, 1374–1387 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bajorek, M. et al. Biochemical analyses of human IST1 and its function in cytokinesis. Mol. Biol. Cell 20, 1360–1373 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hadders, M. A. et al. ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes. Proc. Natl Acad. Sci. USA 109, 17424–17429 (2012).

    CAS  PubMed  Google Scholar 

  27. Lee, S. et al. MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis. Mol. Biol. Cell 23, 4347–4361 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Karasmanis, E. P. et al. A septin double ring controls the spatiotemporal organization of the ESCRT machinery in cytokinetic abscission. Curr. Biol. 29, 2174–2182 (2019).

    CAS  PubMed  Google Scholar 

  29. Schoneberg, J. et al. ATP-dependent force generation and membrane scission by ESCRT-III and Vps4. Science 362, 1423–1428 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. Goliand, I. et al. Resolving ESCRT-III spirals at the intercellular bridge of dividing cells using 3D STORM. Cell Rep. 24, 1756–1764 (2018).

    CAS  PubMed  Google Scholar 

  31. Fremont, S. et al. Oxidation of F-actin controls the terminal steps of cytokinesis. Nat. Commun. 8, 14528 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Terry, S. J., Dona, F., Osenberg, P., Carlton, J. G. & Eggert, U. S. Capping protein regulates actin dynamics during cytokinetic midbody maturation. Proc. Natl Acad. Sci. USA 115, 2138–2143 (2018).

    CAS  PubMed  Google Scholar 

  33. Dema, A. et al. Citron kinase-dependent F-actin maintenance at midbody secondary ingression sites mediates abscission. J. Cell Sci. 131, jcs209080 (2018).

    PubMed  Google Scholar 

  34. Schiel, J. A. et al. Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission. J. Cell Sci. 124, 1411–1424 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Guizetti, J. et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331, 1616–1620 (2011).

    CAS  PubMed  Google Scholar 

  36. Elia, N., Sougrat, R., Spurlin, T. A., Hurley, J. H. & Lippincott-Schwartz, J. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc. Natl Acad. Sci. USA 108, 4846–4851 (2011).

    CAS  PubMed  Google Scholar 

  37. Reid, E. et al. The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum. Mol. Genet. 14, 19–38 (2005).

    CAS  PubMed  Google Scholar 

  38. Yang, D. et al. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nat. Struct. Mol. Biol. 15, 1278–1286 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Connell, J. W., Lindon, C., Luzio, J. P. & Reid, E. Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10, 42–56 (2009).

    CAS  PubMed  Google Scholar 

  40. Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the ESCRT system in cell division in Archaea. Science 322, 1710–1713 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Samson, R. Y. et al. Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division. Mol. Cell 41, 186–196 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Matias, N. R., Mathieu, J. & Huynh, J. R. Abscission is regulated by the ESCRT-III protein shrub in Drosophila germline stem cells. PLOS Genet. 11, e1004653 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Eikenes, A. H. et al. ALIX and ESCRT-III coordinately control cytokinetic abscission during germline stem cell division in vivo. PLOS Genet. 11, e1004904 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Konig, J., Frankel, E. B., Audhya, A. & Muller-Reichert, T. Membrane remodeling during embryonic abscission in Caenorhabditis elegans. J. Cell Biol. 216, 1277–1286 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Lie-Jensen, A. et al. Centralspindlin recruits ALIX to the midbody during cytokinetic abscission in Drosophila via a mechanism analogous to virus budding. Curr. Biol. 29, 3538–3548 (2019).

    CAS  PubMed  Google Scholar 

  46. Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136, 473–484 (2009).

    PubMed  Google Scholar 

  47. Bhowmick, R. et al. The RIF1–PP1 axis controls abscission timing in human cells. Curr. Biol. 29, 1232–1242 (2019).

    CAS  PubMed  Google Scholar 

  48. Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125, 85–98 (2006).

    CAS  PubMed  Google Scholar 

  50. Mendoza, M. et al. A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nat. Cell Biol. 11, 477–483 (2009).

    CAS  PubMed  Google Scholar 

  51. Bembenek, J. N., Verbrugghe, K. J., Khanikar, J., Csankovszki, G. & Chan, R. C. Condensin and the spindle midzone prevent cytokinesis failure induced by chromatin bridges in C. elegans embryos. Curr. Biol. 23, 937–946 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mackay, D. R. & Ullman, K. S. ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission. Mol. Biol. Cell 26, 2217–2226 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mackay, D. R., Makise, M. & Ullman, K. S. Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint. J. Cell Biol. 191, 923–931 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lafaurie-Janvore, J. et al. ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge. Science 339, 1625–1629 (2013).

    CAS  PubMed  Google Scholar 

  55. Carlton, J. G., Caballe, A., Agromayor, M., Kloc, M. & Martin-Serrano, J. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336, 220–225 (2012). This study provided a mechanistic link between the abscission checkpoint and the ESCRT machinery via the ESCRT-III component CHMP4C, which contains a phosphorylation site for Aurora B.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Capalbo, L. et al. The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis. Open Biol. 2, 120070 (2012).

    PubMed  PubMed Central  Google Scholar 

  57. McCullough, J., Fisher, R. D., Whitby, F. G., Sundquist, W. I. & Hill, C. P. ALIX-CHMP4 interactions in the human ESCRT pathway. Proc. Natl Acad. Sci. USA 105, 7687–7691 (2008).

    CAS  PubMed  Google Scholar 

  58. Sadler, J. B. A. et al. A cancer-associated polymorphism in ESCRT-III disrupts the abscission checkpoint and promotes genome instability. Proc. Natl Acad. Sci. USA 115, E8900–E8908 (2018).

    CAS  PubMed  Google Scholar 

  59. Thoresen, S. B. et al. ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat. Cell Biol. 16, 550–560 (2014).

    CAS  PubMed  Google Scholar 

  60. Capalbo, L. et al. Coordinated regulation of the ESCRT-III component CHMP4C by the chromosomal passenger complex and centralspindlin during cytokinesis. Open Biol. 6, 160248 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. Caballe, A. et al. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins. eLife 4, e06547 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Dimaano, C., Jones, C. B., Hanono, A., Curtiss, M. & Babst, M. Ist1 regulates Vps4 localization and assembly. Mol. Biol. Cell 19, 465–474 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pharoah, P. D. et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat. Genet. 45, 362–370 (2013). 370e1-2.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet. 37, 806–808 (2005).

    CAS  PubMed  Google Scholar 

  65. Zivony-Elboum, Y. et al. A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis. J. Med. Genet. 49, 462–472 (2012).

    CAS  PubMed  Google Scholar 

  66. Loncle, N., Agromayor, M., Martin-Serrano, J. & Williams, D. W. An ESCRT module is required for neuron pruning. Sci. Rep. 5, 8461 (2015). Together with Zhang et al.67, this paper demonstrated that ESCRTs mediate neuronal pruning. This paper proposes a non-endocytic mechanism that acts directly on the plasma membrane.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, H. et al. Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila. Dev. Cell 30, 463–478 (2014). Together with Loncle et al.66, this paper demonstrated that ESCRTs are required for dendritic pruning. This paper focuses on the role of the MVE pathway in neuronal pruning.

    CAS  PubMed  Google Scholar 

  68. Andrews, N. W., Almeida, P. E. & Corrotte, M. Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol. 24, 734–742 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jimenez, A. J. et al. ESCRT machinery is required for plasma membrane repair. Science 343, 1247136 (2014). Demonstration that ESCRT-III is required for repair of small wounds in the plasma membrane, and that extracellular buds are found at the site of ESCRT-III recruitment.

    PubMed  Google Scholar 

  70. Scheffer, L. L. et al. Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell membrane repair. Nat. Commun. 5, 5646 (2014). Identification of Ca 2+ as a signal for ESCRT recruitment to wounds of the plasma membrane, and identification of a mechanism that involves the Ca 2+-binding protein ALG2 and its ESCRT interaction partner ALIX.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sonder, S. L. et al. Annexin A7 is required for ESCRT III-mediated plasma membrane repair. Sci. Rep. 9, 6726 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Sun, S. et al. ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction. Cell Discov. 1, 15018 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Okumura, M. et al. Penta-EF-hand protein ALG-2 functions as a Ca2+-dependent adaptor that bridges Alix and TSG101. Biochem. Biophys. Res. Commun. 386, 237–241 (2009).

    CAS  PubMed  Google Scholar 

  74. Katoh, K. et al. The penta-EF-hand protein ALG-2 interacts directly with the ESCRT-I component TSG101, and Ca2+-dependently co-localizes to aberrant endosomes with dominant-negative AAA ATPase SKD1/Vps4B. Biochem. J. 391, 677–685 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ruhl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    PubMed  Google Scholar 

  76. Gong, Y. N. et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169, 286–300 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Matusek, T. et al. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature 516, 99–103 (2014). Demonstration that the ESCRT machinery mediates secretion and long-range activity of Hedgehog via plasma membrane-derived microvesicles.

    CAS  PubMed  Google Scholar 

  79. Nabhan, J. F., Hu, R., Oh, R. S., Cohen, S. N. & Lu, Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl Acad. Sci. USA 109, 4146–4151 (2012).

    CAS  PubMed  Google Scholar 

  80. Robijns, J., Houthaeve, G., Braeckmans, K. & De Vos, W. H. Loss of nuclear envelope integrity in aging and disease. Int. Rev. Cell Mol. Biol. 336, 205–222 (2018).

    PubMed  Google Scholar 

  81. Guttinger, S., Laurell, E. & Kutay, U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat. Rev. Mol. Cell Biol. 10, 178–191 (2009).

    PubMed  Google Scholar 

  82. Haraguchi, T. et al. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J. Cell Sci. 121, 2540–2554 (2008).

    CAS  PubMed  Google Scholar 

  83. Vietri, M. et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522, 231–235 (2015). Together with Olmos et al.84, this paper demonstrated that ESCRT-III mediates closure of the nascent nuclear envelope during mitotic exit. It also identified CHMP7 as a recruiter of ESCRT-III to the nuclear envelope, and demonstrated that spastin is recruited by IST1 to coordinate mitotic spindle disassembly with nuclear envelope sealing.

    CAS  PubMed  Google Scholar 

  84. Olmos, Y., Hodgson, L., Mantell, J., Verkade, P. & Carlton, J. G. ESCRT-III controls nuclear envelope reformation. Nature 522, 236–239 (2015). Together with Vietri et al.83, this paper demonstrated that ESCRT-III mediates closure of the nascent nuclear envelope during mitotic exit. It also identified UFD1 as an upstream factor of ESCRT-III recruitment.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ventimiglia, L. N. et al. CC2D1B coordinates ESCRT-III activity during the mitotic reformation of the nuclear envelope. Dev. Cell 47, 547–563 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Martinelli, N. et al. CC2D1A is a regulator of ESCRT-III CHMP4B. J. Mol. Biol. 419, 75–88 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Pieper, G., Sprenger, S., Teis, D. & Oliferenko, S. ESCRT-III/Vps4 controls heterochromatin-nuclear envelope attachments. bioRxiv https://doi.org/10.1101/579805 (2019).

  88. Hatch, E. & Hetzer, M. Breaching the nuclear envelope in development and disease. J. Cell Biol. 205, 133–141 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Houthaeve, G., Robijns, J., Braeckmans, K. & De Vos, W. H. Bypassing border control: nuclear envelope rupture in disease. Physiology 33, 39–49 (2018).

    CAS  PubMed  Google Scholar 

  90. Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016). Together with Denais et al. (ref. 90), this paper demonstrated that ESCRT-III repairs ruptures in the nuclear envelope during cell migration through confined spaces.

    CAS  PubMed  Google Scholar 

  92. Penfield, L. et al. Dynein-pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair. Mol. Biol. Cell 29, 852–868 (2018).

    CAS  PubMed Central  Google Scholar 

  93. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sagona, A. P., Nezis, I. P. & Stenmark, H. Association of CHMP4B and autophagy with micronuclei: implications for cataract formation. Biomed. Res. Int. 2014, 974393 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Willan, J. et al. ESCRT-III is necessary for the integrity of the nuclear envelope in micronuclei but is aberrant at ruptured micronuclear envelopes generating damage. Oncogenesis 8, 29 (2019).

    PubMed  PubMed Central  Google Scholar 

  96. Vietri, M. et al. Unrestrained ESCRT-III drives chromosome fragmentation and micronuclear catastrophe. bioRxiv https://doi.org/10.1101/517011 (2019).

  97. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Halfmann, C. T. et al. Repair of nuclear ruptures requires barrier-to-autointegration factor. J. Cell Biol. 218, 2136–2149 (2019).

    CAS  PubMed  Google Scholar 

  99. Webster, B. M., Colombi, P., Jager, J. & Lusk, C. P. Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4. Cell 159, 388–401 (2014). Demonstration that the LEM domain protein Heh2 recruits ESCRT-III and Vps4 to the nuclear envelope to destabilize and clear defective nuclear pore complex assembly intermediates in budding yeast.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Frost, A. et al. Functional repurposing revealed by comparing S. pombe and S. cerevisiae genetic interactions. Cell 149, 1339–1352 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Toyama, B. H. et al. Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. J. Cell Biol. 218, 433–444 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mettenleiter, T. C., Muller, F., Granzow, H. & Klupp, B. G. The way out: what we know and do not know about herpesvirus nuclear egress. Cell Microbiol. 15, 170–178 (2013).

    CAS  PubMed  Google Scholar 

  103. Arii, J. et al. ESCRT-III mediates budding across the inner nuclear membrane and regulates its integrity. Nat. Commun. 9, 3379 (2018). Demonstration that ESCRT-III mediates budding of HSV-1 across the inner nuclear membrane, and that ESCRT-III-mediated budding of the inner nuclear membrane in non-infected cells plays a role in nuclear envelope homeostasis.

    PubMed  PubMed Central  Google Scholar 

  104. Jokhi, V. et al. Torsin mediates primary envelopment of large ribonucleoprotein granules at the nuclear envelope. Cell Rep. 3, 988–995 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. D’Angelo, M. A., Raices, M., Panowski, S. H. & Hetzer, M. W. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136, 284–295 (2009).

    PubMed  PubMed Central  Google Scholar 

  106. Olmos, Y., Perdrix-Rosell, A. & Carlton, J. G. Membrane binding by CHMP7 coordinates ESCRT-III-dependent nuclear envelope reformation. Curr. Biol. 26, 2635–2641 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Webster, B. M. et al. Chm7 and Heh1 collaborate to link nuclear pore complex quality control with nuclear envelope sealing. EMBO J. 35, 2447–2467 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gu, M. et al. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. Proc. Natl Acad. Sci. USA 114, E2166–E2175 (2017).

    CAS  PubMed  Google Scholar 

  109. Bauer, I., Brune, T., Preiss, R. & Kolling, R. Evidence for a non-endosomal function of the Saccharomyces cerevisiae ESCRT-III like protein Chm7. Genetics 201, 1439–1452 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Horii, M. et al. CHMP7, a novel ESCRT-III-related protein, associates with CHMP4b and functions in the endosomal sorting pathway. Biochem. J. 400, 23–32 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Thaller, D. J. et al. An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. eLife 8, e45284 (2019).

    Google Scholar 

  112. Wenzel, E. M. et al. Concerted ESCRT and clathrin recruitment waves define the timing and morphology of intraluminal vesicle formation. Nat. Commun. 9, 2932 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).

    CAS  PubMed  Google Scholar 

  114. Bache, K. G., Raiborg, C., Mehlum, A. & Stenmark, H. STAM and Hrs are subunits of a multivalent Ubiquitin-binding complex on early endosomes. J. Biol. Chem. 278, 12513–12521 (2003).

    CAS  PubMed  Google Scholar 

  115. Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lu, Q., Hope, L. W., Brasch, M., Reinhard, C. & Cohen, S. N. TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc. Natl Acad. Sci. USA 100, 7626–7631 (2003).

    CAS  PubMed  Google Scholar 

  117. Katzmann, D. J., Stefan, C. J., Babst, M. & Emr, S. D. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol. 162, 413–423 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Pornillos, O. et al. HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J. Cell Biol. 162, 425–434 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Mayers, J. R. et al. ESCRT-0 assembles as a heterotetrameric complex on membranes and binds multiple ubiquitinylated cargoes simultaneously. J. Biol. Chem. 286, 9636–9645 (2011).

    CAS  PubMed  Google Scholar 

  120. Raiborg, C. et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci. 114, 2255–2263 (2001).

    CAS  PubMed  Google Scholar 

  121. Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Raiborg, C., Wesche, J., Malerød, L. & Stenmark, H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J. Cell Sci. 119, 2414–2424 (2006).

    CAS  PubMed  Google Scholar 

  124. Stefani, F. et al. UBAP1 is a component of an endosome-specific ESCRT-I complex that is essential for MVB sorting. Curr. Biol. 21, 1245–1250 (2011).

    CAS  PubMed  Google Scholar 

  125. Agromayor, M. et al. The UBAP1 subunit of ESCRT-I interacts with ubiquitin via a SOUBA domain. Structure 20, 414–428 (2012).

    CAS  PubMed  Google Scholar 

  126. Wollert, T. & Hurley, J. H. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464, 864–869 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Amerik, A. Y., Nowak, J., Swaminathan, S. & Hochstrasser, M. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol. Biol. Cell 11, 3365–3380 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Van Engelenburg, S. B. et al. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 343, 653–656 (2014).

    PubMed  PubMed Central  Google Scholar 

  129. Henne, W. M., Buchkovich, N. J., Zhao, Y. & Emr, S. D. The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell 151, 356–371 (2012).

    CAS  PubMed  Google Scholar 

  130. Clague, M. J., Liu, H. & Urbe, S. Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev. Cell 23, 457–467 (2012).

    CAS  PubMed  Google Scholar 

  131. Hoeller, D. et al. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat. Cell Biol. 8, 163–169 (2006).

    CAS  PubMed  Google Scholar 

  132. Adell, M. A. Y. et al. Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding. eLife 6, e31652 (2017).

    Google Scholar 

  133. Quinney, K. B. et al. Growth factor stimulation promotes multivesicular endosome biogenesis by prolonging recruitment of the late-acting ESCRT machinery. Proc. Natl Acad. Sci. USA 116, 6858–6867 (2019).

    CAS  PubMed  Google Scholar 

  134. Korbei, B. et al. Arabidopsis TOL proteins act as gatekeepers for vacuolar sorting of PIN2 plasma membrane protein. Curr. Biol. 23, 2500–2505 (2013).

    CAS  PubMed  Google Scholar 

  135. Pashkova, N. et al. The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes. Dev. Cell 25, 520–533 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Dores, M. R. et al. AP-3 regulates PAR1 ubiquitin-independent MVB/lysosomal sorting via an ALIX-mediated pathway. Mol. Biol. Cell 23, 3612–3623 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Dores, M. R., Lin, H., Grimsey, N. J., Mendez, F. & Trejo, J. The α-arrestin ARRDC3 mediates ALIX ubiquitination and G protein-coupled receptor lysosomal sorting. Mol. Biol. Cell 26, 4660–4673 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Dores, M. R., Grimsey, N. J., Mendez, F. & Trejo, J. ALIX regulates the ubiquitin-independent lysosomal sorting of the P2Y1 purinergic receptor via a YPX3L motif. PLOS ONE 11, e0157587 (2016).

    PubMed  PubMed Central  Google Scholar 

  139. Gahloth, D. et al. The open architecture of HD-PTP phosphatase provides new insights into the mechanism of regulation of ESCRT function. Sci. Rep. 7, 9151 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. Yan, Q. et al. CART: an Hrs/actinin-4/BERP/myosin V protein complex required for efficient receptor recycling. Mol. Biol. Cell 16, 2470–2482 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. MacDonald, E. et al. HRS-WASH axis governs actin-mediated endosomal recycling and cell invasion. J. Cell Biol. 217, 2549–2564 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Google Scholar 

  143. Gibbings, D. J., Ciaudo, C., Erhardt, M. & Voinnet, O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 11, 1143–1149 (2009).

    CAS  PubMed  Google Scholar 

  144. Baietti, M. F. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012).

    CAS  PubMed  Google Scholar 

  145. Takahashi, Y. et al. An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat. Commun. 9, 2855 (2018). Demonstration that ESCRT-III mediates phagophore closure during starvation-induced autophagy.

    PubMed  PubMed Central  Google Scholar 

  146. Zhou, F. et al. Rab5-dependent autophagosome closure by ESCRT. J. Cell Biol. 218, 1908–1927 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhen, Y. et al. ESCRT-mediated phagophore sealing during mitophagy. Autophagy https://doi.org/10.1080/15548627.2019.1639301 (2019).

  148. Filimonenko, M. et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485–500 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Rusten, T. E. et al. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr. Biol. 17, 1817–1825 (2007).

    CAS  PubMed  Google Scholar 

  150. Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012).

    CAS  PubMed  Google Scholar 

  151. Djeddi, A. et al. Induction of autophagy in ESCRT mutants is an adaptive response for cell survival in C. elegans. J. Cell Sci. 125, 685–694 (2012).

    CAS  PubMed  Google Scholar 

  152. Sahu, R. et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20, 131–139 (2011). Demonstration that ESCRT-I and ESCRT-III mediate microautophagy of cytosolic proteins in concert with HSC70.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Mejlvang, J. et al. Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. J. Cell Biol. 217, 3640–3655 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lawrence, R. E. & Zoncu, R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat. Cell Biol. 21, 133–142 (2019).

    CAS  PubMed  Google Scholar 

  155. Papadopoulos, C. & Meyer, H. Detection and clearance of damaged lysosomes by the endo-lysosomal damage response and lysophagy. Curr. Biol. 27, R1330–R1341 (2017).

    CAS  PubMed  Google Scholar 

  156. Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336–2347 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Skowyra, M. L., Schlesinger, P. H., Naismith, T. V. & Hanson, P. I. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science 360, eaar5078 (2018). First demonstration that ESCRTs promote sealing of damaged lysosomes, and identification of Ca 2+ and ALG2 as triggers of ESCRT recruitment to the sites of membrane damage.

    PubMed  PubMed Central  Google Scholar 

  158. Radulovic, M. et al. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival. EMBO J. 37, e99753 (2018). Together with Skowyra et al.157, this paper established that ESCRTs promote sealing of damaged lysosomes. It also showed that this mechanism sustains cell viability upon lysosomal damage and promotes replication of Coxiella burnetii in the host phagolysosomes.

    Google Scholar 

  159. Lopez-Jimenez, A. T. et al. The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium-containing vacuole but have opposite impact on containing the infection. PLOS Pathog. 14, e1007501 (2018).

    PubMed  PubMed Central  Google Scholar 

  160. Christensen, K. A., Myers, J. T. & Swanson, J. A. pH-dependent regulation of lysosomal calcium in macrophages. J. Cell Sci. 115, 599–607 (2002).

    CAS  PubMed  Google Scholar 

  161. Mercier, V. et al. Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. bioRxiv https://doi.org/10.1101/550483 (2019).

  162. Mansilla Pareja, M. E., Bongiovanni, A., Lafont, F. & Colombo, M. I. Alterations of the Coxiella burnetii replicative vacuole membrane integrity and interplay with the autophagy pathway. Front. Cell Infect. Microbiol. 7, 112 (2017).

    PubMed  PubMed Central  Google Scholar 

  163. Mittal, E. et al. Mycobacterium tuberculosis type VII secretion system effectors differentially impact the ESCRT endomembrane damage response. mBio 9, e01765 (2018).

    PubMed  PubMed Central  Google Scholar 

  164. Votteler, J. & Sundquist, W. I. Virus budding and the ESCRT pathway. Cell Host Microbe 14, 232–241 (2013).

    CAS  PubMed  Google Scholar 

  165. Scourfield, E. J. & Martin-Serrano, J. Growing functions of the ESCRT machinery in cell biology and viral replication. Biochem. Soc. Trans. 45, 613–634 (2017).

    CAS  PubMed  Google Scholar 

  166. Snyder, J. C., Samson, R. Y., Brumfield, S. K., Bell, S. D. & Young, M. J. Functional interplay between a virus and the ESCRT machinery in Archaea. Proc. Natl Acad. Sci. USA 110, 10783–10787 (2013).

    CAS  PubMed  Google Scholar 

  167. Johnson, D. C. & Baines, J. D. Herpesviruses remodel host membranes for virus egress. Nat. Rev. Microbiol. 9, 382–394 (2011).

    CAS  PubMed  Google Scholar 

  168. Bigalke, J. M., Heuser, T., Nicastro, D. & Heldwein, E. E. Membrane deformation and scission by the HSV-1 nuclear egress complex. Nat. Commun. 5, 4131 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Zeev-Ben-Mordehai, T. et al. Crystal structure of the herpesvirus nuclear egress complex provides insights into inner nuclear membrane remodeling. Cell Rep. 13, 2645–2652 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Lee, C. P. et al. The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein–Barr virus. PLOS Pathog. 8, e1002904 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Yadav, S. et al. EBV early lytic protein BFRF1 alters emerin distribution and post-translational modification. Virus Res. 232, 113–122 (2017).

    CAS  PubMed  Google Scholar 

  172. Lee, C. P. et al. The ubiquitin ligase itch and ubiquitination regulate BFRF1-mediated nuclear envelope modification for Epstein–Barr virus maturation. J. Virol. 90, 8994–9007 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Miller, S. & Krijnse-Locker, J. Modification of intracellular membrane structures for virus replication. Nat. Rev. Microbiol. 6, 363–374 (2008).

    CAS  PubMed  Google Scholar 

  174. Barajas, D., Jiang, Y. & Nagy, P. D. A unique role for the host ESCRT proteins in replication of Tomato bushy stunt virus. PLOS Pathog. 5, e1000705 (2009). Demonstration that ESCRT-III and Vps4 mediate formation and function of the replication compartment of TBSV in the peroxisome membrane.

    PubMed  PubMed Central  Google Scholar 

  175. Kovalev, N. et al. Role of viral RNA and co-opted cellular ESCRT-I and ESCRT-III factors in formation of tombusvirus spherules harboring the tombusvirus replicase. J. Virol. 90, 3611–3626 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Richardson, L. G. et al. A unique N-terminal sequence in the Carnation Italian ringspot virus p36 replicase-associated protein interacts with the host cell ESCRT-I component Vps23. J. Virol. 88, 6329–6344 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Diaz, A., Zhang, J., Ollwerther, A., Wang, X. & Ahlquist, P. Host ESCRT proteins are required for bromovirus RNA replication compartment assembly and function. PLOS Pathog. 11, e1004742 (2015). Demonstration that formation and function of the BMV replication compartment in invaginations of the ER depend on ESCRT components.

    PubMed  PubMed Central  Google Scholar 

  178. Barajas, D., Martin, I. F., Pogany, J., Risco, C. & Nagy, P. D. Noncanonical role for the host Vps4 AAA+ATPase ESCRT protein in the formation of Tomato bushy stunt virus replicase. PLOS Pathog. 10, e1004087 (2014).

    PubMed  PubMed Central  Google Scholar 

  179. Tabata, K. et al. Unique requirement for ESCRT factors in flavivirus particle formation on the endoplasmic reticulum. Cell Rep. 16, 2339–2347 (2016).

    CAS  PubMed  Google Scholar 

  180. Martin-Serrano, J., Eastman, S. W., Chung, W. & Bieniasz, P. D. HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. J. Cell Biol. 168, 89–101 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001). Together with Martin-Serrano et al.184, this paper demonstrated that the ESCRT-I protein TSG101 is required for HIV-1 budding. It also showed that HIV-1 Gag contains a specific motif (P(S/T)AP) that recruits TSG101 and thereby mediates viral budding.

    CAS  PubMed  Google Scholar 

  182. Langelier, C. et al. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J. Virol. 80, 9465–9480 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl Acad. Sci. USA 98, 7724–7729 (2001).

    CAS  PubMed  Google Scholar 

  184. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat. Med. 7, 1313–1319 (2001). Together with Garrus et al.181, this paper demonstrated that the ESCRT-I protein TSG101 is required for HIV-1 budding via recognition of specific Gag motifs. It also showed an equivalent mechanism during Ebola virus budding.

    CAS  PubMed  Google Scholar 

  185. Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H. G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).

    CAS  PubMed  Google Scholar 

  186. Fisher, R. D. et al. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128, 841–852 (2007).

    CAS  PubMed  Google Scholar 

  187. Zhai, Q. et al. Structural and functional studies of ALIX interactions with YPX(n)L late domains of HIV-1 and EIAV. Nat. Struct. Mol. Biol. 15, 43–49 (2008).

    CAS  PubMed  Google Scholar 

  188. Lee, S., Joshi, A., Nagashima, K., Freed, E. O. & Hurley, J. H. Structural basis for viral late-domain binding to Alix. Nat. Struct. Mol. Biol. 14, 194–199 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Bleck, M. et al. Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding. Proc. Natl Acad. Sci. USA 111, 12211–12216 (2014).

    CAS  PubMed  Google Scholar 

  190. Baumgartel, V. et al. Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nat. Cell Biol. 13, 469–474 (2011).

    PubMed  Google Scholar 

  191. Jouvenet, N. Dynamics of ESCRT proteins. Cell Mol. Life Sci. 69, 4121–4133 (2012).

    CAS  PubMed  Google Scholar 

  192. Johnson, D. S., Bleck, M. & Simon, S. M. Timing of ESCRT-III protein recruitment and membrane scission during HIV-1 assembly. eLife 7, e36221 (2018).

    Google Scholar 

  193. Morita, E. et al. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe 9, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Kieffer, C. et al. Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. Dev. Cell 15, 62–73 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Chung, H. Y. et al. NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains. J. Virol. 82, 4884–4897 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Usami, Y., Popov, S., Popova, E. & Gottlinger, H. G. Efficient and specific rescue of human immunodeficiency virus type 1 budding defects by a Nedd4-like ubiquitin ligase. J. Virol. 82, 4898–4907 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Weiss, E. R. et al. Rescue of HIV-1 release by targeting widely divergent NEDD4-type ubiquitin ligases and isolated catalytic HECT domains to Gag. PLOS Pathog. 6, e1001107 (2010).

    PubMed  PubMed Central  Google Scholar 

  198. Han, Z. et al. Small-molecule probes targeting the viral PPxY-host Nedd4 interface block egress of a broad range of RNA viruses. J. Virol. 88, 7294–7306 (2014).

    PubMed  PubMed Central  Google Scholar 

  199. Madara, J. J., Han, Z., Ruthel, G., Freedman, B. D. & Harty, R. N. The multifunctional Ebola virus VP40 matrix protein is a promising therapeutic target. Future Virol. 10, 537–546 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. McCullough, J. et al. Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350, 1548–1551 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Allison, R. et al. An ESCRT-spastin interaction promotes fission of recycling tubules from the endosome. J. Cell Biol. 202, 527–543 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Chang, C. L. et al. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J. Cell Biol. 218, 2583–2599 (2019).

    CAS  PubMed  Google Scholar 

  203. Mast, F.D. Herricks, T., Strehler, K.M., Miller, L.R., Saleem, R.A., Rachubinski, R.A. & Aitchison, J.D. ESCRT-III is required for scissioning new peroxisomes from the endoplasmic reticulum. J. Cell Biol. 217, 2087–2102 (2018).

    Google Scholar 

  204. Alfred, V. & Vaccari, T. When membranes need an ESCRT: endosomal sorting and membrane remodelling in health and disease. Swiss Med. Wkly 146, w14347 (2016).

    PubMed  Google Scholar 

  205. Ruland, J. et al. p53 accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsg101. Proc. Natl Acad. Sci. USA 98, 1859–1864 (2001).

    CAS  PubMed  Google Scholar 

  206. Stuffers, S., Sem Wegner, C., Stenmark, H. & Brech, A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10, 925–937 (2009).

    CAS  PubMed  Google Scholar 

  207. Hurley, J. H. ESCRTs are everywhere. EMBO J. 34, 2398–2407 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Christ, L., Raiborg, C., Wenzel, E. M., Campsteijn, C. & Stenmark, H. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem. Sci. 42, 42–56 (2017).

    CAS  PubMed  Google Scholar 

  209. Gill, D. J. et al. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J. 26, 600–612 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Bissig, C. & Gruenberg, J. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol. 24, 19–25 (2014).

    CAS  PubMed  Google Scholar 

  211. Tabernero, L. & Woodman, P. Dissecting the role of His domain protein tyrosine phosphatase/PTPN23 and ESCRTs in sorting activated epidermal growth factor receptor to the multivesicular body. Biochem. Soc. Trans. 46, 1037–1046 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Banjade, S., Tang, S., Shah, Y. H. & Emr, S. D. Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly. eLife 8, e46207 (2019).

    Google Scholar 

  213. Stuchell-Brereton, M. D. et al. ESCRT-III recognition by VPS4 ATPases. Nature 449, 740–744 (2007).

    CAS  PubMed  Google Scholar 

  214. Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Camilla Raiborg and Eva M. Wenzel for critical reading of the manuscript. M.V. is a senior scientist and M.R. a postdoctoral fellow of the South-Eastern Norway Regional Health Authority (grant numbers 2018043 and 2016087, respectively). H.S. is supported by the Norwegian Cancer Society (grant no. 182698) and the Trond Paulsen InvaCell project (grant no. 35248). This work was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 262652.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Harald Stenmark.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks J. Hurley, J. Martin-Serrano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Midbody ring

Also called Flemming body. The central region of the intercellular bridge between dividing cells where plus-end anti-parallel central spindle microtubule bundles overlap and where several components crucial for cytokinesis and abscission are localized.

Chromosomal instability

An elevated frequency of chromosome segregation errors during cell division.

Centralspindlin

A heterotetrameric motor protein complex consisting of MKLP1–RACGAP1 dimers that is a key component of the midbody ring, where it bundles spindle microtubules and tethers the spindle apparatus to the cell cortex, thus stabilizing the intercellular bridge.

Septin

Septins are highly conserved GTP-binding proteins that assemble as monomers into hetero-oligomeric complexes and higher-order structures, including filaments and rings, that can associate with membranes and the cytoskeleton.

Cell cortex

Actin-rich network that is attached to the inner face of the plasma membrane and regulates cell shape.

Spastin

MIT domain-containing ATPase that utilizes ATP hydrolysis to sever microtubules.

Cdv fission machinery

Archaeal membrane fission machinery involved in cell division, virus budding and microvesicle secretion, with subunits sharing homology with ESCRT-III proteins and VPS4.

Lagging chromosomes

Single chromosomes that lag between the two nascent daughter nuclei of dividing cells, often arising when a single kinetochore is attached to both spindle poles during metaphase.

Aurora B

A serine/threonine-protein kinase that is the enzymatic subunit of the chromosome passenger complex.

Chromosome passenger complex

(CPC). Protein complex that surveys fidelity of genome segregation throughout the cell cycle. It consists of Aurora B kinase, Borealin, survivin and INCENP.

Abscission/NoCut checkpoint regulator

(ANCHR). Protein that participates in Aurora B-mediated regulation of the abscission checkpoint through retaining VPS4 at the midbody ring and thereby delaying abscission.

Unc51-like kinase 3

(ULK3). A serine/threonine-protein kinase with tandem MIT domains that allow it to bind and phosphorylate MIM-containing ESCRT-III proteins.

Dendritic arborization neurons

Nerve cells with highly branched dendrites.

Phosphatidylserine

A common phospholipid in cellular membranes, normally enriched on the cytosolic face.

Annexin A7

Member of the annexin protein family that consists of Ca2+-sensitive phospholipid-binding proteins that regulate various processes at endomembranes.

Necroptosis

A programmed form of caspase-independent, pro-inflammatory cell death that is activated downstream of death receptor signalling and mediated by RIPK1 and RIPK3 kinases.

MLKL

Mixed lineage kinase domain-like pseudokinase, a key effector of necroptotic cell death. Following activation by RIPK3 kinase, it oligomerizes and forms pores in the plasma membrane, permeabilizing the cell.

Pyroptosis

Pro-inflammatory programmed cell death induced by the activation of complexes known as inflammasomes, prominently by intracellular pathogens. It is executed by gasdermin D protein, which permeabilizes the plasma membrane.

Nuclear lamina

Protein network that provides rigidity and mechanical support to the nuclear envelope as well as functions in genome organization and regulation of transcription.

Lamins

Intermediate filament proteins expressed in most eukaryotes and that constitute the nuclear lamina.

Micronuclei

DNA structures, derived from chromosome segregation errors, that are not integrated within the cell nucleus but acquire a functional nuclear envelope after mitosis.

Barrier-to-autoantigen factor

(BAF). Adaptor protein that bridges DNA with the nuclear envelope via direct binding to DNA or chromatin-associated proteins as well as to LEM domain-containing proteins of the inner nuclear membrane.

LEM domain

A LAP2, emerin, MAN1 domain found in a subgroup of proteins that reside in the inner nuclear membrane or nucleoplasm.

MegaRNP

Large mRNA-containing ribonucleoprotein granules localized within the nucleoplasm of eukaryotic cells.

FYVE domain

An evolutionarily conserved protein domain that binds specifically to PtdIns3P.

Giant unilamellar vesicle

A vesicle of 1–100 μm diameter bounded by a single bilayer and containing an aqueous solution, used for biochemical and biophysical studies of membrane biology.

Actin-mediated endosomal recycling

Recycling of cargoes from endosomes to the plasma membrane, mediated by small actin-containing tubules that pinch off from endosomes.

Syntaxin 17

A protein encoded by the STX17 gene, recruited to autophagosomes where it forms a tight complex with a cytosolic protein, SNAP29, and a lysosomal protein, VAMP8, to mediate autophagosome–lysosome fusion.

Phagosomes

An intracellular compartment, derived from the plasma membrane and containing phagocytosed material.

Phagolysosomes

Fusion products between a phagosome and a lysosome.

Gag

A retroviral polyprotein processed during maturation into four separate proteins: matrix protein, capsid protein, nucleocapsid protein and p6, which together make the viral core.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vietri, M., Radulovic, M. & Stenmark, H. The many functions of ESCRTs. Nat Rev Mol Cell Biol 21, 25–42 (2020). https://doi.org/10.1038/s41580-019-0177-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-019-0177-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing