Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quality and quantity control of gene expression by nonsense-mediated mRNA decay

A Publisher Correction to this article was published on 26 April 2019

This article has been updated

Abstract

Nonsense-mediated mRNA decay (NMD) is one of the best characterized and most evolutionarily conserved cellular quality control mechanisms. Although NMD was first found to target one-third of mutated, disease-causing mRNAs, it is now known to also target ~10% of unmutated mammalian mRNAs to facilitate appropriate cellular responses — adaptation, differentiation or death — to environmental changes. Mutations in NMD genes in humans are associated with intellectual disability and cancer. In this Review, we discuss how NMD serves multiple purposes in human cells by degrading both mutated mRNAs to protect the integrity of the transcriptome and normal mRNAs to control the quantities of unmutated transcripts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discriminating between targets and nontargets of nonsense-mediated mRNA decay.
Fig. 2: UPF1 binding to mRNA and activation of nonsense-mediated mRNA decay.
Fig. 3: Degradation of the nonsense-mediated mRNA decay targets.
Fig. 4: Features of cellular mRNAs that activate nonsense-mediated mRNA decay.
Fig. 5: Physiological roles of nonsense-mediated mRNA decay.
Fig. 6: Involvement of nonsense-mediated mRNA decay in disease.

Similar content being viewed by others

Change history

  • 26 April 2019

    The HTML version of the article displayed the wrong Figure 3 (while the PDF version was correct); the HTML has now been corrected and we apologize for any confusion it may have created.

References

  1. Leeds, P., Peltz, S. W., Jacobson, A. & Culbertson, M. R. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 5, 2303–2314 (1991).

    CAS  PubMed  Google Scholar 

  2. Atkin, A. L., Altamura, N., Leeds, P. & Culbertson, M. R. The majority of yeast UPF1 co-localizes with polyribosomes in the cytoplasm. Mol. Biol. Cell 6, 611–625 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pal, M., Ishigaki, Y., Nagy, E. & Maquat, L. E. Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA 7, 5–15 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Czaplinski, K. et al. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12, 1665–1677 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ivanov, P. V., Gehring, N. H., Kunz, J. B., Hentze, M. W. & Kulozik, A. E. Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO J. 27, 736–747 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kashima, I. et al. Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev. 20, 355–367 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kurosaki, T. & Maquat, L. E. Rules that govern UPF1 binding to mRNA 3′ UTRs. Proc. Natl Acad. Sci. USA 110, 3357–3362 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Singh, G., Rebbapragada, I. & Lykke-Andersen, J. A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLOS Biol. 6, e111 (2008).

    PubMed  PubMed Central  Google Scholar 

  9. Wang, W., Czaplinski, K., Rao, Y. & Peltz, S. W. The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J. 20, 880–890 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hogg, J. R. & Goff, S. P. Upf1 senses 3′UTR length to potentiate mRNA decay. Cell 143, 379–389 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hurt, J. A., Robertson, A. D. & Burge, C. B. Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res. 23, 1636–1650 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kurosaki, T. et al. A post-translational regulatory switch on UPF1 controls targeted mRNA degradation. Genes Dev. 28, 1900–1916 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, S. R., Pratt, G. A., Martinez, F. J., Yeo, G. W. & Lykke-Andersen, J. Target discrimination in nonsense-mediated mRNA decay requires Upf1 ATPase activity. Mol. Cell 59, 413–425 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zund, D., Gruber, A. R., Zavolan, M. & Mühlemann, O. Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3′ UTRs. Nat. Struct. Mol. Biol. 20, 936–943 (2013).

    PubMed  Google Scholar 

  15. Bhattacharya, A. et al. Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay. RNA 6, 1226–1235 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Czaplinski, K., Weng, Y., Hagan, K. W. & Peltz, S. W. Purification and characterization of the Upf1 protein: a factor involved in translation and mRNA degradation. RNA 1, 610–623 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Weng, Y., Czaplinski, K. & Peltz, S. W. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol. Cell. Biol. 16, 5477–5490 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fiorini, F., Bagchi, D., Le Hir, H. & Croquette, V. Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities. Nat. Commun. 6, 7581 (2015).

    PubMed  Google Scholar 

  19. Franks, T. M., Singh, G. & Lykke-Andersen, J. Upf1 ATPase-dependent mRNP disassembly is required for completion of nonsense-mediated mRNA decay. Cell 143, 938–950 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Shigeoka, T., Kato, S., Kawaichi, M. & Ishida, Y. Evidence that the Upf1-related molecular motor scans the 3′-UTR to ensure mRNA integrity. Nucleic Acids Res. 40, 6887–6897 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chakrabarti, S. et al. Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol. Cell 41, 693–703 (2011).

    CAS  PubMed  Google Scholar 

  22. Chamieh, H., Ballut, L., Bonneau, F. & Le Hir, H. NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nat. Struct. Mol. Biol. 15, 85–93 (2008).

    CAS  PubMed  Google Scholar 

  23. Kanaan, J. et al. UPF1-like helicase grip on nucleic acids dictates processivity. Nat. Commun. 9, 3752 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Fiorini, F., Boudvillain, M. & Le Hir, H. Tight intramolecular regulation of the human Upf1 helicase by its N- and C-terminal domains. Nucleic Acids Res. 41, 2404–2415 (2013).

    CAS  PubMed  Google Scholar 

  25. He, F., Brown, A. H. & Jacobson, A. Upf1p, Nmd2p, and Upf3p are interacting components of the yeast nonsense-mediated mRNA decay pathway. Mol. Cell. Biol. 17, 1580–1594 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Serin, G., Gersappe, A., Black, J. D., Aronoff, R. & Maquat, L. E. Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol. 21, 209–223 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gatfield, D., Unterholzner, L., Ciccarelli, F. D., Bork, P. & Izaurralde, E. Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. EMBO J. 22, 3960–3970 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kerenyi, Z. et al. Inter-kingdom conservation of mechanism of nonsense-mediated mRNA decay. EMBO J. 27, 1585–1595 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lykke-Andersen, J., Shu, M. D. & Steitz, J. A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121–1131 (2000).

    CAS  PubMed  Google Scholar 

  30. Mendell, J. T., Medghalchi, S. M., Lake, R. G., Noensie, E. N. & Dietz, H. C. Novel Upf2p orthologues suggest a functional link between translation initiation and nonsense surveillance complexes. Mol. Cell. Biol. 20, 8944–8957 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pulak, R. & Anderson, P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 7, 1885–1897 (1993).

    CAS  PubMed  Google Scholar 

  32. Maderazo, A. B., He, F., Mangus, D. A. & Jacobson, A. Upf1p control of nonsense mRNA translation is regulated by Nmd2p and Upf3p. Mol. Cell. Biol. 20, 4591–4603 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Maquat, L. E. & Serin, G. Nonsense-mediated mRNA decay: insights into mechanism from the cellular abundance of human Upf1, Upf2, Upf3, and Upf3X proteins. Cold Spring Harb. Symp. Quant. Biol. 66, 313–320 (2001).

    CAS  PubMed  Google Scholar 

  34. Chan, W. K. et al. A UPF3-mediated regulatory switch that maintains RNA surveillance. Nat. Struct. Mol. Biol. 16, 747–753 (2009).

    CAS  PubMed  Google Scholar 

  35. Kunz, J. B., Neu-Yilik, G., Hentze, M. W., Kulozik, A. E. & Gehring, N. H. Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation. RNA 12, 1015–1022 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lou, C. H., Shum, E. Y. & Wilkinson, M. F. RNA degradation drives stem cell differentiation. EMBO J. 34, 1606–1608 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shum, E. Y. et al. The antagonistic gene paralogs Upf3a and Upf3b govern nonsense-mediated RNA decay. Cell 165, 382–395 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Aznarez, I. et al. Mechanism of nonsense-mediated mRNA decay stimulation by splicing factor SRSF1. Cell Rep. 23, 2186–2198 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bühler, M., Steiner, S., Mohn, F., Paillusson, A. & Mühlemann, O. EJC-independent degradation of nonsense immunoglobulin-mu mRNA depends on 3′ UTR length. Nat. Struct. Mol. Biol. 13, 462–464 (2006).

    PubMed  Google Scholar 

  40. Chan, W. K. et al. An alternative branch of the nonsense-mediated decay pathway. EMBO J. 26, 1820–1830 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gehring, N. H. et al. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol. Cell 20, 65–75 (2005).

    CAS  PubMed  Google Scholar 

  42. Gregersen, L. H. et al. MOV10 Is a 5′ to 3′ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3′ UTRs. Mol. Cell 54, 573–585 (2014).

    CAS  PubMed  Google Scholar 

  43. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M. J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).

    PubMed  PubMed Central  Google Scholar 

  44. Le Hir, H., Izaurralde, E., Maquat, L. E. & Moore, M. J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869 (2000).

    PubMed  PubMed Central  Google Scholar 

  45. Lejeune, F., Li, X. & Maquat, L. E. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol. Cell 12, 675–687 (2003).

    CAS  PubMed  Google Scholar 

  46. Singh, G. et al. The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 151, 915–916 (2012).

    CAS  PubMed  Google Scholar 

  47. Lewis, B. P., Green, R. E. & Brenner, S. E. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl Acad. Sci. USA 100, 189–192 (2003).

    CAS  PubMed  Google Scholar 

  48. Pan, Q. et al. Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression. Genes Dev. 20, 153–158 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Weischenfeldt, J. et al. Mammalian tissues defective in nonsense-mediated mRNA decay display highly aberrant splicing patterns. Genome Biol. 13, R35 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Calvo, S. E., Pagliarini, D. J. & Mootha, V. K. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl Acad. Sci. USA 106, 7507–7512 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Skarshewski, A. et al. uPEPperoni: an online tool for upstream open reading frame location and analysis of transcript conservation. BMC Bioinformatics 15, 36 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. Mabin, J. W. et al. The exon junction complex undergoes a compositional switch that alters mRNP structure and nonsense-mediated mRNA decay activity. Cell Rep. 25, 2431–2446 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ashton-Beaucage, D. et al. The exon junction complex controls the splicing of MAPK and other long intron-containing transcripts in Drosophila. Cell 143, 251–262 (2010).

    CAS  PubMed  Google Scholar 

  54. Roignant, J. Y. & Treisman, J. E. Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene. Cell 143, 238–250 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, Z., Murigneux, V. & Le Hir, H. Transcriptome-wide modulation of splicing by the exon junction complex. Genome Biol. 15, 551 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Schmidt, U., Richter, K., Berger, A. B. & Lichter, P. In vivo BiFC analysis of Y14 and NXF1 mRNA export complexes: preferential localization within and around SC35 domains. J. Cell Biol. 172, 373–381 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chazal, P. E. et al. EJC core component MLN51 interacts with eIF3 and activates translation. Proc. Natl Acad. Sci. USA 110, 5903–5908 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Diem, M. D., Chan, C. C., Younis, I. & Dreyfuss, G. PYM binds the cytoplasmic exon-junction complex and ribosomes to enhance translation of spliced mRNAs. Nat. Struct. Mol. Biol. 14, 1173–1179 (2007).

    CAS  PubMed  Google Scholar 

  59. Isken, O. et al. Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell 133, 314–327 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hosoda, N., Kim, Y. K., Lejeune, F. & Maquat, L. E. CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nat. Struct. Mol. Biol. 12, 893–901 (2005).

    CAS  PubMed  Google Scholar 

  61. Lykke-Andersen, J., Shu, M. D. & Steitz, J. A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293, 1836–1839 (2001).

    CAS  PubMed  Google Scholar 

  62. Dostie, J. & Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060–1067 (2002).

    CAS  PubMed  Google Scholar 

  63. Sato, H. & Maquat, L. E. Remodeling of the pioneer translation initiation complex involves translation and the karyopherin importin beta. Genes Dev. 23, 2537–2550 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nagy, E. & Maquat, L. E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).

    CAS  PubMed  Google Scholar 

  65. Thermann, R. et al. Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J. 17, 3484–3494 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Buchwald, G. et al. Insights into the recruitment of the NMD machinery from the crystal structure of a core EJC-UPF3b complex. Proc. Natl Acad. Sci. USA 107, 10050–10055 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gehring, N. H., Neu-Yilik, G., Schell, T., Hentze, M. W. & Kulozik, A. E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 11, 939–949 (2003).

    CAS  PubMed  Google Scholar 

  68. Kim, V. N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science 293, 1832–1836 (2001).

    CAS  PubMed  Google Scholar 

  69. Yamashita, A., Ohnishi, T., Kashima, I., Taya, Y. & Ohno, S. Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev. 15, 2215–2228 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Viegas, M. H., Gehring, N. H., Breit, S., Hentze, M. W. & Kulozik, A. E. The abundance of RNPS1, a protein component of the exon junction complex, can determine the variability in efficiency of the Nonsense Mediated Decay pathway. Nucleic Acids Res. 35, 4542–4551 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sato, H., Hosoda, N. & Maquat, L. E. Efficiency of the pioneer round of translation affects the cellular site of nonsense-mediated mRNA decay. Mol. Cell 29, 255–262 (2008).

    CAS  PubMed  Google Scholar 

  72. Zhang, Z. & Krainer, A. R. Involvement of SR proteins in mRNA surveillance. Mol. Cell 16, 597–607 (2004).

    CAS  PubMed  Google Scholar 

  73. Alexandrov, A., Colognori, D., Shu, M. D. & Steitz, J. A. Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay. Proc. Natl Acad. Sci. USA 109, 21313–21318 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Barbosa, I. et al. Human CWC22 escorts the helicase eIF4AIII to spliceosomes and promotes exon junction complex assembly. Nat. Struct. Mol. Biol. 19, 983–990 (2012).

    CAS  PubMed  Google Scholar 

  75. Steckelberg, A. L., Altmueller, J., Dieterich, C. & Gehring, N. H. CWC22-dependent pre-mRNA splicing and eIF4A3 binding enables global deposition of exon junction complexes. Nucleic Acids Res. 43, 4687–4700 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Baird, T. D. et al. ICE1 promotes the link between splicing and nonsense-mediated mRNA decay. eLife 7, e33178 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Chakrabarti, S., Bonneau, F., Schussler, S., Eppinger, E. & Conti, E. Phospho-dependent and phospho-independent interactions of the helicase UPF1 with the NMD factors SMG5-SMG7 and SMG6. Nucleic Acids Res. 42, 9447–9460 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Durand, S., Franks, T. M. & Lykke-Andersen, J. Hyperphosphorylation amplifies UPF1 activity to resolve stalls in nonsense-mediated mRNA decay. Nat. Commun. 7, 12434 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Arias-Palomo, E. et al. The nonsense-mediated mRNA decay SMG-1 kinase is regulated by large-scale conformational changes controlled by SMG-8. Genes Dev. 25, 153–164 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Deniaud, A. et al. A network of SMG-8, SMG-9 and SMG-1 C-terminal insertion domain regulates UPF1 substrate recruitment and phosphorylation. Nucleic Acids Res. 43, 7600–7611 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Melero, R. et al. The RNA helicase DHX34 functions as a scaffold for SMG1-mediated UPF1 phosphorylation. Nat. Commun. 7, 10585 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yamashita, A. et al. SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay. Genes Dev. 23, 1091–1105 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ohnishi, T. et al. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol. Cell 12, 1187–1200 (2003).

    CAS  PubMed  Google Scholar 

  84. Okada-Katsuhata, Y. et al. N- and C-terminal Upf1 phosphorylations create binding platforms for SMG-6 and SMG-5:SMG-7 during NMD. Nucleic Acids Res. 40, 1251–1266 (2012).

    CAS  PubMed  Google Scholar 

  85. Hug, N. & Cáceres, J. F. The RNA helicase DHX34 activates NMD by promoting a transition from the surveillance to the decay-inducing complex. Cell Rep. 8, 1845–1856 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Neu-Yilik, G. et al. Dual function of UPF3B in early and late translation termination. EMBO J. 36, 2968–2986 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. He, F. & Jacobson, A. Nonsense-mediated mRNA decay: degradation of defective transcripts is only part of the story. Annu. Rev. Genet. 49, 339–366 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gao, Z. & Wilkinson, M. An RNA decay factor wears a new coat: UPF3B modulates translation termination. F1000Res. 6, 2159 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Schuller, A. P., Zinshteyn, B., Enam, S. U. & Green, R. Directed hydroxyl radical probing reveals Upf1 binding to the 80S ribosomal E site rRNA at the L1 stalk. Nucleic Acids Res. 46, 2060–2073 (2018).

    CAS  PubMed  Google Scholar 

  90. Belgrader, P., Cheng, J., Zhou, X., Stephenson, L. S. & Maquat, L. E. Mammalian nonsense codons can be cis effectors of nuclear mRNA half-life. Mol. Cell. Biol. 14, 8219–8228 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Cheng, J. & Maquat, L. E. Nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of pre-mRNA or the half-life of cytoplasmic mRNA. Mol. Cell. Biol. 13, 1892–1902 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kugler, W., Enssle, J., Hentze, M. W. & Kulozik, A. E. Nuclear degradation of nonsense mutated beta-globin mRNA: a post-transcriptional mechanism to protect heterozygotes from severe clinical manifestations of beta-thalassemia? Nucleic Acids Res. 23, 413–418 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ishigaki, Y., Li, X., Serin, G. & Maquat, L. E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617 (2001).

    CAS  PubMed  Google Scholar 

  94. Halstead, J. M. et al. Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 347, 1367–1671 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Popp, M. W. & Maquat, L. E. A TRICK’n way to see the pioneer round of translation. Science 347, 1316–1317 (2015).

    CAS  PubMed  Google Scholar 

  96. Trcek, T., Sato, H., Singer, R. H. & Maquat, L. E. Temporal and spatial characterization of nonsense-mediated mRNA decay. Genes Dev. 27, 541–551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Maquat, L. E., Tarn, W. Y. & Isken, O. The pioneer round of translation: features and functions. Cell 142, 368–374 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chiu, S. Y., Lejeune, F., Ranganathan, A. C. & Maquat, L. E. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes Dev. 18, 745–754 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hwang, J., Sato, H., Tang, Y., Matsuda, D. & Maquat, L. E. UPF1 association with the cap-binding protein, CBP80, promotes nonsense-mediated mRNA decay at two distinct steps. Mol. Cell 39, 396–409 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L. E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Durand, S. & Lykke-Andersen, J. Nonsense-mediated mRNA decay occurs during eIF4F-dependent translation in human cells. Nat. Struct. Mol. Biol. 20, 702–709 (2013).

    CAS  PubMed  Google Scholar 

  102. Rufener, S. C. & Mühlemann, O. eIF4E-bound mRNPs are substrates for nonsense-mediated mRNA decay in mammalian cells. Nat. Struct. Mol. Biol. 20, 710–717 (2013).

    CAS  PubMed  Google Scholar 

  103. Gao, Q., Das, B., Sherman, F. & Maquat, L. E. Cap-binding protein 1-mediated and eukaryotic translation initiation factor 4E-mediated pioneer rounds of translation in yeast. Proc. Natl Acad. Sci. USA 102, 4258–4263 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lopez, P. J. & Seraphin, B. Genomic-scale quantitative analysis of yeast pre-mRNA splicing: implications for splice-site recognition. RNA 5, 1135–1137 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Spingola, M., Grate, L., Haussler, D. & Ares, M. Jr. Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. RNA 5, 221–234 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Malabat, C., Feuerbach, F., Ma, L., Saveanu, C. & Jacquier, A. Quality control of transcription start site selection by nonsense-mediated-mRNA decay. eLife 4, e06722 (2015).

    PubMed Central  Google Scholar 

  107. Celik, A., He, F. & Jacobson, A. NMD monitors translational fidelity 24/7. Curr. Genet. 63, 1007–1010 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, J., Sun, X., Qian, Y., LaDuca, J. P. & Maquat, L. E. At least one intron is required for the nonsense-mediated decay of triosephosphate isomerase mRNA: a possible link between nuclear splicing and cytoplasmic translation. Mol. Cell. Biol. 18, 5272–5283 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, J., Sun, X., Qian, Y. & Maquat, L. E. Intron function in the nonsense-mediated decay of beta-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA 4, 801–815 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Matsuda, D., Hosoda, N., Kim, Y. K. & Maquat, L. E. Failsafe nonsense-mediated mRNA decay does not detectably target eIF4E-bound mRNA. Nat. Struct. Mol. Biol. 14, 974–979 (2007).

    CAS  PubMed  Google Scholar 

  111. Wang, J., Gudikote, J. P., Olivas, O. R. & Wilkinson, M. F. Boundary-independent polar nonsense-mediated decay. EMBO Rep. 3, 274–279 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Eberle, A. B., Stalder, L., Mathys, H., Orozco, R. Z. & Muhlemann, O. Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region. PLOS Biol. 6, e92 (2008).

    PubMed  PubMed Central  Google Scholar 

  113. Amrani, N. et al. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432, 112–118 (2004).

    CAS  PubMed  Google Scholar 

  114. Hosoda, N., Lejeune, F. & Maquat, L. E. Evidence that poly(A) binding protein C1 binds nuclear pre-mRNA poly(A) tails. Mol. Cell. Biol. 26, 3085–3097 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ivanov, A. et al. PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucleic Acids Res. 44, 7766–7776 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Fatscher, T., Boehm, V., Weiche, B. & Gehring, N. H. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. RNA 20, 1579–1592 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Joncourt, R., Eberle, A. B., Rufener, S. C. & Mühlemann, O. Eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay by two genetically separable mechanisms. PLOS ONE 9, e104391 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. Kervestin, S., Li, C., Buckingham, R. & Jacobson, A. Testing the faux-UTR model for NMD: analysis of Upf1p and Pab1p competition for binding to eRF3/Sup35p. Biochimie 94, 1560–1571 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Silva, A. L., Ribeiro, P., Inácio, A., Liebhaber, S. A. & Romao, L. Proximity of the poly(A)-binding protein to a premature termination codon inhibits mammalian nonsense-mediated mRNA decay. RNA 14, 563–576 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lejeune, F., Ranganathan, A. C. & Maquat, L. E. eIF4G is required for the pioneer round of translation in mammalian cells. Nat. Struct. Mol. Biol. 11, 992–1000 (2004).

    CAS  PubMed  Google Scholar 

  121. Mangus, D. A., Evans, M. C. & Jacobson, A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol. 4, 223 (2003).

    PubMed  PubMed Central  Google Scholar 

  122. Peixeiro, I. et al. Interaction of PABPC1 with the translation initiation complex is critical to the NMD resistance of AUG-proximal nonsense mutations. Nucleic Acids Res. 40, 1160–1173 (2012).

    CAS  PubMed  Google Scholar 

  123. Neu-Yilik, G. et al. Mechanism of escape from nonsense-mediated mRNA decay of human beta-globin transcripts with nonsense mutations in the first exon. RNA 17, 843–854 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang, J. & Maquat, L. E. Evidence that translation reinitiation abrogates nonsense-mediated mRNA decay in mammalian cells. EMBO J. 16, 826–833 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Baker, K. E. & Parker, R. Nonsense-mediated mRNA decay: terminating erroneous gene expression. Curr. Opin. Cell Biol. 16, 293–299 (2004).

    CAS  PubMed  Google Scholar 

  126. Kebaara, B. W. & Atkin, A. L. Long 3′-UTRs target wild-type mRNAs for nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Nucleic Acids Res. 37, 2771–2778 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tani, H. et al. Identification of hundreds of novel UPF1 target transcripts by direct determination of whole transcriptome stability. RNA Biol. 9, 1370–1379 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Toma, K. G., Rebbapragada, I., Durand, S. & Lykke-Andersen, J. Identification of elements in human long 3′ UTRs that inhibit nonsense-mediated decay. RNA 21, 887–897 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Chester, A. et al. The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J. 22, 3971–3982 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ge, Z., Quek, B. L., Beemon, K. L. & Hogg, J. R. Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway. eLife 5, e11155 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. Kishor, A., Ge, Z. & Hogg, J. R. hnRNP L-dependent protection of normal mRNAs from NMD subverts quality control in B cell lymphoma. EMBO J. 38, e99128 (2019).

    PubMed  Google Scholar 

  132. Imamachi, N., Salam, K. A., Suzuki, Y. & Akimitsu, N. A. GC-rich sequence feature in the 3′ UTR directs UPF1-dependent mRNA decay in mammalian cells. Genome Res. 27, 407–418 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Park, E. & Maquat, L. E. Staufen-mediated mRNA decay. Wiley Interdiscip. Rev. RNA 4, 423–435 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Marzluff, W. F. & Koreski, K. P. Birth and death of histone mRNAs. Trends Genet. 33, 745–759 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Kim, Y. K., Furic, L., Desgroseillers, L. & Maquat, L. E. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell 120, 195–208 (2005).

    CAS  PubMed  Google Scholar 

  136. Choe, J., Ahn, S. H. & Kim, Y. K. The mRNP remodeling mediated by UPF1 promotes rapid degradation of replication-dependent histone mRNA. Nucleic Acids Res. 42, 9334–9349 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Eberle, A. B., Lykke-Andersen, S., Mühlemann, O. & Jensen, T. H. SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat. Struct. Mol. Biol. 16, 49–55 (2009).

    CAS  PubMed  Google Scholar 

  138. Huntzinger, E., Kashima, I., Fauser, M., Sauliere, J. & Izaurralde, E. SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA 14, 2609–2617 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lykke-Andersen, S. et al. Human nonsense-mediated RNA decay initiates widely by endonucleolysis and targets snoRNA host genes. Genes Dev. 28, 2498–2517 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Schmid, M. & Jensen, T. H. The exosome: a multipurpose RNA-decay machine. Trends Biochem. Sci. 33, 501–510 (2008).

    CAS  PubMed  Google Scholar 

  141. Kurosaki, T., Miyoshi, K., Myers, J. R. & Maquat, L. E. NMD-degradome sequencing reveals ribosome-bound intermediates with 3′-end non-templated nucleotides. Nat. Struct. Mol. Biol. 25, 940–950 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Malecki, M. et al. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J. 32, 1842–1854 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Loh, B., Jonas, S. & Izaurralde, E. The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes Dev. 27, 2125–2138 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Unterholzner, L. & Izaurralde, E. SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol. Cell 16, 587–596 (2004).

    CAS  PubMed  Google Scholar 

  145. Yamashita, A. et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat. Struct. Mol. Biol. 12, 1054–1063 (2005).

    CAS  PubMed  Google Scholar 

  146. Cho, H. et al. SMG5-PNRC2 is functionally dominant compared with SMG5-SMG7 in mammalian nonsense-mediated mRNA decay. Nucleic Acids Res. 41, 1319–1328 (2013).

    CAS  PubMed  Google Scholar 

  147. Cho, H., Kim, K. M. & Kim, Y. K. Human proline-rich nuclear receptor coregulatory protein 2 mediates an interaction between mRNA surveillance machinery and decapping complex. Mol. Cell 33, 75–86 (2009).

    CAS  PubMed  Google Scholar 

  148. Lai, T. et al. Structural basis of the PNRC2-mediated link between mrna surveillance and decapping. Structure 20, 2025–2037 (2012).

    CAS  PubMed  Google Scholar 

  149. Lykke-Andersen, J. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol. Cell. Biol. 22, 8114–8121 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Dehecq, M. et al. Nonsense-mediated mRNA decay involves two distinct Upf1-bound complexes. EMBO J. 37, e99278 (2018).

    PubMed  PubMed Central  Google Scholar 

  151. Arribere, J. A. & Fire, A. Z. Nonsense mRNA suppression via nonstop decay. eLife 7, e33292 (2018).

    PubMed  PubMed Central  Google Scholar 

  152. Colombo, M., Karousis, E. D., Bourquin, J., Bruggmann, R. & Mühlemann, O. Transcriptome-wide identification of NMD-targeted human mRNAs reveals extensive redundancy between SMG6- and SMG7-mediated degradation pathways. RNA 23, 189–201 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Anders, K. R., Grimson, A. & Anderson, P. SMG-5, required for C.elegans nonsense-mediated mRNA decay, associates with SMG-2 and protein phosphatase 2A. EMBO J. 22, 641–650 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Chiu, S. Y., Serin, G., Ohara, O. & Maquat, L. E. Characterization of human Smg5/7a: a protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1. RNA 9, 77–87 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Fillman, C. & Lykke-Andersen, J. RNA decapping inside and outside of processing bodies. Curr. Opin. Cell Biol. 17, 326–331 (2005).

    CAS  PubMed  Google Scholar 

  156. Eulalio, A., Behm-Ansmant, I., Schweizer, D. & Izaurralde, E. P-Body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol. Cell. Biol. 27, 3970–3981 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Stalder, L. & Mühlemann, O. Processing bodies are not required for mammalian nonsense-mediated mRNA decay. RNA 15, 1265–1273 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Hu, W., Petzold, C., Coller, J. & Baker, K. E. Nonsense-mediated mRNA decapping occurs on polyribosomes in Saccharomyces cerevisiae. Nat. Struct. Mol. Biol. 17, 244–247 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Green, R. E. et al. Widespread predicted nonsense-mediated mRNA decay of alternatively-spliced transcripts of human normal and disease genes. Bioinformatics 19 (Suppl. 1), i118–i121 (2003).

    PubMed  Google Scholar 

  160. Mendell, J. T., Sharifi, N. A., Meyers, J. L., Martinez-Murillo, F. & Dietz, H. C. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat. Genet. 36, 1073–1078 (2004).

    CAS  PubMed  Google Scholar 

  161. Weischenfeldt, J. et al. NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev. 22, 1381–1396 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Wengrod, J. et al. Inhibition of nonsense-mediated RNA decay activates autophagy. Mol. Cell. Biol. 33, 2128–2135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Gardner, L. B. Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and the integrated stress response. Mol. Cell. Biol. 28, 3729–3741 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang, D., Wengrod, J. & Gardner, L. B. Overexpression of the c-myc oncogene inhibits nonsense-mediated RNA decay in B lymphocytes. J. Biol. Chem. 286, 40038–40043 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Goetz, A. E. & Wilkinson, M. Stress and the nonsense-mediated RNA decay pathway. Cell. Mol. Life Sci. 74, 3509–3531 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Karam, R. et al. The unfolded protein response is shaped by the NMD pathway. EMBO Rep. 16, 599–609 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Jia, J. et al. Caspases shutdown nonsense-mediated mRNA decay during apoptosis. Cell Death Differ. 22, 1754–1763 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Popp, M. W. & Maquat, L. E. Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics. Nat. Commun. 6, 6632 (2015).

    CAS  PubMed  Google Scholar 

  170. Medghalchi, S. M. et al. Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum. Mol. Genet. 10, 99–105 (2001).

    CAS  PubMed  Google Scholar 

  171. McIlwain, D. R. et al. Smg1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay. Proc. Natl Acad. Sci. USA 107, 12186–12191 (2010).

    PubMed  PubMed Central  Google Scholar 

  172. Li, T. et al. Smg6/Est1 licenses embryonic stem cell differentiation via nonsense-mediated mRNA decay. EMBO J. 34, 1630–1647 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Nelson, J. O., Moore, K. A., Chapin, A., Hollien, J. & Metzstein, M. M. Degradation of Gadd45 mRNA by nonsense-mediated decay is essential for viability. eLife 5, e12876 (2016).

    PubMed  PubMed Central  Google Scholar 

  174. Lou, C. H. et al. Nonsense-mediated RNA decay influences human embryonic stem cell fate. Stem Cell Rep. 6, 844–857 (2016).

    CAS  Google Scholar 

  175. Bruno, I. G. et al. Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol. Cell 42, 500–510 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Lou, C. H. et al. Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated RNA decay pathway. Cell Rep. 6, 748–764 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Wong, J. J. et al. Orchestrated intron retention regulates normal granulocyte differentiation. Cell 154, 583–595 (2013).

    CAS  PubMed  Google Scholar 

  178. Colak, D., Ji, S. J., Porse, B. T. & Jaffrey, S. R. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay. Cell 153, 1252–1265 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Belew, A. T. et al. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 512, 265–269 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Inoue, K. et al. Translation of SOX10 3′ untranslated region causes a complex severe neurocristopathy by generation of a deleterious functional domain. Hum. Mol. Genet. 16, 3037–3046 (2007).

    CAS  PubMed  Google Scholar 

  181. Bhuvanagiri, M. et al. 5-Azacytidine inhibits nonsense-mediated decay in a MYC-dependent fashion. EMBO Mol. Med. 6, 1593–1609 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Miller, J. N. & Pearce, D. A. Nonsense-mediated decay in genetic disease: friend or foe? Mutat. Res. Rev. Mutat. Res. 762, 52–64 (2014).

    CAS  PubMed  Google Scholar 

  183. Kerr, T. P., Sewry, C. A., Robb, S. A. & Roberts, R. G. Long mutant dystrophins and variable phenotypes: evasion of nonsense-mediated decay? Hum. Genet. 109, 402–407 (2001).

    CAS  PubMed  Google Scholar 

  184. Tarpey, P. S. et al. Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat. Genet. 39, 1127–1133 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Jaffrey, S. R. & Wilkinson, M. F. Nonsense-mediated RNA decay in the brain: emerging modulator of neural development and disease. Nat. Rev. Neurosci. 19, 715–728 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Fryns, J. P. & Buttiens, M. X-Linked mental retardation with marfanoid habitus. Am. J. Med. Genet. 28, 267–274 (1987).

    CAS  PubMed  Google Scholar 

  187. Opitz, J. M. & Kaveggia, E. G. Studies of malformation syndromes of man 33: the FG syndrome. An X-linked recessive syndrome of multiple congenital anomalies and mental retardation. Z. Kinderheilkd. 117, 1–18 (1974).

    CAS  PubMed  Google Scholar 

  188. Addington, A. M. et al. A novel frameshift mutation in UPF3B identified in brothers affected with childhood onset schizophrenia and autism spectrum disorders. Mol. Psychiatry 16, 238–239 (2011).

    CAS  PubMed  Google Scholar 

  189. Laumonnier, F. et al. Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonspecific mental retardation with or without autism. Mol. Psychiatry 15, 767–776 (2010).

    CAS  PubMed  Google Scholar 

  190. Lynch, S. A. et al. Broadening the phenotype associated with mutations in UPF3B: two further cases with renal dysplasia and variable developmental delay. Eur. J. Med. Genet. 55, 476–479 (2012).

    PubMed  Google Scholar 

  191. Xu, X. et al. Exome sequencing identifies UPF3B as the causative gene for a Chinese non-syndrome mental retardation pedigree. Clin. Genet. 83, 560–564 (2013).

    CAS  PubMed  Google Scholar 

  192. Nguyen, L. S. et al. Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders. Hum. Mol. Genet. 22, 1816–1825 (2013).

    CAS  PubMed  Google Scholar 

  193. Brunetti-Pierri, N. et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat. Genet. 40, 1466–1471 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Huang, L. et al. A Upf3b-mutant mouse model with behavioral and neurogenesis defects. Mol. Psychiatry 23, 1773–1786 (2018).

    CAS  PubMed  Google Scholar 

  195. Mao, H. et al. Rbm8a haploinsufficiency disrupts embryonic cortical development resulting in microcephaly. J. Neurosci. 35, 7003–7018 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Alrahbeni, T. et al. Full UPF3B function is critical for neuronal differentiation of neural stem cells. Mol. Brain 8, 33 (2015).

    PubMed  PubMed Central  Google Scholar 

  197. Jolly, L. A., Homan, C. C., Jacob, R., Barry, S. & Gecz, J. The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia regulates neural progenitor cell behaviour and neuronal outgrowth. Hum. Mol. Genet. 22, 4673–4687 (2013).

    CAS  PubMed  Google Scholar 

  198. Long, A. A. et al. The nonsense-mediated decay pathway maintains synapse architecture and synaptic vesicle cycle efficacy. J. Cell Sci. 123, 3303–3315 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Nguyen, L. S. et al. Transcriptome profiling of UPF3B/NMD-deficient lymphoblastoid cells from patients with various forms of intellectual disability. Mol. Psychiatry 17, 1103–1115 (2012).

    CAS  PubMed  Google Scholar 

  200. Perrin-Vidoz, L., Sinilnikova, O. M., Stoppa-Lyonnet, D., Lenoir, G. M. & Mazoyer, S. The nonsense-mediated mRNA decay pathway triggers degradation of most BRCA1 mRNAs bearing premature termination codons. Hum. Mol. Genet. 11, 2805–2814 (2002).

    CAS  PubMed  Google Scholar 

  201. Ware, M. D. et al. Does nonsense-mediated mRNA decay explain the ovarian cancer cluster region of the BRCA2 gene? Oncogene 25, 323–328 (2006).

    CAS  PubMed  Google Scholar 

  202. Anczukow, O. et al. Does the nonsense-mediated mRNA decay mechanism prevent the synthesis of truncated BRCA1, CHK2, and p53 proteins? Hum. Mutat. 29, 65–73 (2008).

    CAS  PubMed  Google Scholar 

  203. Pinyol, M. et al. Inactivation of RB1 in mantle-cell lymphoma detected by nonsense-mediated mRNA decay pathway inhibition and microarray analysis. Blood 109, 5422–5429 (2007).

    CAS  PubMed  Google Scholar 

  204. Reddy, J. C. et al. WT1-mediated transcriptional activation is inhibited by dominant negative mutant proteins. J. Biol. Chem. 270, 10878–10884 (1995).

    CAS  PubMed  Google Scholar 

  205. Mort, M., Ivanov, D., Cooper, D. N. & Chuzhanova, N. A. A meta-analysis of nonsense mutations causing human genetic disease. Hum. Mutat. 29, 1037–1047 (2008).

    CAS  PubMed  Google Scholar 

  206. Hu, Z., Yau, C. & Ahmed, A. A. A pan-cancer genome-wide analysis reveals tumour dependencies by induction of nonsense-mediated decay. Nat. Commun. 8, 15943 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Lindeboom, R. G., Supek, F. & Lehner, B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat. Genet. 48, 1112–1118 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Liu, C. et al. The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. Nat. Med. 20, 596–598 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Lu, J. et al. The nonsense-mediated RNA decay pathway is disrupted in inflammatory myofibroblastic tumors. J. Clin. Invest. 126, 3058–3062 (2016).

    PubMed  PubMed Central  Google Scholar 

  210. Chang, L. et al. The human RNA surveillance factor UPF1 regulates tumorigenesis by targeting Smad7 in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 35, 8 (2016).

    PubMed  PubMed Central  Google Scholar 

  211. Bokhari, A. et al. Targeting nonsense-mediated mRNA decay in colorectal cancers with microsatellite instability. Oncogenesis 7, 70 (2018).

    PubMed  PubMed Central  Google Scholar 

  212. Pastor, F., Kolonias, D., Giangrande, P. H. & Gilboa, E. Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay. Nature 465, 227–230 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Wang, D. et al. Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis. Mol. Cell. Biol. 31, 3670–3680 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank X. Rambout and H. Cho for critically reading the manuscript and R. Green for helpful conversations. The authors apologize to colleagues whose work was not referenced owing to space limitations. Work on nonsense-mediated mRNA decay in the Maquat laboratory is supported by the National Institutes of Health R01 grant GM059614. T.K. was partially supported by a Schmitt Program in Integrative Neuroscience from the University of Rochester Medical Center.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the discussion of the content and to the writing and editing of the manuscript before submission.

Corresponding author

Correspondence to Lynne E. Maquat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Dominant-negative proteins

Mutated proteins that can antagonize the function of the wild-type protein, often because the proteins are part of a macromolecular complex, which is rendered defective by the presence of the mutated protein.

β0-thalassaemia

Thalassaemia is a blood disorder causing anaemia. In the severe form of β0-thalassaemia, no β-globin protein is detectable in peripheral blood.

NMD-activating feature

An mRNA feature that increases the probability of the mRNA undergoing nonsense-mediated mRNA decay. Examples include an exon–exon junction complex deposited as a consequence of splicing more than ~30–35 nucleotides downstream of a termination codon, an unusually long (>1 kb) 3′ untranslated region or a selenocysteine codon that is interpreted as a stop codon.

Upstream open reading frame

(uORF). A short ORF in the 5′ end of mRNA (upstream of the main ORF) that can regulate the translation of the main ORF.

A site

The amino-acyl site on the ribosome is where charged tRNA molecules (with the exception of the translation-initiating charged tRNA) bind during protein synthesis.

Peptidyl-tRNA hydrolysis

A process that occurs during translation when a water molecule attacks the bond between the nascent peptide and the tRNA molecule in the ribosome, thereby releasing the completed polypeptide.

Staufen-mediated mRNA decay

An mRNA decay pathway in which the staufen protein recruits UPF1 to an mRNA 3′ untranslated region, causing translation-dependent destabilization of the mRNA.

Exosome

A large protein complex that degrades mRNAs through its 3′-to-5′ exoribonuclease activities.

Selenocysteine

An amino acid that is inserted into mRNA bearing a selenocysteine insertion sequence that directs its incorporation at UGA codons, which otherwise would be recognized as termination codons.

Intron retention

Occurs when an intron fails to be excised out of a pre-mRNA during alternative splicing, giving rise to a transcript with a premature termination codon.

Programmed ribosomal frameshifts

(PRFs). During translation, incidents of ribosome ‘slippage’ and adoption of a new reading frame.

Pseudoknot

A tertiary RNA structure formed by base pairing between the loop of a stem–loop structure and nearby ribonucleotides. It is extremely difficult for helicases to unwind this structure.

Waardenburg syndrome

A disease manifesting defects in tissues derived from cells in the neural crest lineage (neurocristopathy). Individuals with Waardenburg syndrome have defects in hair, skin and eye pigmentation and may suffer from hearing loss.

Hirschprung disease

A congenital malady in which nerve cells are missing from the end of the bowel, thereby causing problems with passing stool.

Lujan–Fryns syndrome

An X-linked disorder causing mild to moderate intellectual disability, facial dysmorphism and arms and legs that are abnormally long and slender.

FG syndrome

An X-linked disorder characterized by intellectual disability, poor muscle tone and macrocephaly.

Tumour neo-antigens

Peptides absent from normal cells that are produced by tumour-mutated genes that are presented to and activate the immune system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurosaki, T., Popp, M.W. & Maquat, L.E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol 20, 406–420 (2019). https://doi.org/10.1038/s41580-019-0126-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-019-0126-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing