Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The stringent response and physiological roles of (pp)pGpp in bacteria

Abstract

The stringent response is a stress signalling system mediated by the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) in response to nutrient deprivation. Recent research highlights the complexity and broad range of functions that these alarmones control. This Review provides an update on our current understanding of the enzymes involved in ppGpp, pppGpp and guanosine 5′-monophosphate 3′-diphosphate (pGpp) (collectively (pp)pGpp) turnover, including those shown to produce pGpp and its analogue (pp)pApp. We describe the well-known interactions with RNA polymerase as well as a broader range of cellular target pathways controlled by (pp)pGpp, including DNA replication, transcription, nucleotide synthesis, ribosome biogenesis and function, as well as lipid metabolism. Finally, we review the role of ppGpp and pppGpp in bacterial pathogenesis, providing examples of how these nucleotides are involved in regulating many aspects of virulence and chronic infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and hydrolysis of (pp)pGpp by RSH enzymes.
Fig. 2: (p)ppGpp-mediated inhibition of purine nucleotide synthesis.
Fig. 3: ppGpp binding to RNA polymerase.
Fig. 4: Control of protein translation by (p)ppGpp.
Fig. 5: Roles of (p)ppGpp in bacterial pathogenicity.

Similar content being viewed by others

References

  1. Boutte, C. C. & Crosson, S. Bacterial lifestyle shapes stringent response activation. Trends Microbiol. 21, 174–180 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Potrykus, K. & Cashel, M. (p)ppGpp: still magical? Annu. Rev. Microbiol. 62, 35–51 (2008).

    CAS  PubMed  Google Scholar 

  3. Atkinson, G. C., Tenson, T. & Hauryliuk, V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS ONE 6, e23479 (2011). This article provides an understanding of the evolution of the RSH superfamily as well as basic nomenclature.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gaca, A. O. et al. From (p)ppGpp to (pp)pGpp: characterization of regulatory effects of pGpp synthesized by the small alarmone synthetase of Enterococcus faecalis. J. Bacteriol. 197, 2908–2919 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, N. et al. The Ps and Qs of alarmone synthesis in Staphylococcus aureus. PLoS ONE 14, e0213630 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Petchiappan, A., Naik, S. Y. & Chatterji, D. RelZ-mediated stress response in Mycobacterium smegmatis: pGpp synthesis and its regulation. J. Bacteriol. https://doi.org/10.1128/jb.00444-19 (2020).

  7. Ruwe, M., Kalinowski, J. & Persicke, M. Identification and functional characterization of small alarmone synthetases in Corynebacterium glutamicum. Front. Microbiol. 8, 1601 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. Yang, J. et al. Systemic characterization of pppGpp, ppGpp and pGpp targets in Bacillus reveals NahA converts (p)ppGpp to pGpp to regulate alarmone composition and signaling. Preprint at biorxiv https://doi.org/10.1101/2020.03.23.003749 (2020). The authors show the production of pGpp in vivo via the hydrolysis of (p)ppGpp.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ronneau, S. & Hallez, R. Make and break the alarmone: regulation of (p)ppGpp synthetase/hydrolase enzymes in bacteria. FEMS Microbiol. Rev. 43, 389–400 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Irving, S. E. & Corrigan, R. M. Triggering the stringent response: signals responsible for activating (p)ppGpp synthesis in bacteria. Microbiology 164, 268–276 (2018).

    CAS  PubMed  Google Scholar 

  11. Cashel, M. & Gallant, J. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 221, 838–841 (1969). This is the seminal article in the field describing the two ‘magic spots’ of (p)ppGpp.

    CAS  PubMed  Google Scholar 

  12. Oki, T., Yoshimoto, A., Ogasawara, T., Sato, S. & Takamatsu, A. Occurrence of pppApp-synthesizing activity in actinomycetes and isolation of purine nucleotide pyrophosphotransferase. Arch. Microbiol. 107, 183–187 (1976).

    CAS  PubMed  Google Scholar 

  13. Rhaese, H. J., Grade, R. & Dichtelmuller, H. Studies on the control of development. Correlation of initiucleotides in Bacillus subtilis. Eur. J. Biochem. 64, 205–213 (1976).

    CAS  PubMed  Google Scholar 

  14. Jimmy, S. et al. A widespread toxin-antitoxin system exploiting growth control via alarmone signaling. Proc. Natl Acad. Sci. USA 117, 10500–10510 (2020).

    CAS  PubMed  Google Scholar 

  15. Steinchen, W. et al. Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone. Proc. Natl Acad. Sci. USA 112, 13348–13353 (2015). This article is the first to show allosteric regulation of an SAS, which had been previously overlooked due to the absence of a C-terminal regulatory region.

    CAS  PubMed  Google Scholar 

  16. Sy, J. In vitro degradation of guanosine 5′-diphosphate, 3′-diphosphate. Proc. Natl Acad. Sci. USA 74, 5529–5533 (1977).

    CAS  PubMed  Google Scholar 

  17. Stent, G. S. & Brenner, S. A genetic locus for the regulation of ribonucleic acid synthesis. Proc. Natl Acad. Sci. USA 47, 2005–2014 (1961).

    CAS  PubMed  Google Scholar 

  18. Hogg, T., Mechold, U., Malke, H., Cashel, M. & Hilgenfeld, R. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response. Cell 117, 57–68 (2004).

    CAS  PubMed  Google Scholar 

  19. Mechold, U., Murphy, H., Brown, L. & Cashel, M. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. J. Bacteriol. 184, 2878–2888 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bag, S., Das, B., Dasgupta, S. & Bhadra, R. K. Mutational analysis of the (p)ppGpp synthetase activity of the Rel enzyme of Mycobacterium tuberculosis. Arch. Microbiol. 196, 575–588 (2014).

    CAS  PubMed  Google Scholar 

  21. Geiger, T. et al. Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus. Infect. Immun. 78, 1873–1883 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Takada, H. et al. Ribosome association primes the stringent factor Rel for recruitment of deacylated tRNA to ribosomal A-site. Preprint at biorxiv https://doi.org/10.1101/2020.01.17.910273v1 (2020).

    Article  Google Scholar 

  23. Arenz, S. et al. The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis. Nucleic Acids Res. 44, 6471–6481 (2016). This is one of three articles showing the structure of RelA in complex with the 70S ribosome.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown, A., Fernandez, I. S., Gordiyenko, Y. & Ramakrishnan, V. Ribosome-dependent activation of stringent control. Nature 534, 277–280 (2016). This is one of three articles showing the structure of RelA in complex with the 70S ribosome.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Loveland, A. B. et al. Ribosome*RelA structures reveal the mechanism of stringent response activation. eLife 5, e17029 (2016). This is one of three articles showing the structure of RelA in complex with the 70S ribosome.

    PubMed  PubMed Central  Google Scholar 

  26. Kudrin, P. et al. The ribosomal A-site finger is crucial for binding and activation of the stringent factor RelA. Nucleic Acids Res. 46, 1973–1983 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tamman, H. et al. A nucleotide-switch mechanism mediates opposing catalytic activities of Rel enzymes. Nat. Chem. Biol. (2020).

  28. Aravind, L. & Koonin, E. V. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem. Sci. 23, 469–472 (1998).

    CAS  PubMed  Google Scholar 

  29. Sajish, M., Tiwari, D., Rananaware, D., Nandicoori, V. K. & Prakash, B. A charge reversal differentiates (p)ppGpp synthesis by monofunctional and bifunctional Rel proteins. J. Biol. Chem. 282, 34977–34983 (2007).

    CAS  PubMed  Google Scholar 

  30. Sajish, M., Kalayil, S., Verma, S. K., Nandicoori, V. K. & Prakash, B. The significance of EXDD and RXKD motif conservation in Rel proteins. J. Biol. Chem. 284, 9115–9123 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiao, H. et al. Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266, 5980–5990 (1991).

    CAS  PubMed  Google Scholar 

  32. An, G., Justesen, J., Watson, R. J. & Friesen, J. D. Cloning the spoT gene of Escherichia coli: identification of the spoT gene product. J. Bacteriol. 137, 1100–1110 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Keasling, J. D., Bertsch, L. & Kornberg, A. Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase. Proc. Natl Acad. Sci. USA 90, 7029–7033 (1993).

    CAS  PubMed  Google Scholar 

  34. Battesti, A. & Bouveret, E. Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol. Microbiol. 62, 1048–1063 (2006).

    CAS  PubMed  Google Scholar 

  35. Germain, E. et al. YtfK activates the stringent response by triggering the alarmone synthetase SpoT in Escherichia coli. Nat. Commun. 10, 5763 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, J. W., Park, Y. H. & Seok, Y. J. Rsd balances (p)ppGpp level by stimulating the hydrolase activity of SpoT during carbon source downshift in Escherichia coli. Proc. Natl Acad. Sci. USA 115, E6845–E6854 (2018).

    CAS  PubMed  Google Scholar 

  37. Haseltine, W. A. & Block, R. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc. Natl Acad. Sci. USA 70, 1564–1568 (1973).

    CAS  PubMed  Google Scholar 

  38. Wendrich, T. M., Blaha, G., Wilson, D. N., Marahiel, M. A. & Nierhaus, K. H. Dissection of the mechanism for the stringent factor RelA. Mol. Cell 10, 779–788 (2002).

    CAS  PubMed  Google Scholar 

  39. Knutsson Jenvert, R. M. & Holmberg Schiavone, L. Characterization of the tRNA and ribosome-dependent pppGpp-synthesis by recombinant stringent factor from Escherichia coli. FEBS J. 272, 685–695 (2005).

    CAS  PubMed  Google Scholar 

  40. English, B. P. et al. Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc. Natl Acad. Sci. USA 108, E365–E373 (2011).

    CAS  PubMed  Google Scholar 

  41. Li, W. et al. Effects of amino acid starvation on RelA diffusive behavior in live Escherichia coli. Mol. Microbiol. 99, 571–585 (2016).

    CAS  PubMed  Google Scholar 

  42. Gratani, F. L. et al. Regulation of the opposing (p)ppGpp synthetase and hydrolase activities in a bifunctional RelA/SpoT homologue from Staphylococcus aureus. PLoS Genet. 14, e1007514 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Shyp, V. et al. Positive allosteric feedback regulation of the stringent response enzyme RelA by its product. EMBO Rep. 13, 835–839 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Abranches, J. et al. The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis. J. Bacteriol. 191, 2248–2256 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nanamiya, H. et al. Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis. Mol. Microbiol. 67, 291–304 (2008). This is the first published article identifying an SAS.

    CAS  PubMed  Google Scholar 

  46. Pando, J. M. et al. Ethanol-induced stress response of Staphylococcus aureus. Can. J. Microbiol. 63, 745–757 (2017).

    CAS  PubMed  Google Scholar 

  47. Geiger, T., Kastle, B., Gratani, F. L., Goerke, C. & Wolz, C. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J. Bacteriol. 196, 894–902 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Das, B., Pal, R. R., Bag, S. & Bhadra, R. K. Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene. Mol. Microbiol. 72, 380–398 (2009).

    CAS  PubMed  Google Scholar 

  49. Murdeshwar, M. S. & Chatterji, D. MS_RHII-RSD, a dual-function RNase HII-(p)ppGpp synthetase from Mycobacterium smegmatis. J. Bacteriol. 194, 4003–4014 (2012). This article identifies the first RSH superfamily enzyme that has an enzymatic domain that is not involved in (p)ppGpp metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Krishnan, S., Petchiappan, A., Singh, A., Bhatt, A. & Chatterji, D. R-loop induced stress response by second (p)ppGpp synthetase in Mycobacterium smegmatis: functional and domain interdependence. Mol. Microbiol. 102, 168–182 (2016).

    CAS  PubMed  Google Scholar 

  51. Ruwe, M., Ruckert, C., Kalinowski, J. & Persicke, M. Functional characterization of a small alarmone hydrolase in Corynebacterium glutamicum. Front. Microbiol. 9, 916 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Sun, D. et al. A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. Nat. Struct. Mol. Biol. 17, 1188–1194 (2010).

    CAS  PubMed  Google Scholar 

  53. Ding, C. C. et al. MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis. Nat. Metab. 2, 270–277 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nishino, T., Gallant, J., Shalit, P., Palmer, L. & Wehr, T. Regulatory nucleotides involved in the Rel function of Bacillus subtilis. J. Bacteriol. 140, 671–679 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, Y., Zbornikova, E., Rejman, D. & Gerdes, K. Novel (p)ppGpp binding and metabolizing proteins of Escherichia coli. mBio 9, e02188–17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gao, A., Vasilyev, N., Kaushik, A., Duan, W. & Serganov, A. Principles of RNA and nucleotide discrimination by the RNA processing enzyme RppH. Nucleic Acids Res. 48, 3776–3788 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ooga, T. et al. Degradation of ppGpp by nudix pyrophosphatase modulates the transition of growth phase in the bacterium Thermus thermophilus. J. Biol. Chem. 284, 15549–15556 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Travers, A. A. ppApp alters transcriptional selectivity of Escherichia coli RNA polymerase. FEBS Lett. 94, 345–348 (1978).

    CAS  PubMed  Google Scholar 

  59. Bruhn-Olszewska, B. et al. Structure-function comparisons of (p)ppApp vs (p)ppGpp for Escherichia coli RNA polymerase binding sites and for rrnB P1 promoter regulatory responses vitro. Biochim. Biophys. Acta Gene Regul. Mech. 1861, 731–742 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ahmad, S. et al. An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature 575, 674–678 (2019). This article shows the role of signalling nucleotides as toxins.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, D., de Souza, R. F., Anantharaman, V., Iyer, L. M. & Aravind, L. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Direct 7, 18 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jamet, A. et al. A widespread family of polymorphic toxins encoded by temperate phages. BMC Biol. 15, 75 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Dedrick, R. M. et al. Prophage-mediated defence against viral attack and viral counter-defence. Nat. Microbiol. 2, 16251 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Corrigan, R. M., Bellows, L. E., Wood, A. & Grundling, A. ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proc. Natl Acad. Sci. USA 113, E1710–E1719 (2016).

    CAS  PubMed  Google Scholar 

  65. Wang, B. et al. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp. Nat. Chem. Biol. 15, 141–150 (2019). This work uses a capture compound to expand the repertoire of (p)ppGpp target proteins.

    PubMed  Google Scholar 

  66. Steinchen, W. & Bange, G. The magic dance of the alarmones (p)ppGpp. Mol. Microbiol. 101, 531–544 (2016).

    CAS  PubMed  Google Scholar 

  67. Frick, D. N. & Richardson, C. C. DNA primases. Annu. Rev. Biochem. 70, 39–80 (2001).

    CAS  PubMed  Google Scholar 

  68. Wang, J. D., Sanders, G. M. & Grossman, A. D. Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128, 865–875 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Maciag, M., Kochanowska, M., Lyzen, R., Wegrzyn, G. & Szalewska-Palasz, A. ppGpp inhibits the activity of Escherichia coli DnaG primase. Plasmid 63, 61–67 (2010).

    CAS  PubMed  Google Scholar 

  70. Rymer, R. U. et al. Binding mechanism of metalNTP substrates and stringent-response alarmones to bacterial DnaG-type primases. Structure 20, 1478–1489 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gaca, A. O., Abranches, J., Kajfasz, J. K. & Lemos, J. A. Global transcriptional analysis of the stringent response in Enterococcus faecalis. Microbiology 158, 1994–2004 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Corrigan, R. M., Bowman, L., Willis, A. R., Kaever, V. & Grundling, A. Cross-talk between two nucleotide-signaling pathways in Staphylococcus aureus. J. Biol. Chem. 290, 5826–5839 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Samarrai, W. et al. Differential responses of Bacillus subtilis rRNA promoters to nutritional stress. J. Bacteriol. 193, 723–733 (2011).

    CAS  PubMed  Google Scholar 

  74. Schreiber, G., Ron, E. Z. & Glaser, G. ppGpp-mediated regulation of DNA replication and cell division in Escherichia coli. Curr. Microbiol. 30, 27–32 (1995).

    CAS  PubMed  Google Scholar 

  75. Ferullo, D. J. & Lovett, S. T. The stringent response and cell cycle arrest in Escherichia coli. PLoS Genet. 4, e1000300 (2008).

    PubMed  PubMed Central  Google Scholar 

  76. Chiaramello, A. E. & Zyskind, J. W. Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. J. Bacteriol. 172, 2013–2019 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Riber, L. & Lobner-Olesen, A. Inhibition of Escherichia coli chromosome replication by rifampicin treatment or during the stringent response is overcome by de novo DnaA protein synthesis. Mol. Microbiol. https://doi.org/10.1111/mmi.14531 (2020).

  78. Kraemer, J. A., Sanderlin, A. G. & Laub, M. T. The stringent response inhibits DNA replication initiation in E. coli by modulating supercoiling of oriC. mBio 10, e01330-19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Magnan, D. & Bates, D. Regulation of DNA replication initiation by chromosome structure. J. Bacteriol. 197, 3370–3377 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Fernandez-Coll, L. et al. The absence of (p)ppGpp renders initiation of Escherichia coli chromosomal DNA synthesis independent of growth rates. mBio 11, (2020).

  81. Degnen, S. T. & Newton, A. Chromosome replication during development in Caulobacter crescentus. J. Mol. Biol. 64, 671–680 (1972).

    CAS  PubMed  Google Scholar 

  82. Delaby, M., Panis, G. & Viollier, P. H. Bacterial cell cycle and growth phase switch by the essential transcriptional regulator CtrA. Nucleic Acids Res. 47, 10628–10644 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hallez, R., Delaby, M., Sanselicio, S. & Viollier, P. H. Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nat. Rev. Microbiol. 15, 137–148 (2017).

    CAS  PubMed  Google Scholar 

  84. Boutte, C. C., Henry, J. T. & Crosson, S. ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus. J. Bacteriol. 194, 28–35 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gonzalez, D. & Collier, J. Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus. J. Bacteriol. 196, 2514–2525 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. Lesley, J. A. & Shapiro, L. SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus. J. Bacteriol. 190, 6867–6880 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lopez, J. M., Dromerick, A. & Freese, E. Response of guanosine 5′-triphosphate concentration to nutritional changes and its significance for Bacillus subtilis sporulation. J. Bacteriol. 146, 605–613 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kriel, A. et al. Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol. Cell 48, 231–241 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Osaka, N. et al. Novel (p)ppGpp(0) suppressor mutations reveal an unexpected link between methionine catabolism and GTP synthesis in Bacillus subtilis. Mol. Microbiol. 113, 1155–1169 (2020).

    CAS  PubMed  Google Scholar 

  90. Wang, B., Grant, R. A. & Laub, M. T. ppGpp coordinates nucleotide and amino-acid synthesis in E. coli during starvation. Mol. Cell https://doi.org/10.1016/j.molcel.2020.08.005 (2020).

  91. Stayton, M. M. & Fromm, H. J. Guanosine 5′-diphosphate-3′-diphosphate inhibition of adenylosuccinate synthetase. J. Biol. Chem. 254, 2579–2581 (1979).

    CAS  PubMed  Google Scholar 

  92. Hou, Z., Cashel, M., Fromm, H. J. & Honzatko, R. B. Effectors of the stringent response target the active site of Escherichia coli adenylosuccinate synthetase. J. Biol. Chem. 274, 17505–17510 (1999).

    CAS  PubMed  Google Scholar 

  93. Hochstadt-Ozer, J. & Cashel, M. The regulation of purine utilization in bacteria. V. Inhibition of purine phosphoribosyltransferase activities and purine uptake in isolated membrane vesicles by guanosine tetraphosphate. J. Biol. Chem. 247, 7067–7072 (1972). This article links the stringent response with regulation of purine metabolism.

    CAS  PubMed  Google Scholar 

  94. Liu, K., Bittner, A. N. & Wang, J. D. Diversity in (p)ppGpp metabolism and effectors. Curr. Opin. Microbiol. 24, 72–79 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Liu, K. et al. Molecular mechanism and evolution of guanylate kinase regulation by (p)ppGpp. Mol. Cell 57, 735–749 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Anderson, B. W. et al. Evolution of (p)ppGpp-HPRT regulation through diversification of an allosteric oligomeric interaction. eLife 8, e47534 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Anderson, B. W., Hao, A., Satyshur, K. A., Keck, J. L. & Wang, J. D. Molecular mechanism of regulation of the purine salvage enzyme XPRT by the alarmones pppGpp, ppGpp, and pGpp. J. Mol. Biol. 432, 4108–4126 (2020).

    CAS  PubMed  Google Scholar 

  98. Zhang, Y. E. et al. (p)ppGpp regulates a bacterial nucleosidase by an allosteric two-domain switch. Mol. Cell 74, 1239–1249 e1234 (2019).

    CAS  PubMed  Google Scholar 

  99. Mechold, U., Potrykus, K., Murphy, H., Murakami, K. S. & Cashel, M. Differential regulation by ppGpp versus pppGpp in Escherichia coli. Nucleic Acids Res. 41, 6175–6189 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gourse, R. L. et al. Transcriptional responses to ppGpp and DksA. Annu. Rev. Microbiol. 72, 163–184 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ross, W., Vrentas, C. E., Sanchez-Vazquez, P., Gaal, T. & Gourse, R. L. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol. Cell 50, 420–429 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ross, W. et al. ppGpp binding to a site at the RNAP-DksA interface accounts for its dramatic effects on transcription initiation during the stringent response. Mol. Cell 62, 811–823 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Molodtsov, V. et al. Allosteric effector ppGpp potentiates the inhibition of transcript initiation by DksA. Mol. Cell 69, 828–839 e825 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T. & Gerdes, K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 13, 298–309 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Paul, B. J. et al. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118, 311–322 (2004). This is the first article to implicate DksA in the transcriptional changes during the stringent response.

    CAS  PubMed  Google Scholar 

  106. Paul, B. J., Berkmen, M. B. & Gourse, R. L. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc. Natl Acad. Sci. USA 102, 7823–7828 (2005).

    CAS  PubMed  Google Scholar 

  107. Sanchez-Vazquez, P., Dewey, C. N., Kitten, N., Ross, W. & Gourse, R. L. Genome-wide effects on Escherichia coli transcription from ppGpp binding to its two sites on RNA polymerase. Proc. Natl Acad. Sci. USA 116, 8310–8319 (2019).

    CAS  PubMed  Google Scholar 

  108. Durfee, T., Hansen, A. M., Zhi, H., Blattner, F. R. & Jin, D. J. Transcription profiling of the stringent response in Escherichia coli. J. Bacteriol. 190, 1084–1096 (2008).

    CAS  PubMed  Google Scholar 

  109. Krasny, L. & Gourse, R. L. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. Embo J. 23, 4473–4483 (2004). This study shows how rRNA transcription is regulated differently in Gram-positive bacteria through control of initiating nucleoside triphosphate levels.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sherlock, M. E., Sudarsan, N. & Breaker, R. R. Riboswitches for the alarmone ppGpp expand the collection of RNA-based signaling systems. Proc. Natl Acad. Sci. USA 115, 6052–6057 (2018). This article is the first to show ppGpp binding of non-protein targets and suggests an evolutionary link between the stringent response and the RNA world.

    CAS  PubMed  Google Scholar 

  111. Krasny, L., Tiserova, H., Jonak, J., Rejman, D. & Sanderova, H. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol. Microbiol. 69, 42–54 (2008).

    CAS  PubMed  Google Scholar 

  112. Kastle, B. et al. rRNA regulation during growth and under stringent conditions in Staphylococcus aureus. Env. Microbiol. 17, 4394–4405 (2015).

    Google Scholar 

  113. Sonenshein, A. L. CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Curr. Opin. Microbiol. 8, 203–207 (2005).

    CAS  PubMed  Google Scholar 

  114. Majerczyk, C. D. et al. Direct targets of CodY in Staphylococcus aureus. J. Bacteriol. 192, 2861–2877 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Geiger, T. et al. The stringent response of Staphylococcus aureus and its impact on survival after phagocytosis through the induction of intracellular PSMs expression. PLoS Pathog. 8, e1003016 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Legault, L., Jeantet, C. & Gros, F. Inhibition of in vitro protein synthesis by ppGpp. FEBS Lett. 27, 71–75 (1972).

    CAS  PubMed  Google Scholar 

  117. Vinogradova, D. S. et al. How the initiating ribosome copes with ppGpp to translate mRNAs. PLoS Biol. 18, e3000593 (2020). This article shows that the inhibition of translation initiation by ppGpp is different depending on the mRNA bound, allowing control of the reduction of translation during the stringent response.

    PubMed  PubMed Central  Google Scholar 

  118. Rojas, A. M., Ehrenberg, M., Andersson, S. G. & Kurland, C. G. ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis. Mol. Gen. Genet. 197, 36–45 (1984).

    CAS  PubMed  Google Scholar 

  119. Kihira, K. et al. Crystal structure analysis of the translation factor RF3 (release factor 3). FEBS Lett. 586, 3705–3709 (2012).

    CAS  PubMed  Google Scholar 

  120. Feng, B. et al. Structural and functional insights into the mode of action of a universally conserved Obg GTPase. PLoS Biol. 12, e1001866 (2014).

    PubMed  PubMed Central  Google Scholar 

  121. Persky, N. S., Ferullo, D. J., Cooper, D. L., Moore, H. R. & Lovett, S. T. The ObgE/CgtA GTPase influences the stringent response to amino acid starvation in Escherichia coli. Mol. Microbiol. 73, 253–266 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Tagami, K. et al. Expression of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp(0) mutant of Bacillus subtilis triggers YvyD-dependent dimerization of ribosome. Microbiologyopen 1, 115–134 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Izutsu, K., Wada, A. & Wada, C. Expression of ribosome modulation factor (RMF) in Escherichia coli requires ppGpp. Genes Cell 6, 665–676 (2001).

    CAS  Google Scholar 

  124. Prossliner, T., Skovbo Winther, K., Sorensen, M. A. & Gerdes, K. Ribosome Hibernation. Annu. Rev. Genet. 52, 321–348 (2018).

    CAS  PubMed  Google Scholar 

  125. Basu, A. & Yap, M. N. Disassembly of the Staphylococcus aureus hibernating 100 S ribosome by an evolutionarily conserved GTPase. Proc. Natl Acad. Sci. USA 114, E8165–E8173 (2017).

    CAS  PubMed  Google Scholar 

  126. Tsui, H. C., Feng, G. & Winkler, M. E. Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock. J. Bacteriol. 178, 5719–5731 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, Y. et al. HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions. Nat. Struct. Mol. Biol. 22, 906–913 (2015).

    CAS  PubMed  Google Scholar 

  128. Seyfzadeh, M., Keener, J. & Nomura, M. spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli. Proc. Natl Acad. Sci. USA 90, 11004–11008 (1993).

    CAS  PubMed  Google Scholar 

  129. Vadia, S. et al. Fatty acid availability sets cell envelope capacity and dictates microbial cell size. Curr. Biol. 27, 1757–1767 e1755 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Gully, D., Moinier, D., Loiseau, L. & Bouveret, E. New partners of acyl carrier protein detected in Escherichia coli by tandem affinity purification. FEBS Lett. 548, 90–96 (2003).

    CAS  PubMed  Google Scholar 

  131. Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537 (2005).

    CAS  PubMed  Google Scholar 

  132. Sinha, A. K., Winther, K. S., Roghanian, M. & Gerdes, K. Fatty acid starvation activates RelA by depleting lysine precursor pyruvate. Mol. Microbiol. 112, 1339–1349 (2019).

    CAS  PubMed  Google Scholar 

  133. Battesti, A. & Bouveret, E. Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction. J. Bacteriol. 191, 616–624 (2009). This article shows that SpoT mediates a response to fatty acid starvation through interaction with ACP.

    CAS  PubMed  Google Scholar 

  134. Pulschen, A. A. et al. The stringent response plays a key role in Bacillus subtilis survival of fatty acid starvation. Mol. Microbiol. 103, 698–712 (2017).

    CAS  PubMed  Google Scholar 

  135. Roghanian, M., Semsey, S., Lobner-Olesen, A. & Jalalvand, F. (p)ppGpp-mediated stress response induced by defects in outer membrane biogenesis and ATP production promotes survival in Escherichia coli. Sci. Rep. 9, 2934 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. Merlie, J. P. & Pizer, L. I. Regulation of phospholipid synthesis in Escherichia coli by guanosine tetraphosphate. J. Bacteriol. 116, 355–366 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Heath, R. J., Jackowski, S. & Rock, C. O. Guanosine tetraphosphate inhibition of fatty acid and phospholipid synthesis in Escherichia coli is relieved by overexpression of glycerol-3-phosphate acyltransferase (plsB). J. Biol. Chem. 269, 26584–26590 (1994).

    CAS  PubMed  Google Scholar 

  138. Polakis, S. E., Guchhait, R. B. & Lane, M. D. Stringent control of fatty acid synthesis in Escherichia coli. Possible regulation of acetyl coenzyme A carboxylase by ppGpp. J. Biol. Chem. 248, 7957–7966 (1973).

    CAS  PubMed  Google Scholar 

  139. Stein, J. P. Jr. & Bloch, K. E. Inhibition of E. coli beta-hydroxydecanoyl thioester dehydrase by ppGpp. Biochem. Biophys. Res. Commun. 73, 881–884 (1976).

    CAS  PubMed  Google Scholar 

  140. Nakanishi, N. et al. ppGpp with DksA controls gene expression in the locus of enterocyte effacement (LEE) pathogenicity island of enterohaemorrhagic Escherichia coli through activation of two virulence regulatory genes. Mol. Microbiol. 61, 194–205 (2006).

    CAS  PubMed  Google Scholar 

  141. Dalebroux, Z. D., Svensson, S. L., Gaynor, E. C. & Swanson, M. S. ppGpp conjures bacterial virulence. Microbiol. Mol. Biol. Rev. 74, 171–199 (2010). This is an extensive review on the impact of the stringent response on pathogenicity in several bacterial species.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Dalebroux, Z. D. & Swanson, M. S. ppGpp: magic beyond RNA polymerase. Nat. Rev. Microbiol. 10, 203–212 (2012).

    CAS  PubMed  Google Scholar 

  143. Jerse, A. E., Yu, J., Tall, B. D. & Kaper, J. B. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl Acad. Sci. USA 87, 7839–7843 (1990).

    CAS  PubMed  Google Scholar 

  144. Lemke, J. J., Durfee, T. & Gourse, R. L. DksA and ppGpp directly regulate transcription of the Escherichia coli flagellar cascade. Mol. Microbiol. 74, 1368–1379 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Aberg, A., Shingler, V. & Balsalobre, C. (p)ppGpp regulates type 1 fimbriation of Escherichia coli by modulating the expression of the site-specific recombinase FimB. Mol. Microbiol. 60, 1520–1533 (2006).

    PubMed  Google Scholar 

  146. Aberg, A., Shingler, V. & Balsalobre, C. Regulation of the fimB promoter: a case of differential regulation by ppGpp and DksA in vivo. Mol. Microbiol. 67, 1223–1241 (2008).

    PubMed  Google Scholar 

  147. Sugisaki, K. et al. Role of (p)ppGpp in biofilm formation and expression of filamentous structures in Bordetella pertussis. Microbiology 159, 1379–1389 (2013).

    CAS  PubMed  Google Scholar 

  148. Pizarro-Cerda, J. & Tedin, K. The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene expression. Mol. Microbiol. 52, 1827–1844 (2004).

    CAS  PubMed  Google Scholar 

  149. Haraga, A., Ohlson, M. B. & Miller, S. I. Salmonellae interplay with host cells. Nat. Rev. Microbiol. 6, 53–66 (2008).

    CAS  PubMed  Google Scholar 

  150. Zhao, G., Weatherspoon, N., Kong, W., Curtiss, R. & Shi, Y. A dual-signal regulatory circuit activates transcription of a set of divergent operons in Salmonella Typhimurium. Proc. Natl Acad. Sci. USA 105, 20924–20929 (2008).

    CAS  PubMed  Google Scholar 

  151. Nishio, M., Okada, N., Miki, T., Haneda, T. & Danbara, H. Identification of the outer-membrane protein PagC required for the serum resistance phenotype in Salmonella Enterica serovar choleraesuis. Microbiology 151, 863–873 (2005).

    CAS  PubMed  Google Scholar 

  152. Dasgupta, S., Das, S., Biswas, A., Bhadra, R. K. & Das, S. Small alarmones (p)ppGpp regulate virulence associated traits and pathogenesis of Salmonella enterica serovar Typhi. Cell Microbiol. 21, e13034 (2019).

    PubMed  Google Scholar 

  153. Fitzsimmons, L. F. et al. SpoT induces intracellular Salmonella virulence programs in the phagosome. mBio 11, e03397-19 (2020).

    PubMed  PubMed Central  Google Scholar 

  154. Gaynor, E. C., Wells, D. H., MacKichan, J. K. & Falkow, S. The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol. Microbiol. 56, 8–27 (2005).

    CAS  PubMed  Google Scholar 

  155. Zhu, J. et al. (p)ppGpp synthetases regulate the pathogenesis of zoonotic Streptococcus suis. Microbiol. Res. 191, 1–11 (2016).

    CAS  PubMed  Google Scholar 

  156. Hammer, B. K. & Swanson, M. S. Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol. Microbiol. 33, 721–731 (1999).

    CAS  PubMed  Google Scholar 

  157. Colomer-Winter, C., Gaca, A. O., Chuang-Smith, O. N., Lemos, J. A. & Frank, K. L. Basal levels of (p)ppGpp differentially affect the pathogenesis of infective endocarditis in Enterococcus faecalis. Microbiology 164, 1254–1265 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, R. et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13, 1510–1514 (2007).

    CAS  PubMed  Google Scholar 

  159. Cheung, G. Y. et al. Staphylococcus epidermidis strategies to avoid killing by human neutrophils. PLoS Pathog. 6, e1001133 (2010).

    PubMed  PubMed Central  Google Scholar 

  160. Le, K. Y., Park, M. D. & Otto, M. Immune evasion mechanisms of Staphylococcus epidermidis biofilm infection. Front. Microbiol. 9, 359 (2018).

    PubMed  PubMed Central  Google Scholar 

  161. Colomer-Winter, C., Flores-Mireles, A. L., Kundra, S., Hultgren, S. J. & Lemos, J. A. (p)ppGpp and CodY promote Enterococcus faecalis virulence in a murine model of catheter-associated urinary tract infection. mSphere 4, e00392-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  162. Bennett, H. J. et al. Characterization of relA and codY mutants of Listeria monocytogenes: identification of the CodY regulon and its role in virulence. Mol. Microbiol. 63, 1453–1467 (2007).

    CAS  PubMed  Google Scholar 

  163. Huttener, M., Prieto, A., Espelt, J., Bernabeu, M. & Juarez, A. Stringent response and AggR-dependent virulence regulation in the enteroaggregative Escherichia coli Strain 042. Front. Microbiol. 9, 717 (2018).

    PubMed  PubMed Central  Google Scholar 

  164. Ge, X. et al. Bifunctional enzyme SpoT Is involved in biofilm formation of Helicobacter pylori with multidrug resistance by upregulating efflux pump Hp1174 (gluP). Antimicrob. Agents Chemother. 62, e00957–18 (2018).

    PubMed  PubMed Central  Google Scholar 

  165. Kim, H. M. & Davey, M. E. Synthesis of ppGpp impacts type IX secretion and biofilm matrix formation in Porphyromonas gingivalis. NPJ Biofilms Microbiomes 6, 5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Li, G. et al. Role of (p)ppGpp in viability and biofilm formation of Actinobacillus pleuropneumoniae S8. PLoS ONE 10, e0141501 (2015).

    PubMed  PubMed Central  Google Scholar 

  167. Diaz-Salazar, C. et al. The stringent response promotes biofilm dispersal in Pseudomonas putida. Sci. Rep. 7, 18055 (2017).

    PubMed  PubMed Central  Google Scholar 

  168. Liu, H., Xiao, Y., Nie, H., Huang, Q. & Chen, W. Influence of (p)ppGpp on biofilm regulation in Pseudomonas putida KT2440. Microbiol. Res. 204, 1–8 (2017).

    CAS  PubMed  Google Scholar 

  169. Otto, M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu. Rev. Med. 64, 175–188 (2013).

    CAS  PubMed  Google Scholar 

  170. Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017).

    CAS  PubMed  Google Scholar 

  171. Sendi, P. & Proctor, R. A. Staphylococcus aureus as an intracellular pathogen: the role of small colony variants. Trends Microbiol. 17, 54–58 (2009).

    CAS  PubMed  Google Scholar 

  172. Gao, W. et al. Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog. 6, e1000944 (2010).

    PubMed  PubMed Central  Google Scholar 

  173. Mwangi, M. M. et al. Whole-genome sequencing reveals a link between beta-lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus. Microb. Drug Resist. 19, 153–159 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Givens, R. M. et al. Inducible expression, enzymatic activity, and origin of higher plant homologues of bacterial RelA/SpoT stress proteins in Nicotiana tabacum. J. Biol. Chem. 279, 7495–7504 (2004).

    CAS  PubMed  Google Scholar 

  175. Honoki, R., Ono, S., Oikawa, A., Saito, K. & Masuda, S. Significance of accumulation of the alarmone (p)ppGpp in chloroplasts for controlling photosynthesis and metabolite balance during nitrogen starvation in Arabidopsis. Photosynth. Res. 135, 299–308 (2018).

    CAS  PubMed  Google Scholar 

  176. Tozawa, Y. & Nomura, Y. Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants. Plant. Biol. 13, 699–709 (2011).

    CAS  PubMed  Google Scholar 

  177. Tozawa, Y. et al. Calcium-activated (p)ppGpp synthetase in chloroplasts of land plants. J. Biol. Chem. 282, 35536–35545 (2007).

    CAS  PubMed  Google Scholar 

  178. Green, N. J., Grundy, F. J. & Henkin, T. M. The T box mechanism: tRNA as a regulatory molecule. FEBS Lett. 584, 318–324 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. den Hengst, C. D. et al. The Lactococcus lactis CodY regulon: identification of a conserved cis-regulatory element. J. Biol. Chem. 280, 34332–34342 (2005).

    Google Scholar 

  180. Potrykus, K., Murphy, H., Philippe, N. & Cashel, M. ppGpp is the major source of growth rate control in E. coli. Env. Microbiol. 13, 563–575 (2011).

    CAS  Google Scholar 

  181. Zhu, M. & Dai, X. Growth suppression by altered (p)ppGpp levels results from non-optimal resource allocation in Escherichia coli. Nucleic Acids Res. 47, 4684–4693 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Scott, M., Klumpp, S., Mateescu, E. M. & Hwa, T. Emergence of robust growth laws from optimal regulation of ribosome synthesis. Mol. Syst. Biol. 10, 747 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in R.M.C.’s laboratory is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (104110/Z/14/Z to R.M.C.), as well as a Lister Institute Research Prize 2018 (to R.M.C.).

Author information

Authors and Affiliations

Authors

Contributions

S.E.I. and R.M.C. substantially contributed to discussion of the content. All authors wrote the article and reviewed or edited the manuscript.

Corresponding author

Correspondence to Rebecca M. Corrigan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks R. Hallez, V. Hauryliuk, who co-reviewed with H. Takada, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

GTPase

A member of a family of enzymes that act as molecular switches by hydrolysing GTP to GDP.

Ferroptosis

A type of cell death characterized by the accumulation of iron and lipid peroxides.

Toxin–antitoxin systems

Genetic modules that encode both a toxin, which inhibits cell growth, and a cognate antitoxin, which neutralizes the toxin.

Secretion system

A protein complex that facilitate the secretion of proteins across the bacterial membrane.

Swarmer cells

One of two daughter cells following Caulobacter crescentus cell division that expresses a flagellum but in which replication is suppressed.

Stalk cells

Second type of Caulobacter crescentus daughter cell, which contains a stalk for surface attachment and is replication competent.

BALB/c mouse model

Albino, immunodeficient mouse strain that is used as a general purpose animal infection model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irving, S.E., Choudhury, N.R. & Corrigan, R.M. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat Rev Microbiol 19, 256–271 (2021). https://doi.org/10.1038/s41579-020-00470-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-020-00470-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing