Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into the immune functions of complement

Abstract

The recognition of microbial or danger-associated molecular patterns by complement proteins initiates a cascade of events that culminates in the activation of surface complement receptors on immune cells. Such signalling pathways converge with those activated downstream of pattern recognition receptors to determine the type and magnitude of the immune response. Intensive investigation in the field has uncovered novel pathways that link complement-mediated signalling with homeostatic and pathological T cell responses. More recently, the observation that complement proteins also act in the intracellular space to shape T cell fates has added a new layer of complexity. Here, we consider fundamental mechanisms and novel concepts at the interface of complement biology and immunity and discuss how these affect the maintenance of homeostasis and the development of human pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intracellular interactions and fates of microorganisms opsonized with C3 in the extracellular milieu.
Fig. 2: Synergistic interactions between complement and Toll-like receptors.
Fig. 3: Complement-mediated T cell activation.

Similar content being viewed by others

References

  1. Cooper, M. D. & Herrin, B. R. How did our complex immune system evolve? Nat. Rev. Immunol. 10, 2–3 (2010).

    CAS  PubMed  Google Scholar 

  2. Ricklin, D., Reis, E. S., Mastellos, D. C., Gros, P. & Lambris, J. D. Complement component C3 - the “Swiss Army Knife” of innate immunity and host defense. Immunol. Rev. 274, 33–58 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zarkadis, I. K., Mastellos, D. & Lambris, J. D. Phylogenetic aspects of the complement system. Dev. Comp. Immunol. 25, 745–762 (2001).

    CAS  PubMed  Google Scholar 

  4. Kemper, C. & Kohl, J. Novel roles for complement receptors in T cell regulation and beyond. Mol. Immunol. 56, 181–190 (2013).

    CAS  PubMed  Google Scholar 

  5. Carroll, M. C. & Isenman, D. E. Regulation of humoral immunity by complement. Immunity 37, 199–207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lambris, J. D., Dobson, N. J. & Ross, G. D. Release of endogenous C3b inactivator from lymphocytes in response to triggering membrane receptors for beta 1H globulin. J. Exp. Med. 152, 1625–1644 (1980).

    CAS  PubMed  Google Scholar 

  7. Sundsmo, J. S. The leukocyte complement system. Fed. Proc. 41, 3094–3098 (1982).

    CAS  PubMed  Google Scholar 

  8. Tsokos, G. C., Inghirami, G. & Lambris, J. D. Regulation of human cytotoxic responses by complement: C3, C3b and C3d preparations enhance human allogeneic cytotoxic responses. J. Immunopharmacol. 8, 529–541 (1986).

    CAS  PubMed  Google Scholar 

  9. Eden, A., Miller, G. W. & Nussenzweig, V. Human lymphocytes bear membrane receptors for C3b and C3d. J. Clin. Invest. 52, 3239–3242 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dempsey, P. W., Allison, M. E., Akkaraju, S., Goodnow, C. C. & Fearon, D. T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    CAS  PubMed  Google Scholar 

  11. Montz, H., Fuhrmann, A., Schulze, M. & Gotze, O. Regulation of the human autologous T cell proliferation by endogenously generated C5a. Cell. Immunol. 127, 337–351 (1990).

    CAS  PubMed  Google Scholar 

  12. Rickert, R. C. Regulation of B lymphocyte activation by complement C3 and the B cell coreceptor complex. Curr. Opin. Immunol. 17, 237–243 (2005).

    CAS  PubMed  Google Scholar 

  13. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    CAS  PubMed  Google Scholar 

  14. Kohl, J. The role of complement in danger sensing and transmission. Immunol. Res. 34, 157–176 (2006).

    CAS  PubMed  Google Scholar 

  15. Holers, V. M. Complement and its receptors: new insights into human disease. Annu. Rev. Immunol. 32, 433–459 (2014).

    CAS  PubMed  Google Scholar 

  16. Klop, B. et al. Differential complement activation pathways promote C3b deposition on native and acetylated LDL thereby inducing lipoprotein binding to the complement receptor 1. J. Biol. Chem. 289, 35421–35430 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ugurlar, D. et al. Structures of C1-IgG1 provide insights into how danger pattern recognition activates complement. Science 359, 794–797 (2018).

    CAS  PubMed  Google Scholar 

  18. Mortensen, S. A. et al. Structure and activation of C1, the complex initiating the classical pathway of the complement cascade. Proc. Natl Acad. Sci. USA 114, 986–991 (2017).

    CAS  PubMed  Google Scholar 

  19. Miyabe, Y. et al. Complement C5a receptor is the key initiator of neutrophil adhesion igniting immune complex-induced arthritis. Sci. Immunol. 2, eaaj2195 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Eggleton, P., Tenner, A. J. & Reid, K. B. C1q receptors. Clin. Exp. Immunol. 120, 406–412 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghiran, I., Tyagi, S. R., Klickstein, L. B. & Nicholson-Weller, A. Expression and function of C1q receptors and C1q binding proteins at the cell surface. Immunobiology 205, 407–420 (2002).

    CAS  PubMed  Google Scholar 

  22. Thielens, N. M., Tedesco, F., Bohlson, S. S., Gaboriaud, C. & Tenner, A. J. C1q: a fresh look upon an old molecule. Mol. Immunol. 89, 73–83 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hosszu, K. K. et al. DC-SIGN, C1q, and gC1qR form a trimolecular receptor complex on the surface of monocyte-derived immature dendritic cells. Blood 120, 1228–1236 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Son, M. et al. C1q and HMGB1 reciprocally regulate human macrophage polarization. Blood 128, 2218–2228 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Son, M., Santiago-Schwarz, F., Al-Abed, Y. & Diamond, B. C1q limits dendritic cell differentiation and activation by engaging LAIR-1. Proc. Natl Acad. Sci. USA 109, E3160–E3167 (2012).

    CAS  PubMed  Google Scholar 

  26. Serrano, I., Luque, A. & Aran, J. M. Exploring the immunomodulatory moonlighting activities of acute phase proteins for tolerogenic dendritic cell generation. Front. Immunol. 9, 892 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. Scott, D. & Botto, M. The paradoxical roles of C1q and C3 in autoimmunity. Immunobiology 221, 719–725 (2016).

    CAS  PubMed  Google Scholar 

  28. Ling, G. S. et al. C1q restrains autoimmunity and viral infection by regulating CD8(+) T cell metabolism. Science 360, 558–563 (2018). This paper uncovers a link between C1q and the metabolism of CD8 + T cells, shedding light on the role of C1q in the maintenance of immune tolerance.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bossi, F. et al. C1q as a unique player in angiogenesis with therapeutic implication in wound healing. Proc. Natl Acad. Sci. USA 111, 4209–4214 (2014).

    CAS  PubMed  Google Scholar 

  30. Agostinis, C. et al. Complement protein C1q binds to hyaluronic acid in the malignant pleural mesothelioma microenvironment and promotes tumor growth. Front. Immunol. 8, 1559 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Bulla, R. et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat. Commun. 7, 10346 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Degn, S. E. et al. Complement activation by ligand-driven juxtaposition of discrete pattern recognition complexes. Proc. Natl Acad. Sci. USA 111, 13445–13450 (2014).

    CAS  PubMed  Google Scholar 

  33. Garred, P. et al. A journey through the lectin pathway of complement-MBL and beyond. Immunol. Rev. 274, 74–97 (2016).

    CAS  PubMed  Google Scholar 

  34. Howard, M., Farrar, C. A. & Sacks, S. H. Structural and functional diversity of collectins and ficolins and their relationship to disease. Semin. Immunopathol. 40, 75–85 (2018).

    CAS  PubMed  Google Scholar 

  35. Dean, M. M. et al. Mannose-binding lectin deficiency influences innate and antigen-presenting functions of blood myeloid dendritic cells. Immunology 132, 296–305 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, M. et al. Mannan-binding lectin directly interacts with Toll-like receptor 4 and suppresses lipopolysaccharide-induced inflammatory cytokine secretion from THP-1 cells. Cell. Mol. Immunol. 8, 265–275 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Harboe, M. et al. The role of properdin in zymosan- and Escherichia coli-induced complement activation. J. Immunol. 189, 2606–2613 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Harboe, M. et al. Properdin binding to complement activating surfaces depends on initial C3b deposition. Proc. Natl Acad. Sci. USA 114, E534–E539 (2017). This paper challenges the view of properdin as a pattern recognition molecule.

    CAS  PubMed  Google Scholar 

  39. Kemper, C., Mitchell, L. M., Zhang, L. & Hourcade, D. E. The complement protein properdin binds apoptotic T cells and promotes complement activation and phagocytosis. Proc. Natl Acad. Sci. USA 105, 9023–9028 (2008).

    CAS  PubMed  Google Scholar 

  40. Chen, J. Y., Cortes, C. & Ferreira, V. P. Properdin: a multifaceted molecule involved in inflammation and diseases. Mol. Immunol. 102, 58–72 (2018).

    CAS  PubMed  Google Scholar 

  41. O’Flynn, J. et al. Properdin binds independent of complement activation in an in vivo model of anti-glomerular basement membrane disease. Kidney Int. 94, 1141–1150 (2018).

    PubMed  Google Scholar 

  42. Narni-Mancinelli, E. et al. Complement factor P is a ligand for the natural killer cell-activating receptor NKp46. Sci. Immunol. 2, eaam9628 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Erdei, A. et al. The versatile functions of complement C3-derived ligands. Immunol. Rev. 274, 127–140 (2016).

    CAS  PubMed  Google Scholar 

  44. van Lookeren Campagne, M. & Verschoor, A. Pathogen clearance and immune adherence “revisited”: Immuno-regulatory roles for CRIg. Semin. Immunol. 37, 4–11 (2018).

    PubMed  Google Scholar 

  45. Reis, E. S., Barbuto, J. A., Kohl, J. & Isaac, L. Impaired dendritic cell differentiation and maturation in the absence of C3. Mol. Immunol. 45, 1952–1962 (2008).

    CAS  PubMed  Google Scholar 

  46. Ghannam, A. et al. Human C3 deficiency associated with impairments in dendritic cell differentiation, memory B cells, and regulatory T cells. J. Immunol. 181, 5158–5166 (2008).

    CAS  PubMed  Google Scholar 

  47. Lin, Z. et al. Complement C3dg-mediated erythrophagocytosis: implications for paroxysmal nocturnal hemoglobinuria. Blood 126, 891–894 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Vorup-Jensen, T. & Jensen, R. K. Structural immunology of complement receptors 3 and 4. Front. Immunol. 9, 2716 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Hsieh, C. C. et al. The role of complement component 3 (C3) in differentiation of myeloid-derived suppressor cells. Blood 121, 1760–1768 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sohn, J. H. et al. Tolerance is dependent on complement C3 fragment iC3b binding to antigen-presenting cells. Nat. Med. 9, 206–212 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Elvington, M., Liszewski, M. K., Bertram, P., Kulkarni, H. S. & Atkinson, J. P. A. C3(H20) recycling pathway is a component of the intracellular complement system. J. Clin. Invest. 127, 970–981 (2017). This is the first paper describing the C3(H 2 O) recycling pathway in multiple cell types.

    PubMed  PubMed Central  Google Scholar 

  52. Liszewski, M. K. et al. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation. Immunity 39, 1143–1157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Baudino, L. et al. C3 opsonization regulates endocytic handling of apoptotic cells resulting in enhanced T cell responses to cargo-derived antigens. Proc. Natl Acad. Sci. USA 111, 1503–1508 (2014).

    CAS  PubMed  Google Scholar 

  54. Tam, J. C., Bidgood, S. R., McEwan, W. A. & James, L. C. Intracellular sensing of complement C3 activates cell autonomous immunity. Science 345, 1256070 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Brock, S. R. & Parmely, M. J. Complement C3 as a prompt for human macrophage death during infection with francisella tularensis strain SCHU S4. Infect. Immun. 85, e00424–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. King, B. C. et al. Complement component C3 is highly expressed in human pancreatic islets and prevents beta cell death via ATG16L1 interaction and autophagy regulation. Cell Metab. 29, 202–210 (2019).

    CAS  PubMed  Google Scholar 

  57. Sorbara, M. T. et al. Complement C3 drives autophagy-dependent restriction of cyto-invasive bacteria. Cell Host Microbe 23, 644–652 (2018).

    CAS  PubMed  Google Scholar 

  58. Hajishengallis, G. & Lambris, J. D. More than complementing Tolls: complement-Toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunol. Rev. 274, 233–244 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Klos, A., Wende, E., Wareham, K. J. & Monk, P. N. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol. Rev. 65, 500–543 (2013). This is a key review on the overall function of the receptors for C3a and C5a.

    PubMed  Google Scholar 

  60. Le Friec, G. et al. The CD46-Jagged1 interaction is critical for human TH1 immunity. Nat. Immunol. 13, 1213–1221 (2012). This landmark study provides the first mechanistic insight into the role of MCP in adaptive immunity.

    PubMed  PubMed Central  Google Scholar 

  61. Song, W. C. Crosstalk between complement and toll-like receptors. Toxicol. Pathol. 40, 174–182 (2012).

    CAS  PubMed  Google Scholar 

  62. Laumonnier, Y., Karsten, C. M. & Kohl, J. Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol. Immunol. 89, 44–58 (2017).

    CAS  PubMed  Google Scholar 

  63. Karsten, C. M. et al. Monitoring and cell-specific deletion of C5aR1 using a novel floxed GFP-C5aR1 reporter knock-in mouse. J. Immunol. 194, 1841–1855 (2015).

    CAS  PubMed  Google Scholar 

  64. Karsten, C. M. et al. Monitoring C5aR2 expression using a Floxed tdTomato-C5aR2 knock-in mouse. J. Immunol. 199, 3234–3248 (2017).

    CAS  PubMed  Google Scholar 

  65. Quell, K. M. et al. Monitoring C3aR expression using a Floxed tdTomato-C3aR reporter knock-in mouse. J. Immunol. 199, 688–706 (2017).

    CAS  PubMed  Google Scholar 

  66. Dunkelberger, J., Zhou, L., Miwa, T. & Song, W. C. C5aR expression in a novel GFP reporter gene knockin mouse: implications for the mechanism of action of C5aR signaling in T cell immunity. J. Immunol. 188, 4032–4042 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Strainic, M. G. et al. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28, 425–435 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, K. et al. Functional modulation of human monocytes derived DCs by anaphylatoxins C3a and C5a. Immunobiology 217, 65–73 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bosmann, M. et al. Complement activation product C5a is a selective suppressor of TLR4-induced, but not TLR3-induced, production of IL-27(p28) from macrophages. J. Immunol. 188, 5086–5093 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hawlisch, H. et al. C5a negatively regulates toll-like receptor 4-induced immune responses. Immunity 22, 415–426 (2005).

    CAS  PubMed  Google Scholar 

  71. Abe, T. et al. Local complement-targeted intervention in periodontitis: proof-of-concept using a C5a receptor (CD88) antagonist. J. Immunol. 189, 5442–5448 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sacks, S. H. Complement fragments C3a and C5a: the salt and pepper of the immune response. Eur. J. Immunol. 40, 668–670 (2010).

    CAS  PubMed  Google Scholar 

  73. Seow, V. et al. Inflammatory responses induced by lipopolysaccharide are amplified in primary human monocytes but suppressed in macrophages by complement protein C5a. J. Immunol. 191, 4308–4316 (2013).

    CAS  PubMed  Google Scholar 

  74. Grant, E. P. et al. Essential role for the C5a receptor in regulating the effector phase of synovial infiltration and joint destruction in experimental arthritis. J. Exp. Med. 196, 1461–1471 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fusakio, M. E. et al. C5a regulates NKT and NK cell functions in sepsis. J. Immunol. 187, 5805–5812 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zou, L. et al. Complement factor B is the downstream effector of TLRs and plays an important role in a mouse model of severe sepsis. J. Immunol. 191, 5625–5635 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hasegawa, M. et al. Interleukin-22 regulates the complement system to promote resistance against pathobionts after pathogen-induced intestinal damage. Immunity 41, 620–632 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Reed, J. H. et al. Complement receptor 3 influences toll-like receptor 7/8-dependent inflammation: implications for autoimmune diseases characterized by antibody reactivity to ribonucleoproteins. J. Biol. Chem. 288, 9077–9083 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ling, G. S. et al. Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages. Nat. Commun. 5, 3039 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Olivar, R. et al. The complement inhibitor factor H generates an anti-inflammatory and tolerogenic state in monocyte-derived dendritic cells. J. Immunol. 196, 4274–4290 (2016).

    CAS  PubMed  Google Scholar 

  81. Olivar, R. et al. The alpha7beta0 isoform of the complement regulator C4b-binding protein induces a semimature, anti-inflammatory state in dendritic cells. J. Immunol. 190, 2857–2872 (2013).

    CAS  PubMed  Google Scholar 

  82. Liu, H. et al. Mannan binding lectin attenuates double-stranded RNA-mediated TLR3 activation and innate immunity. FEBS Lett. 588, 866–872 (2014).

    CAS  PubMed  Google Scholar 

  83. Gustavsen, A. et al. Combined inhibition of complement and CD14 attenuates bacteria-induced inflammation in human whole blood more efficiently than antagonizing the Toll-like receptor 4-MD2 complex. J. Infect. Dis. 214, 140–150 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. Tang, H. et al. Synergistic interaction between C5a and NOD2 signaling in the regulation of chemokine expression in RAW 264.7 macrophages. Adv. Biosci. Biotechnol. 4, 30–37 (2013).

    PubMed  PubMed Central  Google Scholar 

  85. Triantafilou, K., Hughes, T. R., Triantafilou, M. & Morgan, B. P. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J. Cell Sci. 126, 2903–2913 (2013).

    CAS  PubMed  Google Scholar 

  86. Huang, H. et al. Relative contributions of dectin-1 and complement to immune responses to particulate beta-glucans. J. Immunol. 189, 312–317 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Laudisi, F. et al. Cutting edge: the NLRP3 inflammasome links complement-mediated inflammation and IL-1beta release. J. Immunol. 191, 1006–1010 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Haggadone, M. D., Grailer, J. J., Fattahi, F., Zetoune, F. S. & Ward, P. A. Bidirectional crosstalk between C5a receptors and the NLRP3 inflammasome in macrophages and monocytes. Mediators Inflamm. 2016, 1340156 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. Schmitz, V. et al. C5a and bradykinin receptor cross-talk regulates innate and adaptive immunity in Trypanosoma cruzi infection. J. Immunol. 193, 3613–3623 (2014).

    CAS  PubMed  Google Scholar 

  90. Moreno-Fernandez, M. E., Aliberti, J., Groeneweg, S., Kohl, J. & Chougnet, C. A. A novel role for the receptor of the complement cleavage fragment C5a, C5aR1, in CCR5-mediated entry of HIV into macrophages. AIDS Res. Hum. Retroviruses 32, 399–408 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, M. C. et al. The receptor for complement component C3a mediates protection from intestinal ischemia-reperfusion injuries by inhibiting neutrophil mobilization. Proc. Natl Acad. Sci. USA 110, 9439–9444 (2013).

    CAS  PubMed  Google Scholar 

  92. Wang, H., Ricklin, D. & Lambris, J. D. Complement-activation fragment C4a mediates effector functions by binding as untethered agonist to protease-activated receptors 1 and 4. Proc. Natl Acad. Sci. USA 114, 10948–10953 (2017).

    CAS  PubMed  Google Scholar 

  93. Cravedi, P. et al. Immune cell-derived C3a and C5a costimulate human T cell alloimmunity. Am. J. Transplant. 13, 2530–2539 (2013).

    CAS  PubMed  Google Scholar 

  94. West, E. E., Kolev, M. & Kemper, C. Complement and the regulation of T cell responses. Annu. Rev. Immunol. 36, 309–338 (2018). This is a comprehensive review on the role of complement in T cell responses.

    CAS  PubMed  Google Scholar 

  95. Kapsenberg, M. L. Dendritic-cell control of pathogen-driven T cell polarization. Nat. Rev. Immunol. 3, 984–993 (2003).

    CAS  PubMed  Google Scholar 

  96. Weaver, D. J. Jr. et al. C5a receptor-deficient dendritic cells promote induction of Treg and Th17 cells. Eur. J. Immunol. 40, 710–721 (2010).

    PubMed  PubMed Central  Google Scholar 

  97. Fang, C., Miwa, T. & Song, W. C. Decay-accelerating factor regulates T cell immunity in the context of inflammation by influencing costimulatory molecule expression on antigen-presenting cells. Blood 118, 1008–1014 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sandor, N., Pap, D., Prechl, J., Erdei, A. & Bajtay, Z. A novel, complement-mediated way to enhance the interplay between macrophages, dendritic cells and T lymphocytes. Mol. Immunol. 47, 438–448 (2009).

    CAS  PubMed  Google Scholar 

  99. Torok, K. et al. Human T cell derived, cell-bound complement iC3b is integrally involved in T cell activation. Immunol. Lett. 143, 131–136 (2012).

    CAS  PubMed  Google Scholar 

  100. Clarke, E. V., Weist, B. M., Walsh, C. M. & Tenner, A. J. Complement protein C1q bound to apoptotic cells suppresses human macrophage and dendritic cell-mediated Th17 and Th1 T cell subset proliferation. J. Leukoc. Biol. 97, 147–160 (2015).

    PubMed  Google Scholar 

  101. Dixon, K. O., O’Flynn, J., Klar-Mohamad, N., Daha, M. R. & van Kooten, C. Properdin and factor H production by human dendritic cells modulates their T cell stimulatory capacity and is regulated by IFN-gamma. Eur. J. Immunol. 47, 470–480 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. van der Touw, W. et al. Cutting edge: receptors for C3a and C5a modulate stability of alloantigen-reactive induced regulatory T cells. J. Immunol. 190, 5921–5925 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. Strainic, M. G., Shevach, E. M., An, F., Lin, F. & Medof, M. E. Absence of signaling into CD4(+) cells via C3aR and C5aR enables autoinductive TGF-beta1 signaling and induction of Foxp3(+) regulatory T cells. Nat. Immunol. 14, 162–171 (2013). This is one of the first papers associating C3aR-mediated and C5aR-mediated signalling with the inhibition of the differentiation of T reg cells.

    CAS  PubMed  Google Scholar 

  104. Kwan, W. H., van der Touw, W., Paz-Artal, E., Li, M. O. & Heeger, P. S. Signaling through C5a receptor and C3a receptor diminishes function of murine natural regulatory T cells. J. Exp. Med. 210, 257–268 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cardone, J. et al. Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells. Nat. Immunol. 11, 862–871 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Torok, K., Dezso, B., Bencsik, A., Uzonyi, B. & Erdei, A. Complement receptor type 1 (CR1/CD35) expressed on activated human CD4+ T cells contributes to generation of regulatory T cells. Immunol. Lett. 164, 117–124 (2015).

    CAS  PubMed  Google Scholar 

  107. Charron, L., Doctrinal, A., Ni Choileain, S. & Astier, A. L. Monocyte:T cell interaction regulates human T cell activation through a CD28/CD46 crosstalk. Immunol. Cell Biol. 93, 796–803 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Fremeaux-Bacchi, V. et al. Genetic and functional analyses of membrane cofactor protein (CD46) mutations in atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 17, 2017–2025 (2006).

    CAS  PubMed  Google Scholar 

  109. Kolev, M. et al. Complement regulates nutrient influx and metabolic reprogramming during Th1 cell responses. Immunity 42, 1033–1047 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Arbore, G. et al. Complement receptor CD46 co-stimulates optimal human CD8(+) T cell effector function via fatty acid metabolism. Nat. Commun. 9, 4186 (2018). This paper describes molecular mechanisms implicating MCP into metabolic pathways of CD8 + T cells.

    PubMed  PubMed Central  Google Scholar 

  111. Arbore, G. et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells. Science 352, aad1210 (2016).

    PubMed  PubMed Central  Google Scholar 

  112. Jimenez-Reinoso, A. et al. Human plasma C3 is essential for the development of memory B, but not T, lymphocytes. J. Allergy Clin. Immunol. 141, 1151–1154 (2018).

    CAS  PubMed  Google Scholar 

  113. Lajoie, S. et al. Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat. Immunol. 11, 928–935 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Gour, N. et al. C3a is required for ILC2 function in allergic airway inflammation. Mucosal Immunol. 11, 1653–1662 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Schmudde, I., Laumonnier, Y. & Kohl, J. Anaphylatoxins coordinate innate and adaptive immune responses in allergic asthma. Semin. Immunol. 25, 2–11 (2013).

    CAS  PubMed  Google Scholar 

  116. Hashimoto, M. et al. Complement drives Th17 cell differentiation and triggers autoimmune arthritis. J. Exp. Med. 207, 1135–1143 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sacks, S. H. & Zhou, W. The role of complement in the early immune response to transplantation. Nat. Rev. Immunol. 12, 431–442 (2012).

    CAS  PubMed  Google Scholar 

  118. Reis, E. S., Mastellos, D. C., Ricklin, D., Mantovani, A. & Lambris, J. D. Complement in cancer: untangling an intricate relationship. Nat. Rev. Immunol. 18, 5–18 (2018).

    CAS  PubMed  Google Scholar 

  119. Olsen, I., Lambris, J. D. & Hajishengallis, G. Porphyromonas gingivalis disturbs host-commensal homeostasis by changing complement function. J. Oral Microbiol. 9, 1340085 (2017).

    PubMed  PubMed Central  Google Scholar 

  120. Karsten, C. M. et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1. Nat. Med. 18, 1401–1406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Pandey, M. K. et al. Complement drives glucosylceramide accumulation and tissue inflammation in Gaucher disease. Nature 543, 108–112 (2017).

    CAS  PubMed  Google Scholar 

  122. Morgan, B. P. & Harris, C. L. Complement, a target for therapy in inflammatory and degenerative diseases. Nat. Rev. Drug Discov. 14, 857–877 (2015).

    CAS  PubMed  Google Scholar 

  123. Schonthaler, H. B. et al. S100A8-S100A9 protein complex mediates psoriasis by regulating the expression of complement factor C3. Immunity 39, 1171–1181 (2013).

    CAS  PubMed  Google Scholar 

  124. Ueda, Y., Gullipalli, D. & Song, W. C. Modeling complement-driven diseases in transgenic mice: values and limitations. Immunobiology 221, 1080–1090 (2016).

    CAS  PubMed  Google Scholar 

  125. Kotimaa, J. et al. Sex matters: systemic complement activity of female C57BL/6J and BALB/cJ mice is limited by serum terminal pathway components. Mol. Immunol. 76, 13–21 (2016).

    CAS  PubMed  Google Scholar 

  126. Kim, D. D. & Song, W. C. Membrane complement regulatory proteins. Clin. Immunol. 118, 127–136 (2006).

    CAS  PubMed  Google Scholar 

  127. Vergunst, C. E. et al. Blocking the receptor for C5a in patients with rheumatoid arthritis does not reduce synovial inflammation. Rheumatology (Oxford) 46, 1773–1778 (2007).

    CAS  Google Scholar 

  128. Ozen, A. et al. CD55 deficiency, early-onset protein-losing enteropathy, and thrombosis. N. Engl. J. Med. 377, 52–61 (2017).

    CAS  PubMed  Google Scholar 

  129. Kurolap, A. et al. Eculizumab is safe and effective as a long-term treatment for protein-losing enteropathy due to CD55 deficiency. J. Pediatr. Gastroenterol. Nutr. 68, 325–333 (2018).

    Google Scholar 

  130. Leinoe, E., Nielsen, O. J., Jonson, L. & Rossing, M. Whole-exome sequencing of a patient with severe and complex hemostatic abnormalities reveals a possible contributing frameshift mutation in C3AR1. Cold Spring Harb. Mol. Case Stud. 2, a000828 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. Liszewski, M. K. & Atkinson, J. P. Complement regulator CD46: genetic variants and disease associations. Hum. Genomics 9, 7 (2015).

    PubMed  PubMed Central  Google Scholar 

  132. Ricklin, D., Reis, E. S. & Lambris, J. D. Complement in disease: a defence system turning offensive. Nat. Rev. Nephrol. 12, 383–401 (2016). This work discusses the role of complement in pathophysiological mechanisms.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Reis, E. S. et al. Safety profile after prolonged C3 inhibition. Clin. Immunol. 197, 96–106 (2018).

    CAS  PubMed  Google Scholar 

  134. Ajona, D. et al. A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis. Cancer Discov. 7, 694–703 (2017).

    CAS  PubMed  Google Scholar 

  135. Harris, C. L., Pouw, R. B., Kavanagh, D., Sun, R. & Ricklin, D. Developments in anti-complement therapy; from disease to clinical trial. Mol. Immunol. 102, 89–119 (2018).

    CAS  PubMed  Google Scholar 

  136. Ricklin, D., Mastellos, D. C., Reis, E. S. & Lambris, J. D. The renaissance of complement therapeutics. Nat. Rev. Nephrol. 14, 26–47 (2018).

    CAS  PubMed  Google Scholar 

  137. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Merle, N. S., Church, S. E., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part I - molecular mechanisms of activation and regulation. Front. Immunol. 6, 262 (2015).

    PubMed  PubMed Central  Google Scholar 

  139. Hajishengallis, G., Reis, E. S., Mastellos, D. C., Ricklin, D. & Lambris, J. D. Novel mechanisms and functions of complement. Nat. Immunol. 18, 1288–1298 (2017). This is a comprehensive review on the biological functions of complement.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Stephan, A. H., Barres, B. A. & Stevens, B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35, 369–389 (2012).

    CAS  PubMed  Google Scholar 

  141. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    CAS  PubMed  Google Scholar 

  142. Hawksworth, O. A., Li, X. X., Coulthard, L. G., Wolvetang, E. J. & Woodruff, T. M. New concepts on the therapeutic control of complement anaphylatoxin receptors. Mol. Immunol. 89, 36–43 (2017).

    CAS  PubMed  Google Scholar 

  143. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Shi, Q. et al. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci. Transl Med. 9, eaaf6295 (2017).

    PubMed  Google Scholar 

  145. Bialas, A. R. & Stevens, B. TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat. Neurosci. 16, 1773–1782 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Howell, G. R. et al. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J. Clin. Invest. 121, 1429–1444 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Michailidou, I. et al. Complement C1q-C3-associated synaptic changes in multiple sclerosis hippocampus. Ann. Neurol. 77, 1007–1026 (2015).

    CAS  PubMed  Google Scholar 

  149. Brennan, F. H., Lee, J. D., Ruitenberg, M. J. & Woodruff, T. M. Therapeutic targeting of complement to modify disease course and improve outcomes in neurological conditions. Semin. Immunol. 28, 292–308 (2016).

    CAS  PubMed  Google Scholar 

  150. Shi, Q. et al. Complement C3-deficient mice fail to display age-related hippocampal decline. J. Neurosci. 35, 13029–13042 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Vasek, M. J. et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature 534, 538–543 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wyatt, S. K., Witt, T., Barbaro, N. M., Cohen-Gadol, A. A. & Brewster, A. L. Enhanced classical complement pathway activation and altered phagocytosis signaling molecules in human epilepsy. Exp. Neurol. 295, 184–193 (2017).

    CAS  PubMed  Google Scholar 

  154. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Litvinchuk, A. et al. Complement C3aR inactivation attenuates Tau pathology and reverses an immune network deregulated in Tauopathy models and Alzheimer’s disease. Neuron 100, 1337–1353 (2018).

    CAS  PubMed  Google Scholar 

  156. Dejanovic, B. et al. Changes in the synaptic proteome in Tauopathy and rescue of Tau-induced synapse loss by C1q antibodies. Neuron 100, 1322–1336 (2018).

    CAS  PubMed  Google Scholar 

  157. Sellgren, C. M. et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat. Neurosci. 22, 374–385 (2019).

    CAS  PubMed  Google Scholar 

  158. Rosen, B. S. et al. Adipsin and complement factor D activity: an immune-related defect in obesity. Science 244, 1483–1487 (1989).

    CAS  PubMed  Google Scholar 

  159. Maslowska, M. et al. Plasma acylation stimulating protein, adipsin and lipids in non-obese and obese populations. Eur. J. Clin. Invest. 29, 679–686 (1999).

    CAS  PubMed  Google Scholar 

  160. Barbu, A., Hamad, O. A., Lind, L., Ekdahl, K. N. & Nilsson, B. The role of complement factor C3 in lipid metabolism. Mol. Immunol. 67, 101–107 (2015).

    CAS  PubMed  Google Scholar 

  161. Phieler, J., Garcia-Martin, R., Lambris, J. D. & Chavakis, T. The role of the complement system in metabolic organs and metabolic diseases. Semin. Immunol. 25, 47–53 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Geltink, R. I. K., Kyle, R. L. & Pearce, E. L. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol. 36, 461–488 (2018).

    CAS  PubMed  Google Scholar 

  163. Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part II: role in immunity. Front. Immunol. 6, 257 (2015).

    PubMed  PubMed Central  Google Scholar 

  164. Sarrias, M. R. et al. Kinetic analysis of the interactions of complement receptor 2 (CR2, CD21) with its ligands C3d, iC3b, and the EBV glycoprotein gp350/220. J. Immunol. 167, 1490–1499 (2001).

    CAS  PubMed  Google Scholar 

  165. Helmy, K. Y. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915–927 (2006).

    CAS  PubMed  Google Scholar 

  166. Capasso, M. et al. Costimulation via CD55 on human CD4+ T cells mediated by CD97. J. Immunol. 177, 1070–1077 (2006).

    CAS  PubMed  Google Scholar 

  167. Liu, J. et al. The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo. J. Exp. Med. 201, 567–577 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kimberley, F. C., Sivasankar, B. & Paul Morgan, B. Alternative roles for CD59. Mol. Immunol. 44, 73–81 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank D. McClellan for editorial assistance. J.D.L. also thanks R. Weaver and S. Weaver for the generous endowment of his professorship. Given the broad scope of this Review, the authors often refer to specialized review articles rather than primary literature, and they have been able to include only selected examples of the breadth of the transformative work in the field; they therefore want to thank all their colleagues who are not specifically cited for their contributions and their understanding. This work was supported by grants from the US National Institutes of Health (AI068730, AI030040, DE024153 and DE024716).

Reviewer information

Nature Reviews Immunology thanks V. Holers and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the literature, contributed to discussions of the content, wrote the text and edited the manuscript before submission.

Corresponding author

Correspondence to John D. Lambris.

Ethics declarations

Competing interests

J.D.L. and G.H. are inventors on patents or patent applications that describe the use of complement inhibitors for therapeutic purposes. J.D.L. is the founder of Amyndas Pharmaceuticals, which is developing complement inhibitors (including third-generation Compstatin analogues such as AMY-101), and the inventor of the Compstatin technology licensed to Apellis Pharmaceuticals (that is, 4(1MeW)7W/POT-4/APL-1 and PEGylated derivatives). E.S.R. and D.C.M. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

There are two sides to every question. Protagoras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, E.S., Mastellos, D.C., Hajishengallis, G. et al. New insights into the immune functions of complement. Nat Rev Immunol 19, 503–516 (2019). https://doi.org/10.1038/s41577-019-0168-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0168-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing