Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The elusive case of human intraepithelial T cells in gut homeostasis and inflammation

Abstract

The epithelial barrier of the gastrointestinal tract is home to numerous intraepithelial T cells (IETs). IETs are functionally adapted to the mucosal environment and are among the first adaptive immune cells to encounter microbial and dietary antigens. They possess hallmark features of tissue-resident T cells: they are long-lived nonmigratory cells capable of rapidly responding to antigen challenges independent of T cell recruitment from the periphery. Gut-resident T cells have been implicated in the relapsing and remitting course and persisting low-grade inflammation of chronic gastrointestinal diseases, including IBD and coeliac disease. So far, most data IETs have been derived from experimental animal models; however, IETs and the environmental makeup differ between mice and humans. With advances in techniques, the number of human studies has grown exponentially in the past 5 years. Here, we review the literature on the involvement of human IETs in gut homeostasis and inflammation, and how these cells are influenced by the microbiota and dietary antigens. Finally, targeting of IETs in therapeutic interventions is discussed. Broad insight into the function and role of human IETs in gut homeostasis and inflammation is essential to identify future diagnostic, prognostic and therapeutic strategies.

Key points

  • Intraepithelial T cells (IETs), residing at the epithelial barrier in the gastrointestinal tract, are an epitome of tissue-resident T cells.

  • Tissue-resident T cells are long-lived, nonrecirculating T cells that provide rapid immune responses independent of peripheral T cell recruitment.

  • IETs have an important role in immunosurveillance while simultaneously inducing tolerance for nonpathogenic antigens, consequently preserving the integrity of the single-layer epithelial membrane.

  • IBD and coeliac disease are characterized by a predominance of (recurrent) gastrointestinal inflammation.

  • The longevity and abundant presence of IETs at the intestinal epithelial barrier suggest a role for IETs in the relapsing and remitting course and persisting low-grade inflammation of these diseases.

  • As tissue-specific and potentially pathogenic cells, IETs are an ideal target for therapeutic (non-systemic) intervention in chronic, tissue-specific inflammatory diseases such as IBD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the intestinal mucosa and distribution of immune cells.
Fig. 2: Differentiation from naive T cell to IET in the gut.
Fig. 3: Interactions of human IETs with the mucosal environment.
Fig. 4: Intestinal immune responses in coeliac disease and IBD.

Similar content being viewed by others

References

  1. Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Murphy, K. & Weaver, C. Janeway’s Immunobiology (Garland Science, 2016).

  4. Ganusov, V. V. & De Boer, R. J. Do most lymphocytes in humans really reside in the gut? Trends Immunol. 28, 514–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Park, C. O. & Kupper, T. S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med. 21, 688–697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Masopust, D. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burzyn, D., Benoist, C. & Mathis, D. Regulatory T cells in nonlymphoid tissues. Nat. Immunol. 14, 1007–1013 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sujino, T. et al. Tissue adaptation of regulatory and intraepithelial CD4+ T cells controls gut inflammation. Science 352, 1581–1586 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoytema van Konijnenburg, D. P. et al. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell 43, 383–384 (2017).

    Google Scholar 

  12. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38, 769–781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simoni, Y. et al. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46, 148–161 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Spencer, J. et al. Changes in intraepithelial lymphocyte subpopulations in coeliac disease and enteropathy associated T cell lymphoma (malignant histiocytosis of the intestine). Gut 30, 339–346 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leon, F. et al. Human small-intestinal epithelium contains functional natural killer lymphocytes. Gastroenterology 125, 345–356 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Rostami, K. et al. ROC-king onwards: intraepithelial lymphocyte counts, distribution and role in coeliac disease mucosal interpretation. Gut 66, 2080–2086 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Hirata, I., Berrebi, G., Austin, L. L., Keren, D. F. & Dobbins, W. O. Immunohistological characterization of intraepithelial and lamina propria lymphocytes in control ileum and colon and in inflammatory bowel disease. Dig. Dis. Sci. 31, 593–603 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Bednarska, O., Ignatova, S., Dahle, C. & Ström, M. Intraepithelial lymphocyte distribution differs between the bulb and the second part of duodenum. BMC Gastroenterol. 13, 111 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Austin, L. L. & Dobbins, W. O. Intraepithelial leukocytes of the intestinal mucosa in normal man and in Whipple’s disease: a light- and electron-microscopic study. Dig. Dis. Sci. 27, 311–320 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Ahn, J. Y. et al. Colonic mucosal immune activity in irritable bowel syndrome: comparison with healthy controls and patients with ulcerative colitis. Dig. Dis. Sci. 59, 1001–1011 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Faderl, M., Noti, M., Corazza, N. & Mueller, C. Keeping bugs in check: the mucus layer as a critical component in maintaining intestinal homeostasis. IUBMB Life 67, 275–285 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Hansson, G. C. Role of mucus layers in gut infection and inflammation. Curr. Opin. Microbiol. 15, 57–62 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Ruscher, R., Kummer, R. L., Lee, Y. J., Jameson, S. C. & Hogquist, K. A. CD8alphaalpha intraepithelial lymphocytes arise from two main thymic precursors. Nat. Immunol. 18, 771–779 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klose, C. S. N. et al. A committed postselection precursor to natural TCRαβ+ intraepithelial lymphocytes. Mucosal Immunol. 11, 333–344 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. van Wijk, F. & Cheroutre, H. Intestinal T cells: facing the mucosal immune dilemma with synergy and diversity. Seminars Immunol. 21, 130–138 (2009).

    Article  CAS  Google Scholar 

  26. McVay, L. D., Jaswal, S. S., Kennedy, C., Hayday, A. & Carding, S. R. The generation of human gammadelta T cell repertoires during fetal development. J. Immunol. 160, 5851–5860 (1998).

    CAS  PubMed  Google Scholar 

  27. Spencer, J., Isaacson, P. G., Walker-Smith, J. A. & MacDonald, T. T. Heterogeneity in intraepithelial lymphocyte subpopulations in fetal and postnatal human small intestine. J. Pediatr. Gastroenterol. Nutr. 9, 173–177 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Mold, J. E. et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 330, 1695–1699 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory t cell subsets. Immunity 38, 187–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Thome, J. J. C. et al. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med. 22, 72–77 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Jarry, A., Cerf-Bensussan, N., Brousse, N., Selz, F. & Guy-grand, D. Subsets of CD3+ (T cell receptor α/β or γ/δ) and CD3 lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur. J. Immunol. 20, 1097–1103 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bakdash, G., Vogelpoel, L. T., van Capel, T. M., Kapsenberg, M. L. & de Jong, E. C. Retinoic acid primes human dendritic cells to induce gut-homing, IL-10-producing regulatory T cells. Mucosal Immunol. 8, 265–278 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Zabel, B. A. et al. Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J. Exp. Med. 190, 1241–1256 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cerf-Bensussan, N., Bègue, B., Gagnon, J. & Meo, T. The human intraepithelial lymphocyte marker HML-1 is an integrin consisting of a β7 subunit associated with a distinctive α chain. Eur. J. Immunol. 22, 273–277 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Raine, T., Liu, J. Z., Anderson, C. A., Parkes, M. & Kaser, A. Generation of primary human intestinal T cell transcriptomes reveals differential expression at genetic risk loci for immune-mediated disease. Gut 64, 250–259 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Briskin, M. et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am. J. Pathol. 151, 97–110 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Habtezion, A., Nguyen, L. P., Hadeiba, H. & Butcher, E. C. Leukocyte trafficking to the small intestine and colon. Gastroenterology 150, 340–354 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Salmi, M. & Jalkanen, S. Lymphocyte homing to the gut: attraction, adhesion, and commitment. Immunol. Rev. 206, 100–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Dogan, A., Wang, Z. D. & Spencer, J. E-cadherin expression in intestinal epithelium. J. Clin. Pathol. 48, 143–146 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuklin, N. A. et al. Alpha4beta7 independent pathway for CD8+ T cell-mediated intestinal immunity to rotavirus. J. Clin. Invest. 106, 1541–1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zundler, S. et al. The alpha4beta1 homing pathway is essential for ileal homing of Crohn’s disease effector T cells in vivo. Inflamm. Bowel Dis. 23, 379–391 (2017).

    Article  PubMed  Google Scholar 

  43. Di Marco Barros, R. et al. Epithelia use butyrophilin-like molecules to shape organ-specific gammadelta T cell compartments. Cell 167, 203–218 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Laidlaw, B. J. et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity 41, 633–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mackay, L. K. et al. The developmental pathway for CD103+CD8+tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, N. & Bevan, M. J. Transforming growth factor-beta signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Mohammed, J. et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nat. Immunol. 17, 414–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang, W. et al. Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. J. Exp. Med. 210, 2465–2476 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Muzes, G., Molnar, B., Tulassay, Z. & Sipos, F. Changes of the cytokine profile in inflammatory bowel diseases. World J. Gastroenterol. 18, 5848–5861 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park, J. H., Peyrin-Biroulet, L., Eisenhut, M. & Shin, J. Il. IBD immunopathogenesis: a comprehensive review of inflammatory molecules. Autoimmun. Rev. 16, 416–426 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Meresse, B. et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21, 357–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Qiu, Y. et al. TLR2-dependent signaling for IL-15 production is essential for the homeostasis of intestinal intraepithelial lymphocytes. Mediators Inflamm. 2016, 4281865 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lanier, L. L., Le, A. M., Civin, C. I., Loken, M. R. & Phillips, J. H. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J. Immunol. 136, 4480–4486 (1986).

    CAS  PubMed  Google Scholar 

  55. Ohkawa, T. et al. Systematic characterization of human CD8+ T cells with natural killer cell markers in comparison with natural killer cells and normal CD8+ T cells. Immunology 103, 281–290 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mucida, D. et al. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14, 281–289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reis, B. S., Hoytema van Konijnenburg, D. P., Grivennikov, S. I. & Mucida, D. Transcription factor T-bet regulates intraepithelial lymphocyte functional maturation. Immunity 41, 244–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sarrabayrouse, G. et al. CD4CD8αα lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease. PLOS Biol. 12, e1001833 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Dalton, J. E. et al. Intraepithelial gammadelta+lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection. Gastroenterology 131, 818–829 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Ismail, A. S., Behrendt, C. L. & Hooper, L. V. Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury. J. Immunol. 182, 3047–3054 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Edelblum, K. L. et al. gammadelta Intraepithelial lymphocyte migration limits transepithelial pathogen invasion and systemic disease in mice. Gastroenterology 148, 1417–1426 (2015).

    Article  PubMed  Google Scholar 

  62. Perera, L. et al. Expression of nonclassical class I molecules by intestinal epithelial cells. Inflamm. Bowel Dis. 13, 298–307 (2007).

    Article  PubMed  Google Scholar 

  63. Lin, X. P., Almqvist, N. & Telemo, E. Human small intestinal epithelial cells constitutively express the key elements for antigen processing and the production of exosomes. Blood Cells, Mol. Dis. 35, 122–128 (2005).

    Article  CAS  Google Scholar 

  64. Strid, J., Sobolev, O., Zafirova, B., Polic, B. & Hayday, A. The intraepithelial T cell response to NKG2D-ligands links lymphoid stress surveillance to atopy. Science 334, 1293–1297 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Vantourout, P. et al. Immunological visibility: posttranscriptional regulation of human NKG2D ligands by the EGF receptor pathway. Sci. Transl. Med. 6, 231ra49 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hayday, A., Theodoridis, E., Ramsburg, E. & Shires, J. Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat. Immunol. 2, 997–1003 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Shires, J., Theodoridis, E. & Hayday, A. C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).

    Google Scholar 

  68. Deusch, K. et al. A major fraction of human intraepithelial lymphocytes simultaneously expresses the gamma/delta T cell receptor, the CD8 accessory molecule and preferentially uses the V delta 1 gene segment. Eur. J. Immunol. 21, 1053–1059 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Lundqvist, C. et al. Phenotype and cytokine profile of intraepithelial lymphocytes in human small and large intestine. Ann. NY Acad. Sci. 756, 395–399 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Lundqvist, C., Melgar, S., Yeung, M. M., Hammarström, S. & Hammarström, M. L. Intraepithelial lymphocytes in human gut have lytic potential and a cytokine profile that suggest T helper 1 and cytotoxic functions. J. Immunol. 157, 1926–1934 (1996).

    CAS  PubMed  Google Scholar 

  71. Hoang, P., Crotty, B., Dalton, H. R. & Jewell, D. P. Epithelial cells bearing class II molecules stimulate allogeneic human colonic intraepithelial lymphocytes. Gut 33, 1089–1093 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Booth, J. S. et al. Characterization and functional properties of gastric tissue-resident memory T cells from children, adults, and the elderly. Front. Immunol. 5, 1–15 (2014).

    Article  CAS  Google Scholar 

  73. Youakim, A. & Ahdieh, M. Interferon-gamma decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am. J. Physiol. 276, G1279–G1288 (1999).

    CAS  PubMed  Google Scholar 

  74. Smyth, D., Leung, G., Fernando, M. & McKay, D. M. Reduced surface expression of epithelial E-cadherin evoked by interferon-gamma is Fyn kinase-dependent. PLOS One 7, e38441 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qiu, Y. & Yang, H. Effects of intraepithelial lymphocyte-derived cytokines on intestinal mucosal barrier function. J. Interf. Cytokine Res. 33, 551–562 (2013).

    Article  CAS  Google Scholar 

  76. Cerf-Bensussan, N., Guy-Grand, D. & Griscelli, C. Intraepithelial lymphocytes of human gut: isolation, characterisation and study of natural killer activity. Gut 26, 81–88 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Russell, G. J., Nagler-Anderson, C., Anderson, P. & Bhan, A. K. Cytotoxic potential of intraepithelial lymphocytes (IELs). Presence of TIA-1, the cytolytic granule-associated protein, in human IELs in normal and diseased intestine. Am. J. Pathol. 143, 350–354 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dobbins, W. O. 3rd. Human intestinal intraepithelial lymphocytes. Gut 27, 972–985 (1986).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chott, A. et al. Intraepithelial lymphocytes in normal human intestine do not express proteins associated with cytolytic function. Am. J. Pathol. 151, 435–442 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Di Sabatino, A. et al. Intraepithelial and lamina propria lymphocytes show distinct patterns of apoptosis whereas both populations are active in Fas based cytotoxicity in coeliac disease. Gut 49, 380–386 (2001).

    Article  PubMed  Google Scholar 

  81. Hongo, T. et al. Functional expression of Fas and Fas ligand on human colonic intraepithelial T lymphocytes. J. Int. Med. Res. 28, 132–142 (1999).

    Article  Google Scholar 

  82. Raulet, D. H. Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 3, 781–790 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Colucci, F., Di Santo, J. P. & Leibson, P. J. Natural killer cell activation in mice and men: different triggers for similar weapons? Nat. Immunol. 3, 807–813 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Cheroutre, H. & Lambolez, F. Doubting the TCR coreceptor function of CD8αα. Immunity 28, 149–159 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Menezes, J. S. et al. Stimulation by food proteins plays a critical role in the maturation of the immune system. Int. Immunol. 15, 447–455 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Bandeira, A. et al. Localization of gamma/delta T cells to the intestinal epithelium is independent of normal microbial colonization. J. Exp. Med. 172, 239–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Finch, P. W., Pricolo, V., Wu, A. & Finkelstein, S. D. Increased expression of keratinocyte growth factor messenger RNA associated with inflammatory bowel disease. Gastroenterology 110, 441–451 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Finch, P. W. & Cheng, A. L. Analysis of the cellular basis of keratinocyte growth factor overexpression in inflammatory bowel disease. Gut 45, 848–855 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rubin, J. S. et al. Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc. Natl Acad. Sci. USA 86, 802–806 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang, H., Antony, P. A., Wildhaber, B. E. & Teitelbaum, D. H. Intestinal intraepithelial lymphocyte-T cell-derived keratinocyte growth factor modulates epithelial growth in the mouse. J. Immunol. 172, 4151–4158 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Sturm, A. & Dignass, A. U. Epithelial restitution and wound healing in inflammatory bowel disease. World J. Gastroenterol. 14, 348–353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sundin, J. et al. Altered faecal and mucosal microbial composition in post-infectious irritable bowel syndrome patients correlates with mucosal lymphocyte phenotypes and psychological distress. Aliment. Pharmacol. Ther. 41, 342–351 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Geva-Zatorsky, N. et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 168, 928–943 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Umesaki, Y., Setoyama, H., Matsumoto, S. & Okada, Y. Expansion of axf T cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79, 32–37 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Semenkovich, N. P. et al. Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proc. Natl Acad. Sci. USA 113, 201617793 (2016).

    Article  CAS  Google Scholar 

  96. Park, J. et al. Short chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Cabinian, A. et al. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens. Gut 67, 847–859 (2018).

    Article  PubMed  CAS  Google Scholar 

  98. O’Keeffe, M. S. et al. SLAMF4 is a negative regulator of expansion of cytotoxic intraepithelial CD8+ T cells that maintains homeostasis in the small intestine. Gastroenterology 148, 991–1001 (2015).

    Article  PubMed  CAS  Google Scholar 

  99. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Hubbard, T. D. et al. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci. Rep. 5, 12689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Julliard, W., Fechner, J. H. & Mezrich, J. D. The aryl hydrocarbon receptor meets immunology: Friend or foe? A little of both. Front. Immunol. 5, 458 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Ji, T. et al. Aryl hydrocarbon receptor activation down-regulates IL-7 and reduces inflammation in a mouse model of DSS-induced colitis. Dig. Dis. Sci. 60, 1958–1966 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Monteleone, I., Pallone, F. & Monteleone, G. Aryl hydrocarbon receptor and colitis. Semin. Immunopathol. 35, 671–675 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Monteleone, I. et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 141, 237–248 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Clark, R. A. Resident memory T cells in human health and disease. Sci. Transl Med. 7, 269rv1 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Rutgeerts, P. et al. Natural history of recurrent Crohn’s disease at the ileocolonic anastomosis after curative surgery. Gut 25, 665–672 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pascua, M., Su, C., Lewis, J. D., Brensinger, C. & Lichtenstein, G. R. Meta-analysis: factors predicting post-operative recurrence with placebo therapy in patients with Crohn’s disease. Aliment. Pharmacol. Ther. 28, 545–556 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Brown, I., Mino-Kenudson, M., Deshpande, V. & Lauwers, G. Y. Intraepithelial lymphocytosis in architecturally preserved proximal small intestinal mucosa: an increasing diagnostic problem with a wide differential diagnosis. Arch. Pathol. Lab. Med. 130, 1020–1025 (2006).

    Article  PubMed  Google Scholar 

  109. Chang, F., Mahadeva, U. & Deere, H. Pathological and clinical significance of increased intraepithelial lymphocytes (IELs) in small bowel mucosa. APMIS 113, 385–399 (2005).

    Article  PubMed  Google Scholar 

  110. Shmidt, E., Smyrk, T. C., Faubion, W. A. & Oxentenko, A. S. Duodenal intraepithelial lymphocytosis with normal villous architecture in pediatric patients: Mayo Clinic experience, 2000–2009. J. Pediatr. Gastroenterol. Nutr. 56, 51–55 (2013).

    Article  PubMed  Google Scholar 

  111. Parihar, V. et al. Clinical outcome of patients with raised intraepithelial lymphocytes with normal villous architecture on duodenal biopsy. Digestion 95, 288–292 (2017).

    Article  PubMed  Google Scholar 

  112. Jabri, B. & Sollid, L. M. T. Cells in celiac disease. J. Immunol. 198, 3005–3014 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Green, P. H. R. & Cellier, C. Celiac disease. N. Engl. J. Med. 357, 1731–1743 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Meresse, B., Malamut, G. & Cerf-Bensussan, N. Celiac disease: an immunological jigsaw. Immunity 36, 907–919 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Abadie, V., Discepolo, V. & Jabri, B. Intraepithelial lymphocytes in celiac disease immunopathology. Semin. Immunopathol. 34, 551–556 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Goldstein, N. S. & Underhill, J. Morphologic features suggestive of gluten sensitivity in architecturally normal duodenal biopsy specimens. Am. J. Clin. Pathol. 116, 63–71 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Steenholt, J. V. et al. The composition of T cell subtypes in duodenal biopsies are altered in coeliac disease patients. PLOS One 12, 1–17 (2017).

    Article  CAS  Google Scholar 

  118. Hue, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21, 367–377 (2004).

    Article  PubMed  Google Scholar 

  119. Allegretti, Y. L. et al. Broad MICA/B expression in the small bowel mucosa: a link between cellular stress and celiac disease. PLOS One 8, e73658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fehniger, T. A. & Caligiuri, M. A. Interleukin 15: biology and relevance to human disease. Blood 97, 14–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Jabri, B. et al. Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 118, 867–879 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Setty, M. et al. Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions of intraepithelial killer cells and active celiac disease. Gastroenterology 149, 681–691 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Tang, F. et al. Cytosolic PLA2 is required for CTL-mediated immunopathology of celiac disease via NKG2D and IL-15. J. Exp. Med. 206, 707–719 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tang, F. et al. Cysteinyl leukotrienes mediate lymphokine killer activity induced by NKG2D and IL-15 in cytotoxic T cells during celiac disease. J. Exp. Med. 212, 1487–1495 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sarra, M. et al. IL-15 positively regulates IL-21 production in celiac disease mucosa. Mucosal Immunol. 6, 244–255 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Ebert, E. C. Interleukin 21 up-regulates perforin-mediated cytotoxic activity of human intra-epithelial lymphocytes. Immunology 127, 206–215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ciccocioppo, R. et al. Cytolytic mechanisms of intraepithelial lymphocytes in coeliac disease (CoD). Clin. Exp. Immunol. 120, 235–240 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Long, E. O. et al. Killer cell inhibitory receptors: diversity, specificity, and function. Immunol. Rev. 155, 135–144 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Tuire, I. et al. Persistent duodenal intraepithelial lymphocytosis despite a long-term strict gluten-free diet in celiac disease. Am. J. Gastroenterol. 107, 1563–1569 (2012).

    Article  PubMed  Google Scholar 

  130. Kutlu, T. et al. Numbers of T cell receptor (TCR) alpha beta+but not of TCR gamma delta+intraepithelial lymphocytes correlate with the grade of villous atrophy in coeliac patients on a long term normal diet. Gut 34, 208–214 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Järvinen, T. T. et al. Intraepithelial lymphocytes in celiac disease. Am. J. Gastroenterol. 98, 1332–1337 (2003).

    Article  PubMed  Google Scholar 

  132. Chen, Y., Chou, K., Fuchs, E., Havran, W. L. & Boismenu, R. Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc. Natl Acad. Sci. USA 99, 14338–14343 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fiocchi, C., Battisto, J. R. & Farmer, R. G. Gut mucosal lymphocytes in inflammatory bowel disease: isolation and preliminary functional characterization. Dig. Dis. Sci. 24, 705–717 (1979).

    Article  CAS  PubMed  Google Scholar 

  134. Walker, M. M. et al. Duodenal mastocytosis, eosinophilia and intraepithelial lymphocytosis as possible disease markers in the irritable bowel syndrome and functional dyspepsia. Aliment. Pharmacol. Ther. 29, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Posnett, D. N. et al. T cell antigen receptor V gene usage. Increases in V beta 8+T cells in Crohn’s disease. J. Clin. Invest. 85, 1770–1776 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mitomi, H. et al. Contribution of TIA-1+ and granzyme B+ cytotoxic T lymphocytes to cryptal apoptosis and ulceration in active inflammatory bowel disease. Pathol. Res. Pract. 203, 717–723 (2007).

    Article  PubMed  Google Scholar 

  137. Hardee, S., Alper, A., Pashankar, D. S. & Morotti, R. A. Histopathology of duodenal mucosal lesions in pediatric patients with inflammatory bowel disease: statistical analysis to identify distinctive features. Pediatr. Dev. Pathol. 17, 450–454 (2014).

    Article  PubMed  Google Scholar 

  138. Trejdosiewicz, L. K. et al. Gamma delta T cell receptor-positive cells of the human gastrointestinal mucosa: occurrence and V region gene expression in Heliobacter pylori-associated gastritis, coeliac disease and inflammatory bowel disease. Clin. Exp. Immunol. 84, 440–444 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cuvelier, C. A., Wever, N. D. E., Mielants, H., Vos, M. D. E. & Veyst, E. M. Expression of T cell receptors patients with Crohn’s disease and with spondylarthropathy. Clin. Exp. Immunol. 90, 275–279 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vidali, F. et al. Increased CD8+ intraepithelial lymphocyte infiltration and reduced surface area to volume ratio in the duodenum of patients with ulcerative colitis. Scand. J. Gastroenterol. 45, 684–689 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Nüssler, N. C. et al. Enhanced cytolytic activity of intestinal intraepithelial lymphocytes in patients with Crohn’s disease. Langenbecks. Arch. Surg. 385, 218–224 (2000).

    Article  PubMed  Google Scholar 

  142. Liu, Z. et al. The increased expression of IL-23 in inflammatory bowel disease promotes intraepithelial and lamina propria lymphocyte inflammatory responses and cytotoxicity. J. Leukoc. Biol. 89, 597–606 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Allez, M. et al. CD4+NKG2D+T cells in Crohn’s disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology 132, 2346–2358 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Silva, F. A. R., Rodrigues, B. L., Ayrizono, M., de, L. S. & Leal, R. F. The immunological basis of inflammatory bowel disease. Gastroenterol. Res. Pract. 2016, 2097274 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hendrickson, B. A., Gokhale, R. & Cho, J. H. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin. Microbiol. Rev. 15, 79–94 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Rutter, M. et al. Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology 126, 451–459 (2004).

    Article  PubMed  Google Scholar 

  147. Gupta, R. B. et al. Histologic inflammation is a risk factor for progression to colorectal neoplasia in ulcerative colitis: a cohort study. Gastroenterology 133, 1091–1099 (2007).

    Article  Google Scholar 

  148. Ullman, T. A. & Itzkowitz, S. H. Intestinal inflammation and cancer. Gastroenterology 140, 1807–1816 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Chirica, M. et al. Phenotypic analysis of T cells infiltrating colon cancers: Correlations with oncogenetic status. Oncoimmunology 4, e1016698 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sherwood, A. M. et al. Tumor-infiltrating lymphocytes in colorectal tumors display a diversity of T cell receptor sequences that differ from the T cells in adjacent mucosal tissue. Cancer Immunol. Immunother. 62, 1453–1461 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Maeurer, M. J. et al. Human intestinal Vdelta1+lymphocytes recognize tumor cells of epithelial origin. J. Exp. Med. 183, 1681–1696 (1996).

    Article  CAS  PubMed  Google Scholar 

  154. Ebert, E. C. & Groh, V. Dissection of spontaneous cytotoxicity by human intestinal intraepithelial lymphocytes: MIC on colon cancer triggers NKG2D-mediated lysis through Fas ligand. Immunology 124, 33–41 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dewar, D. H. et al. Celiac disease: management of persistent symptoms in patients on a gluten-free diet. World J. Gastroenterol. 18, 1348–1356 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Yokoyama, S. et al. Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes. Proc. Natl Acad. Sci. USA 106, 15849–15854 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT02637141 (2018).

  158. Jabri, B. & Abadie, V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat. Rev. Immunol. 15, 771–783 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gomollon, F. et al. 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: Part 1: Diagnosis and medical management. J. Crohns. Colitis 11, 3–25 (2017).

    Article  PubMed  Google Scholar 

  160. Terdiman, J. P., Gruss, C. B., Heidelbaugh, J. J., Sultan, S. & Falck-Ytter, Y. T. American Gastroenterological Association Institute guideline on the use of thiopurines, methotrexate, and anti-TNF-alpha biologic drugs for the induction and maintenance of remission in inflammatory Crohn’s disease. Gastroenterology 145, 1459–1463 (2013).

    Article  PubMed  Google Scholar 

  161. American Gastroenterological Association. Crohns disease clinical care pathway. Available at: http://campaigns.gastro.org/algorithms/IBDCarePathway/pdf/IBDCarePathway.pdf. (Accessed: 7th November 2017).

  162. Peyrin-Biroulet, L. & Lemann, M. Review article: remission rates achievable by current therapies for inflammatory bowel disease. Aliment. Pharmacol. Ther. 33, 870–879 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Sandborn, W. J. et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 369, 711–721 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Feagan, B. G. et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 369, 699–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Vermeire, S. et al. Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. Lancet 384, 309–318 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Wyant, T., Yang, L. & Fedyk, E. In vitro assessment of the effects of vedolizumab binding on peripheral blood lymphocytes. MAbs 5, 842–850 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Fischer, A. et al. Differential effects of alpha4beta7 and GPR15 on homing of effector and regulatory T cells from patients with UC to the inflamed gut in vivo. Gut 65, 1642–1664 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Wang, C. et al. Effect of α4β7 blockade on intestinal lymphocyte subsets and lymphoid tissue development. Inflamm. Bowel Dis. 16, 1751–1762 (2010).

    Article  PubMed  Google Scholar 

  169. Lissner, D. et al. P617 Extraintestinal autoimmune phenomena during treatment with vedolizumab. J. Crohns Colitis 11, S394–S395 (2017).

    Article  Google Scholar 

  170. Loftus, E. V. et al. Long-term effectiveness and safety of vedolizumab in patients with ulcerative colitis: 5-year cumulative exposure of GEMINI 1 completers rolling into the GEMINI open-label extension study. J. Crohns Colitis 11, S182–S183 (2017).

    Article  Google Scholar 

  171. Wagner, N. et al. Critical role for beta7 integrins in formation of the gut-associated lymphoid tissue. Nature 382, 366–370 (1996).

    Article  CAS  PubMed  Google Scholar 

  172. Nguyen, L. P. et al. Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat. Immunol. 16, 207–213 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Ho, J. et al. A CD8+/CD103high T cell subset regulates TNF-mediated chronic murine ileitis. J. Immunol. 180, 2573–2580 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Mestas, J. & Hughes, C. C. W. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 160, 37–47 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Dutronc, Y. & Porcelli, S. A. The CD1 family and T cell recognition of lipid antigens. Tissue Antigens 60, 337–353 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wyer, J. R. et al. T cell receptor and coreceptor CD8 alphaalpha bind peptide-MHC independently and with distinct kinetics. Immunity 10, 219–225 (1999).

    Article  CAS  PubMed  Google Scholar 

  179. Cawthon, A. G., Lu, H. & Alexander-Miller, M. A. Peptide requirement for CTL activation reflects the sensitivity to CD3 engagement: correlation with CD8alphabeta versus CD8alphaalpha expression. J. Immunol. 167, 2577–2584 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Srour, E. F., Leemhuis, T., Jenski, L., Redmond, R. & Jansen, J. Cytolytic activity of human natural killer cell subpopulations isolated by four-color immunofluorescence flow cytometric cell sorting. Cytometry 11, 442–446 (1990).

    Article  CAS  PubMed  Google Scholar 

  181. van den Broek, T., Borghans, J. A. M. & van Wijk, F. The full spectrum of human naive T cells. Nat. Rev. Immunol. 18, 363–373 (2018).

    Article  PubMed  CAS  Google Scholar 

  182. Thome, J. J. C. et al. Longterm maintenance of human naive T cells through in situ homeostasis in lymphoid tissue sites. Sci. Immunol. 1, eaah6506 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Deusch, K. et al. Lymphokine repertoire and proliferative capacity of human intestinal intraepithelial lymphocytes. Gastroenterology 100, A574 (1991).

    Google Scholar 

  184. Cerf-Bensussan, N. et al. A monoclonal antibody (HML-1) defining a novel membrane molecule present on human intestinal lymphocytes. Eur. J. Immunol. 17, 1279–1285 (1987).

    Article  CAS  PubMed  Google Scholar 

  185. Bhagat, G. et al. Small intestinal CD8+TCRγδ+NKG2A+intraepithelial lymphocytes have attributes of regulatory cells in patients with celiac disease. J. Clin. Investig. 118, 281–293 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to those colleagues whose relevant work was not included in this Review owing to space constraints. The authors thank J. ten Hove for critically reading the manuscript and for helpful comments. F.v.W. is supported by a VIDI career development grant (016.146.332) from The Netherlands Organization for Health Research and Development (ZonMw). D.P.H.v.K. and E.C.B. are supported by the Alexandre Suerman programme for MD and PhD students of the University Medical Center Utrecht, Netherlands.

Reviewer information

Nature Reviews Gastroenterology & Hepatology thanks H. Cheroutre and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

F.v.W. contributed to discussion of content and writing, reviewing and editing the manuscript. L.L. and D.P.H.v.K. contributed to all aspects of preparation of the manuscript. E.C.B. researched data and contributed to discussion of content and reviewing and editing the manuscript. B.O. contributed to discussion of content and reviewing and editing the manuscript.

Corresponding author

Correspondence to Femke van Wijk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutter, L., Hoytema van Konijnenburg, D.P., Brand, E.C. et al. The elusive case of human intraepithelial T cells in gut homeostasis and inflammation. Nat Rev Gastroenterol Hepatol 15, 637–649 (2018). https://doi.org/10.1038/s41575-018-0039-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0039-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing