Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interferons α and β in cancer: therapeutic opportunities from new insights

Abstract

Over the past decade, preclinical and clinical research have confirmed the essential role of interferons for effective host immunological responses to malignant cells. Type I interferons (IFNα and IFNβ) directly regulate transcription of >100 downstream genes, which results in a myriad of direct (on cancer cells) and indirect (through immune effector cells and vasculature) effects on the tumour. New insights into endogenous and exogenous activation of type I interferons in the tumour and its microenvironment have given impetus to drug discovery and patient evaluation of interferon-directed strategies. When combined with prior observations or with other effective modalities for cancer treatment, modulation of the interferon system could contribute to further reductions in cancer morbidity and mortality. This Review discusses new interferon-directed therapeutic opportunities, ranging from cyclic dinucleotides to genome methylation inhibitors, angiogenesis inhibitors, chemoradiation, complexes with neoantigen-targeted monoclonal antibodies, combinations with other emerging therapeutic interventions and associations of interferon-stimulated gene expression with patient prognosis — all of which are strategies that have or will soon enter translational clinical evaluation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key events in the clinical development of interferons2,3,4,5,6,129,242,243,244.
Fig. 2: Induction and actions of IFNα and IFNβ.

Similar content being viewed by others

References

  1. Borden, E. C. et al. Interferons at age 50: past, current and future impact on biomedicine. Nat. Rev. Drug Discov. 6, 975–990 (2007). This review encompasses the underlying cellular effects of interferons for inhibition of cancer, viral infections and multiple sclerosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gresser, I., Bourali, C., Levy, J. P., Fontaine-Brouty-Boye, D. & Thomas, M. T. Increased survival in mice inoculated with tumor cells and treated with interferon preparations. Proc. Natl Acad. Sci. USA 63, 51–57 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Borden, E. C. Interferons: rationale for clinical trials in neoplastic disease. Ann. Intern. Med. 91, 472–479 (1979).

    CAS  PubMed  Google Scholar 

  4. Strander, H., Cantell, K., Carlstrom, G. & Jakobsson, P. A. Clinical & laboratory investigations on man: systemic administration of potent interferon to man. J. Natl Cancer Inst. 51, 733–742 (1973).

    CAS  PubMed  Google Scholar 

  5. Gutterman, J. U. et al. Leukocyte interferon-induced tumor regression in human metastatic breast cancer, multiple myeloma, and malignant lymphoma. Ann. Intern. Med. 93, 399–406 (1980).

    CAS  PubMed  Google Scholar 

  6. Borden, E. C. Progress toward therapeutic application of interferons, 1979–1983. Cancer 54, 2770–2776 (1984).

    CAS  PubMed  Google Scholar 

  7. Quesada, J. R., Reuben, J., Manning, J. T., Hersh, E. M. & Gutterman, J. U. Alpha interferon for induction of remission in hairy-cell leukemia. N. Engl. J. Med. 310, 15–18 (1984).

    CAS  PubMed  Google Scholar 

  8. Rai, K. R. et al. Recombinant alpha-2b-interferon in therapy of previously untreated hairy cell leukemia: long-term follow-up results of study by Cancer and Leukemia Group B. Leukemia 9, 1116–1120 (1995).

    CAS  PubMed  Google Scholar 

  9. Kantarjian, H. M. et al. Chronic myelogenous leukemia — progress at the M. D. Anderson Cancer Center over the past two decades and future directions: first Emil J. Freireich Award Lecture. Clin. Cancer Res. 3, 2723–2733 (1997).

    CAS  PubMed  Google Scholar 

  10. The Italian Cooperative Study Group on Chronic Myeloid Leukemia. Long-term follow-up of the Italian trial of interferon-alpha versus conventional chemotherapy in chronic myeloid leukemia. Blood 92, 1541–1548 (1998).

    Google Scholar 

  11. Kirkwood, J. M. et al. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J. Clin. Oncol. 14, 7–17 (1996).

    CAS  PubMed  Google Scholar 

  12. Ives, N. J. et al. Adjuvant interferon-alpha for the treatment of high-risk melanoma: an individual patient data meta-analysis. Eur. J. Cancer 82, 171–183 (2017). This article is an update on international trials assessing IFNα2 in reducing recurrence risk after resection of primary melanoma.

    CAS  PubMed  Google Scholar 

  13. Rudick, R. A. & Goelz, S. E. Beta-interferon for multiple sclerosis. Exp. Cell Res. 317, 1301–1311 (2011).

    CAS  PubMed  Google Scholar 

  14. Lin, F. C. & Young, H. A. Interferons: success in anti-viral immunotherapy. Cytokine Growth Factor Rev. 25, 369–376 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoffmann, H. H., Schneider, W. M. & Rice, C. M. Interferons and viruses: an evolutionary arms race of molecular interactions. Trends Immunol. 36, 124–138 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Borden, E. C. & Parkinson, D. A perspective on the clinical effectiveness and tolerance of interferon-alpha. Semin. Oncol. 25, 3–8 (1998). This review provides a perspective on the adverse effects of treatment with interferons.

    CAS  PubMed  Google Scholar 

  17. Weber, J. S., Yang, J. C., Atkins, M. B. & Disis, M. L. Toxicities of immunotherapy for the practitioner. J. Clin. Oncol. 33, 2092–2099 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Masci, P. et al. Gene modulatory effects, pharmacokinetics, and clinical tolerance of interferon-alpha1b: a second member of the interferon-alpha family. Clin. Pharmacol. Ther. 81, 354–361 (2007).

    CAS  PubMed  Google Scholar 

  19. Kursunel, M. A. & Esendagli, G. The untold story of IFN-gamma in cancer biology. Cytokine Growth Factor Rev. 31, 73–81 (2016).

    PubMed  Google Scholar 

  20. Lasfar, A., Gogas, H., Zloza, A., Kaufman, H. L. & Kirkwood, J. M. IFN-lambda cancer immunotherapy: new kid on the block. Immunotherapy 8, 877–888 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, Q., Sun, L. & Chen, Z. J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149 (2016). This is a comprehensive review on the molecular and cellular aspects of the cGAS–STING axis.

    CAS  PubMed  Google Scholar 

  22. Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015). This is an excellent review that complements the one above by adding more details on the pathophysiology of deregulation of the cGAS–STING pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, J. & Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32, 461–488 (2014).

    CAS  PubMed  Google Scholar 

  25. Li, X. D. et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390–1394 (2013).

    CAS  PubMed  Google Scholar 

  26. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    CAS  PubMed  Google Scholar 

  27. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    CAS  PubMed  Google Scholar 

  28. Ikushima, H., Negishi, H. & Taniguchi, T. The IRF family transcription factors at the interface of innate and adaptive immune responses. Cold Spring Harb. Symp. Quant. Biol. 78, 105–116 (2013).

    PubMed  Google Scholar 

  29. Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).

    PubMed  Google Scholar 

  30. Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530–534 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gray, E. E. et al. The AIM2-like receptors are dispensable for the interferon response to intracellular DNA. Immunity 45, 255–266 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Almine, J. F. et al. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat. Commun. 8, 14392 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jonsson, K. L. et al. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat. Commun. 8, 14391 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zevini, A., Olagnier, D. & Hiscott, J. Crosstalk between cytoplasmic RIG-I and STING sensing pathways. Trends Immunol. 38, 194–205 (2017). This review discusses effects of stimulation of synthesis of interferons by both RNA and DNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6447 (2018).

    Google Scholar 

  36. Yoneyama, M., Onomoto, K., Jogi, M., Akaboshi, T. & Fujita, T. Viral RNA detection by RIG-I-like receptors. Curr. Opin. Immunol. 32, 48–53 (2015).

    CAS  PubMed  Google Scholar 

  37. Wu, Y., Wu, X., Wu, L., Wang, X. & Liu, Z. The anticancer functions of RIG-I-like receptors, RIG-I and MDA5, and their applications in cancer therapy. Transl Res. 190, 51–60 (2017).

    CAS  PubMed  Google Scholar 

  38. Xu, X. X. et al. RIG-I: a multifunctional protein beyond a pattern recognition receptor. Protein Cell 9, 246–253 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Widau, R. C. et al. RIG-I-like receptor LGP2 protects tumor cells from ionizing radiation. Proc. Natl Acad. Sci. USA 111, E484–E491 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Klarquist, J. et al. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J. Immunol. 193, 6124–6134 (2014).

    CAS  PubMed  Google Scholar 

  41. Corrales, L., McWhirter, S. M., Dubensky, Jr, T. W. & Gajewski, T. F. The host STING pathway at the interface of cancer and immunity. J. Clin. Invest. 126, 2404–2411 (2016). This review analyses the critical, immunomodulatory role of STING.

    PubMed  PubMed Central  Google Scholar 

  42. Larkin, B. et al. Cutting edge: activation of STING in T cells induces Type I IFN responses and cell death. J. Immunol. 199, 397–402 (2017).

    CAS  PubMed  Google Scholar 

  43. Wang, H. et al. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc. Natl Acad. Sci. USA 114, 1637–1642 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fu, J. et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl Med. 7, 283ra252 (2015).

    Google Scholar 

  46. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fuertes, M. B. et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J. Exp. Med. 208, 2005–2016 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ohkuri, T. et al. STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol. Res. 2, 1199–1208 (2014).

    CAS  Google Scholar 

  49. Spiotto, M., Fu, Y. X. & Weichselbaum, R. R. The intersection of radiotherapy and immunotherapy: mechanisms and clinical implications. Sci. Immunol. 1, eaag1266 (2016). This is a review of augmentation of radiotherapeutic effects by type I interferons.

    PubMed  PubMed Central  Google Scholar 

  50. Song, S. et al. Decreased expression of STING predicts poor prognosis in patients with gastric cancer. Sci. Rep. 7, 39858 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kato, K. et al. Structural and functional analyses of DNA-sensing and immune activation by human cGAS. PLOS ONE 8, e76983 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Baird, J. R. et al. Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res. 76, 50–61 (2016).

    CAS  PubMed  Google Scholar 

  53. Luo, M. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 12, 648–654 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kimura, Y. et al. Novel chemical compound SINCRO with dual function in STING-type I interferon and tumor cell death pathways. Cancer Sci. 109, 2687–2696 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Leach, D. G. et al. STINGel: Controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials 163, 67–75 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Burnette, B. C. et al. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 71, 2488–2496 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 15618 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Angioli, R. et al. In vitro potentiation of radiation cytotoxicity by recombinant interferons in cervical cancer cell lines. Cancer 71, 3717–3725 (1993).

    CAS  PubMed  Google Scholar 

  59. Werner, L. R. et al. Transcriptional-mediated effects of radiation on the expression of immune susceptibility markers in melanoma. Radiother. Oncol. 124, 418–426 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schiavoni, G. et al. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res. 71, 768–778 (2011).

    CAS  PubMed  Google Scholar 

  61. Hannesdottir, L. et al. Lapatinib and doxorubicin enhance the Stat1-dependent antitumor immune response. Eur. J. Immunol. 43, 2718–2729 (2013).

    CAS  PubMed  Google Scholar 

  62. Sistigu, A. et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med. 20, 1301–1309 (2014).

    CAS  PubMed  Google Scholar 

  63. Li, T. et al. Antitumor activity of cGAMP via stimulation of cGAS-cGAMP-STING-IRF3 mediated innate immune response. Sci. Rep. 6, 19049 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Demaria, O. et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl Acad. Sci. USA 112, 15408–15413 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554 (2016). This review details the influence of interferon pathways on immune checkpoint activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Garcia-Diaz, A. et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19, 1189–1201 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ito, T. et al. Differential regulation of human blood dendritic cell subsets by IFNs. J. Immunol. 166, 2961–2969 (2001).

    CAS  PubMed  Google Scholar 

  69. Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).

    CAS  PubMed  Google Scholar 

  70. Alculumbre, S. et al. Plasmacytoid pre-dendritic cells (pDC): from molecular pathways to function and disease association. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2018.02.014 (2018).

    Article  PubMed  Google Scholar 

  71. Banete, A., Seaver, K., Bakshi, D., Gee, K. & Basta, S. On taking the STING out of immune activation. J. Leukoc. Biol. 103, 1189–1195 (2018).

    CAS  Google Scholar 

  72. Mattei, F., Schiavoni, G., Belardelli, F. & Tough, D. F. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J. Immunol. 167, 1179–1187 (2001).

    CAS  PubMed  Google Scholar 

  73. Parlato, S. et al. Expression of CCR-7, MIP-3beta, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood 98, 3022–3029 (2001).

    CAS  PubMed  Google Scholar 

  74. Simmons, D. P. et al. Type I IFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing. J. Immunol. 188, 3116–3126 (2012).

    CAS  PubMed  Google Scholar 

  75. Heise, R. et al. Interferon alpha signalling and its relevance for the upregulatory effect of transporter proteins associated with antigen processing (TAP) in patients with malignant melanoma. PLOS ONE 11, e0146325 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Diamond, M. S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Willemen, Y. et al. Engineering monocyte-derived dendritic cells to secrete interferon-alpha enhances their ability to promote adaptive and innate anti-tumor immune effector functions. Cancer Immunol. Immunother. 64, 831–842 (2015).

    CAS  PubMed  Google Scholar 

  78. Zarling, J. M. et al. Enhancement of T cell cytotoxic responses by purified human fibroblast interferon. J. Immunol. 121, 2002–2004 (1978).

    CAS  PubMed  Google Scholar 

  79. Brinkmann, V., Geiger, T., Alkan, S. & Heusser, C. H. Interferon alpha increases the frequency of interferon gamma-producing human CD4+ T cells. J. Exp. Med. 178, 1655–1663 (1993).

    CAS  PubMed  Google Scholar 

  80. Kolumam, G. A., Thomas, S., Thompson, L. J., Sprent, J. & Murali-Krishna, K. Type 1 interferons act directly on CD8 T cells to allow clonal expansion & memory formation in response to viral infection. J. Exp. Med. 202, 637–650 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Marshall, H. D., Prince, A. L., Berg, L. J. & Welsh, R. M. IFN-alpha beta and self-MHC divert CD8 T cells into a distinct differentiation pathway characterized by rapid acquisition of effector functions. J. Immunol. 185, 1419–1428 (2010).

    CAS  PubMed  Google Scholar 

  82. Hervas-Stubbs, S. et al. CD8 T cell priming in the presence of IFN-alpha renders CTLs with improved responsiveness to homeostatic cytokines and recall antigens: important traits for adoptive T cell therapy. J. Immunol. 189, 3299–3310 (2012).

    CAS  PubMed  Google Scholar 

  83. Gerner, M. Y., Heltemes-Harris, L. M., Fife, B. T. & Mescher, M. F. Cutting edge: IL-12 and type I IFN differentially program CD8 T cells for programmed death 1 re-expression levels and tumor control. J. Immunol. 191, 1011–1015 (2013).

    CAS  PubMed  Google Scholar 

  84. Harlin, H. et al. Chemokine expression in melanoma metastases associated with CD8+ T cell recruitment. Cancer Res. 69, 3077–3085 (2009).

    CAS  PubMed  Google Scholar 

  85. Gajewski, T. F. et al. Cancer immunotherapy targets based on understanding the T cell-inflamed versus non-T cell-inflamed tumor microenvironment. Adv. Exp. Med. Biol. 1036, 19–31 (2017). This article analyses immunomodulation in the tumour microenvironment.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Gajewski, T. F. The next hurdle in cancer immunotherapy: overcoming the non-T cell-inflamed tumor microenvironment. Semin. Oncol. 42, 663–671 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Corrales, L., Matson, V., Flood, B., Spranger, S. & Gajewski, T. F. Innate immune signaling and regulation in cancer immunotherapy. Cell Res. 27, 96–108 (2017).

    CAS  PubMed  Google Scholar 

  88. Le Bon, A. et al. Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J. Immunol. 176, 2074–2078 (2006).

    PubMed  Google Scholar 

  89. Izaguirre, A. et al. Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. J. Leukoc. Biol. 74, 1125–1138 (2003).

    CAS  PubMed  Google Scholar 

  90. Kim, S. et al. Self-priming determines high type I IFN production by plasmacytoid dendritic cells. Eur. J. Immunol. 44, 807–818 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tel, J. et al. Human plasmacytoid dendritic cells are equipped with antigen-presenting and tumoricidal capacities. Blood 120, 3936–3944 (2012).

    CAS  PubMed  Google Scholar 

  92. Swiecki, M. & Colonna, M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 15, 471–485 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kalb, M. L., Glaser, A., Stary, G., Koszik, F. & Stingl, G. TRAIL(+) human plasmacytoid dendritic cells kill tumor cells in vitro: mechanisms of imiquimod- and IFN-alpha-mediated antitumor reactivity. J. Immunol. 188, 1583–1591 (2012).

    CAS  PubMed  Google Scholar 

  94. Wu, J. et al. TLR-activated plasmacytoid dendritic cells inhibit breast cancer cell growth in vitro and in vivo. Oncotarget 8, 11708–11718 (2017).

    PubMed  Google Scholar 

  95. Butsch, R. et al. Intratumoral plasmacytoid dendritic cells associate with increased survival in patients with follicular lymphoma. Leuk. Lymphoma 52, 1230–1238 (2011).

    CAS  PubMed  Google Scholar 

  96. Saulep-Easton, D. et al. Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia. Leukemia 28, 2005–2015 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    PubMed  Google Scholar 

  98. Kreutz, M. et al. Type I IFN-mediated synergistic activation of mouse and human DC subsets by TLR agonists. Eur. J. Immunol. 45, 2798–2809 (2015).

    CAS  PubMed  Google Scholar 

  99. Shi, M., Chen, X., Ye, K., Yao, Y. & Li, Y. Application potential of toll-like receptors in cancer immunotherapy: systematic review. Medicine 95, e3951 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. Mikulandra, M., Pavelic, J. & Glavan, T. M. Recent findings on the application of toll-like receptors agonists in cancer therapy. Curr. Med. Chem. 24, 2011–2032 (2017).

    CAS  PubMed  Google Scholar 

  101. Ma, H. et al. Absence of Stat1 in donor CD4(+) T cells promotes the expansion of Tregs and reduces graft-versus-host disease in mice. J. Clin. Invest. 121, 2554–2569 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sisirak, V. et al. Impaired IFN-alpha production by plasmacytoid dendritic cells favors regulatory T cell expansion that may contribute to breast cancer progression. Cancer Res. 72, 5188–5197 (2012).

    CAS  PubMed  Google Scholar 

  103. Piconese, S., Pacella, I., Timperi, E. & Barnaba, V. Divergent effects of type-I interferons on regulatory T cells. Cytokine Growth Factor Rev. 26, 133–141 (2015).

    CAS  PubMed  Google Scholar 

  104. Pace, L. et al. APC activation by IFN-alpha decreases regulatory T cell and enhances Th cell functions. J. Immunol. 184, 5969–5979 (2010).

    CAS  PubMed  Google Scholar 

  105. Hashimoto, H. et al. Type I IFN gene delivery suppresses regulatory T cells within tumors. Cancer Gene Ther. 21, 532–541 (2014).

    CAS  PubMed  Google Scholar 

  106. Anz, D. et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res. 75, 4483–4493 (2015).

    CAS  PubMed  Google Scholar 

  107. Edwards, B. S., Merritt, J. A., Fuhlbrigge, R. C. & Borden, E. C. Low doses of interferon alpha result in more effective clinical natural killer cell activation. J. Clin. Invest. 75, 1908–1913 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Muller, L., Aigner, P. & Stoiber, D. Type I Interferons and natural killer cell regulation in cancer. Front. Immunol. 8, 304 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. Swann, J. B. et al. Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J. Immunol. 178, 7540–7549 (2007).

    CAS  PubMed  Google Scholar 

  110. Bidwell, B. N. et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat. Med. 18, 1224–1231 (2012).

    CAS  PubMed  Google Scholar 

  111. Zhao, Y. et al. Overexpression of interferon regulatory factor 7 (IRF7) reduces bone metastasis of prostate cancer cells in mice. Oncol. Res. 25, 511–522 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Takashima, K. et al. STING in tumor and host cells cooperatively work for NK cell-mediated tumor growth retardation. Biochem. Biophys. Res. Commun. 478, 1764–1771 (2016).

    CAS  PubMed  Google Scholar 

  113. Pylaeva, E., Lang, S. & Jablonska, J. The essential role of Type I interferons in differentiation and activation of tumor-associated neutrophils. Front. Immunol. 7, 629 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Andzinski, L. et al. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int. J. Cancer 138, 1982–1993 (2016).

    CAS  PubMed  Google Scholar 

  115. Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S. & Weiss, S. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J. Clin. Invest. 120, 1151–1164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wu, C. F. et al. The lack of type I interferon induces neutrophil-mediated pre-metastatic niche formation in the mouse lung. Int. J. Cancer 137, 837–847 (2015).

    CAS  PubMed  Google Scholar 

  117. Zoglmeier, C. et al. CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin. Cancer Res. 17, 1765–1775 (2011).

    CAS  PubMed  Google Scholar 

  118. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Saito, Y., Nakaoka, T. & Saito, H. A new molecular mechanism underlying the antitumor effect of DNA methylation inhibitors via an antiviral immune response. Adv. Protein Chem. Struct. Biol. 106, 227–242 (2017).

    CAS  PubMed  Google Scholar 

  120. Leonova, K. I. et al. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc. Natl Acad. Sci. USA 110, E89–E98 (2013).

    CAS  PubMed  Google Scholar 

  121. Wrangle, J. et al. Alterations of immune response of non-small cell lung cancer with azacytidine. Oncotarget 4, 2067–2079 (2013).

    PubMed  PubMed Central  Google Scholar 

  122. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Stone, M. L. et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl Acad. Sci. USA 114, E10981–E10990 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Xia, T., Konno, H., Ahn, J. & Barber, G. N. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 14, 282–297 (2016).

    CAS  PubMed  Google Scholar 

  125. Wang, L. X. et al. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses. PLOS ONE 8, e62924 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Luo, N. et al. DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer. Nat. Commun. 9, 248 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. Chiappinelli, K. B., Zahnow, C. A., Ahuja, N. & Baylin, S. B. Combining epigenetic and immunotherapy to combat cancer. Cancer Res. 76, 1683–1689 (2016). This article discusses the potential of combining inhibition of genomic methylation and immunotherapy to augment effects of type I interferons.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Stark, G. R., Cheon, H. & Wang, Y. Responses to cytokines and interferons that depend upon JAKs and STATs. Cold Spring Harb. Perspect. Biol. 10, a028555 (2018). This review discusses the fundamental molecular effects of type I interferons on JAK–STAT-mediating signalling.

    PubMed  PubMed Central  Google Scholar 

  129. Stark, G. R. & Darnell, J. E. Jr. The JAK-STAT pathway at twenty. Immunity 36, 503–514 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hertzog, P. J. & Williams, B. R. Fine tuning type I interferon responses. Cytokine Growth Factor Rev. 24, 217–225 (2013).

    CAS  PubMed  Google Scholar 

  131. Cheon, H., Borden, E. C. & Stark, G. R. Interferons and their stimulated genes in the tumor microenvironment. Semin. Oncol. 41, 156–173 (2014). This is an overview of the molecular and cellular response modulated by interferons.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Battle, T. E., Lynch, R. A. & Frank, D. A. Signal transducer and activator of transcription 1 activation in endothelial cells is a negative regulator of angiogenesis. Cancer Res. 66, 3649–3657 (2006).

    CAS  PubMed  Google Scholar 

  135. Fish, E. N. & Platanias, L. C. Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol. Cancer Res. 12, 1691–1703 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Rusinova, I. et al. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res. 41, D1040–D1046 (2013).

    CAS  PubMed  Google Scholar 

  137. Der, S. D., Zhou, A., Williams, B. R. & Silverman, R. H. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc. Natl Acad. Sci. USA 95, 15623–15628 (1998). This is a seminal paper that defines the spectrum of ISGs.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Schneider, W. M., Chevillotte, M. D. & Rice, C. M. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32, 513–545 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Forster, S. C., Tate, M. D. & Hertzog, P. J. MicroRNA as Type I interferon-regulated transcripts and modulators of the innate immune response. Front. Immunol. 6, 334 (2015).

    PubMed  PubMed Central  Google Scholar 

  140. Ortiz, A. & Fuchs, S. Y. Anti-metastatic functions of type 1 interferons: Foundation for the adjuvant therapy of cancer. Cytokine 89, 4–11 (2017).

    CAS  PubMed  Google Scholar 

  141. Gresser, I. & Belardelli, F. Endogenous type I interferons as a defense against tumors. Cytokine Growth Factor Rev. 13, 111–118 (2002).

    CAS  PubMed  Google Scholar 

  142. Dunn, G. P. et al. A critical function for type I interferons in cancer immunoediting. Nat. Immunol. 6, 722–729 (2005).

    CAS  PubMed  Google Scholar 

  143. Picaud, S., Bardot, B., De Maeyer, E. & Seif, I. Enhanced tumor development in mice lacking a functional type I interferon receptor. J. Interferon Cytokine Res. 22, 457–462 (2002).

    CAS  PubMed  Google Scholar 

  144. Ascierto, M. L. et al. A signature of immune function genes associated with recurrence-free survival in breast cancer patients. Breast Cancer Res. Treat. 131, 871–880 (2012).

    CAS  PubMed  Google Scholar 

  145. Linsley, P. S., Speake, C., Whalen, E. & Chaussabel, D. Copy number loss of the interferon gene cluster in melanomas is linked to reduced T cell infiltrate and poor patient prognosis. PLOS ONE 9, e109760 (2014).

    PubMed  PubMed Central  Google Scholar 

  146. Chang, L. C. et al. IFNAR1 is a predictor for overall survival in colorectal cancer and its mRNA expression correlated with IRF7 but not TLR9. Medicine 93, e349 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Katlinski, K. V. et al. Inactivation of interferon receptor promotes the establishment of immune privileged tumor microenvironment. Cancer Cell 31, 194–207 (2017). This paper discusses the critical role of IFNAR in the tumour.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Chan, S. R. et al. STAT1-deficient mice spontaneously develop estrogen receptor alpha-positive luminal mammary carcinomas. Breast Cancer Res. 14, R16 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Gujam, F. J., McMillan, D. C. & Edwards, J. The relationship between total and phosphorylated STAT1 and STAT3 tumour cell expression, components of tumour microenvironment and survival in patients with invasive ductal breast cancer. Oncotarget 7, 77607–77621 (2016).

    PubMed  PubMed Central  Google Scholar 

  150. Schneckenleithner, C. et al. Putting the brakes on mammary tumorigenesis: loss of STAT1 predisposes to intraepithelial neoplasias. Oncotarget 2, 1043–1054 (2011).

    PubMed  PubMed Central  Google Scholar 

  151. Messina, N. L. et al. Modulation of antitumour immune responses by intratumoural Stat1 expression. Immunol. Cell Biol. 91, 556–567 (2013).

    CAS  PubMed  Google Scholar 

  152. Yue, C. et al. Host STAT2/type I interferon axis controls tumor growth. Int. J. Cancer 136, 117–126 (2015).

    CAS  PubMed  Google Scholar 

  153. Vestal, D. J. & Jeyaratnam, J. A. The guanylate-binding proteins: emerging insights into the biochemical properties & functions of this family of large interferon-induced guanosine triphosphatase. J. Interferon Cytokine Res. 31, 89–97 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Chawla-Sarkar, M. et al. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 8, 237–249 (2003).

    CAS  PubMed  Google Scholar 

  155. Chawla-Sarkar, M., Leaman, D. W. & Borden, E. C. Preferential induction of apoptosis by interferon (IFN)-beta compared with IFN-alpha2: correlation with TRAIL/Apo2L induction in melanoma cell lines. Clin. Cancer Res. 7, 1821–1831 (2001).

    CAS  PubMed  Google Scholar 

  156. Chen, Q. et al. Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma. Blood 98, 2183–2192 (2001).

    CAS  PubMed  Google Scholar 

  157. Cheriyath, V., Leaman, D. W. & Borden, E. C. Emerging roles of FAM14 family members (G1P3/ISG 6–16 and ISG12/IFI27) in innate immunity and cancer. J. Interferon Cytokine Res. 31, 173–181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Reich, N. C. A death-promoting role for ISG54/IFIT2. J. Interferon Cytokine Res. 33, 199–205 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Mao, H. et al. Interferon-stimulated gene 15 induces cancer cell death by suppressing the NF-kappaB signaling pathway. Oncotarget 7, 70143–70151 (2016).

    PubMed  PubMed Central  Google Scholar 

  160. Gytz, H. et al. Apoptotic properties of the type 1 interferon induced family of human mitochondrial membrane ISG12 proteins. Biol. Cell 109, 94–112 (2017).

    CAS  PubMed  Google Scholar 

  161. Zhou, M. J. et al. ISG15 inhibits cancer cell growth and promotes apoptosis. Int. J. Mol. Med. 39, 446–452 (2017).

    CAS  PubMed  Google Scholar 

  162. Cheriyath, V. et al. G1P3, an interferon- and estrogen-induced survival protein contributes to hyperplasia, tamoxifen resistance and poor outcomes in breast cancer. Oncogene 31, 2222–2236 (2012).

    CAS  PubMed  Google Scholar 

  163. Porritt, R. A. & Hertzog, P. J. Dynamic control of type I IFN signalling by an integrated network of negative regulators. Trends Immunol. 36, 150–160 (2015).

    CAS  PubMed  Google Scholar 

  164. Arimoto, K. I., Miyauchi, S., Stoner, S. A., Fan, J. B. & Zhang, D. E. Negative regulation of type I IFN signaling. J. Leukoc. Biol. 103, 1099–1116 (2018). This review discusses the balance in interferon responses resulting from negative molecular regulation.

    CAS  Google Scholar 

  165. Weichselbaum, R. R. et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc. Natl Acad. Sci. USA 105, 18490–18495 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Khodarev, N. N., Roizman, B. & Weichselbaum, R. R. Molecular pathways: interferon/stat1 pathway: role in the tumor resistance to genotoxic stress and aggressive growth. Clin. Cancer Res. 18, 3015–3021 (2012).

    CAS  PubMed  Google Scholar 

  167. Sung, P. S. et al. Roles of unphosphorylated ISGF3 in HCV infection and interferon responsiveness. Proc. Natl Acad. Sci. USA 112, 10443–10448 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Duarte, C. W. et al. Expression signature of IFN/STAT1 signaling genes predicts poor survival outcome in glioblastoma multiforme in a subtype-specific manner. PLOS ONE 7, e29653 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Kang, K., Robinson, G. W. & Hennighausen, L. Comprehensive meta-analysis of signal transducers and activators of transcription (STAT) genomic binding patterns discerns cell-specific cis-regulatory modules. BMC Genomics 14, 4 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Ng, K. W., Marshall, E. A., Bell, J. C. & Lam, W. L. cGAS-STING and cancer: dichotomous roles in tumor immunity and development. Trends Immunol. 39, 44–54 (2018).

    CAS  PubMed  Google Scholar 

  171. Ahn, J. et al. Inflammation-driven carcinogenesis is mediated through STING. Nat. Commun. 5, 5166 (2014).

    CAS  PubMed  Google Scholar 

  172. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Yildirim, C. et al. Interferon-beta, a decisive factor in angiogenesis and arteriogenesis. J. Interferon Cytokine Res. 35, 411–420 (2015).

    CAS  PubMed  Google Scholar 

  174. Sidky, Y. A. & Borden, E. C. Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res. 47, 5155–5161 (1987).

    CAS  PubMed  Google Scholar 

  175. Dvorak, H. F. & Gresser, I. Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice. J. Natl Cancer Inst. 81, 497–502 (1989).

    CAS  PubMed  Google Scholar 

  176. McCarty, M. F., Bielenberg, D., Donawho, C., Bucana, C. D. & Fidler, I. J. Evidence for the causal role of endogenous interferon-alpha/beta in the regulation of angiogenesis, tumorigenicity, and metastasis of cutaneous neoplasms. Clin. Exp. Metastasis 19, 609–615 (2002).

    CAS  PubMed  Google Scholar 

  177. Spaapen, R. M. et al. Therapeutic activity of high-dose intratumoral IFN-beta requires direct effect on the tumor vasculature. J. Immunol. 193, 4254–4260 (2014).

    CAS  PubMed  Google Scholar 

  178. Huang, S., Bucana, C. D., Van Arsdall, M. & Fidler, I. J. Stat1 negatively regulates angiogenesis, tumorigenicity and metastasis of tumor cells. Oncogene 21, 2504–2512 (2002).

    CAS  PubMed  Google Scholar 

  179. Gerber, S. A. & Pober, J. S. IFN-alpha induces transcription of hypoxia-inducible factor-1alpha to inhibit proliferation of human endothelial cells. J. Immunol. 181, 1052–1062 (2008).

    CAS  PubMed  Google Scholar 

  180. Taylor, K. L. et al. Identification of interferon-beta-stimulated genes that inhibit angiogenesis in vitro. J. Interferon Cytokine Res. 28, 733–740 (2008).

    CAS  PubMed  Google Scholar 

  181. Borden, E. C. et al. Gene regulatory and clinical effects of interferon beta in patients with metastatic melanoma: a phase II trial. J. Interferon Cytokine Res. 31, 433–440 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Cheng, X., Liu, Y., Chu, H. & Kao, H. Y. Promyelocytic leukemia protein (PML) regulates endothelial cell network formation and migration in response to tumor necrosis factor alpha (TNFalpha) and interferon alpha (IFNalpha). J. Biol. Chem. 287, 23356–23367 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Go, R. S. et al. ECOG phase II trial of graded-dose peginterferon alpha-2b in patients with metastatic melanoma overexpressing basic fibroblast growth factor (E2602). Clin. Cancer Res. 19, 6597–6604 (2013).

    CAS  PubMed  Google Scholar 

  184. Takano, S., Ishikawa, E., Matsuda, M., Yamamoto, T. & Matsumura, A. Interferon-beta inhibits glioma angiogenesis through downregulation of vascular endothelial growth factor & upregulation of interferon inducible protein 10. Int. J. Oncol. 45, 1837–1846 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Hsu, K. S. et al. Dual regulation of Stat1 and Stat3 by the tumor suppressor protein PML contributes to interferon alpha-mediated inhibition of angiogenesis. J. Biol. Chem. 292, 10048–10060 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Guenzi, E. et al. The helical domain of GBP-1 mediates the inhibition of endothelial cell proliferation by inflammatory cytokines. EMBO J 20, 5568–5577 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Raffaella, R. et al. The interferon-inducible IFI16 gene inhibits tube morphogenesis and proliferation of primary, but not HPV16 E6/E7-immortalized human endothelial cells. Exp. Cell Res. 293, 331–345 (2004).

    CAS  PubMed  Google Scholar 

  188. von Marschall, Z. et al. Effects of interferon alpha on vascular endothelial growth factor gene transcription and tumor angiogenesis. J. Natl Cancer Inst. 95, 437–448 (2003).

    Google Scholar 

  189. Hiroi, M., Mori, K., Sakaeda, Y., Shimada, J. & Ohmori, Y. STAT1 represses hypoxia-inducible factor-1-mediated transcription. Biochem. Biophys. Res. Commun. 387, 806–810 (2009).

    CAS  PubMed  Google Scholar 

  190. Legros, L. et al. Interferon decreases VEGF levels in patients with chronic myeloid leukemia treated with imatinib. Leuk. Res. 38, 662–665 (2014).

    CAS  PubMed  Google Scholar 

  191. Dinney, C. P. et al. Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-alpha administration. Cancer Res. 58, 808–814 (1998).

    CAS  PubMed  Google Scholar 

  192. Singh, R. K., Gutman, M., Llansa, N. & Fidler, I. J. Interferon-beta prevents the upregulation of interleukin-8 expression in human melanoma cells. J. Interferon Cytokine Res. 16, 577–584 (1996).

    CAS  PubMed  Google Scholar 

  193. Ezekowitz, R. A., Mulliken, J. B. & Folkman, J. Interferon alfa-2a therapy for life-threatening hemangiomas of infancy. N. Engl. J. Med. 326, 1456–1463 (1992).

    CAS  PubMed  Google Scholar 

  194. Krown, S. E. AIDS-associated Kaposi’s sarcoma: is there still a role for interferon alfa? Cytokine Growth Factor Rev. 18, 395–402 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Rini, B. I. et al. Randomized phase III trial of temsirolimus and bevacizumab versus interferon alfa and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J. Clin. Oncol. 32, 752–759 (2014).

    CAS  PubMed  Google Scholar 

  196. Pelham, J. M., Gray, J. D., Flannery, G. R., Pimm, M. V. & Baldwin, R. W. Interferon-alpha conjugation to human osteogenic sarcoma monoclonal antibody 791T/36. Cancer Immunol. Immunother. 15, 210–216 (1983).

    CAS  PubMed  Google Scholar 

  197. Huang, T. H., Chintalacharuvu, K. R. & Morrison, S. L. Targeting IFN-alpha to B cell lymphoma by a tumor-specific antibody elicits potent antitumor activities. J. Immunol. 179, 6881–6888 (2007).

    CAS  PubMed  Google Scholar 

  198. Rossi, E. A., Goldenberg, D. M., Cardillo, T. M., Stein, R. & Chang, C. H. CD20-targeted tetrameric interferon-alpha, a novel and potent immunocytokine for the therapy of B cell lymphomas. Blood 114, 3864–3871 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Dubrot, J. et al. Intratumoral injection of interferon-alpha and systemic delivery of agonist anti-CD137 monoclonal antibodies synergize for immunotherapy. Int. J. Cancer 128, 105–118 (2011).

    CAS  PubMed  Google Scholar 

  200. Trinh, K. R. et al. Anti-CD20-interferon-beta fusion protein therapy of murine B cell lymphomas. J. Immunother. 36, 305–318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Yang, X. et al. Targeting the tumor microenvironment with interferon-beta bridges innate and adaptive immune responses. Cancer Cell 25, 37–48 (2014).

    PubMed  PubMed Central  Google Scholar 

  202. Pogue, S. L. et al. Targeting attenuated interferon-alpha to myeloma cells with a CD38 antibody induces potent tumor regression with reduced off-target activity. PLOS ONE 11, e0162472 (2016).

    PubMed  PubMed Central  Google Scholar 

  203. Li, Z. et al. Anti-VEGFR2-interferon-alpha2 regulates the tumor microenvironment and exhibits potent antitumor efficacy against colorectal cancer. Oncoimmunology 6, e1290038 (2017).

    PubMed  PubMed Central  Google Scholar 

  204. Sondel, P. M. & Gillies, S. D. Current and potential uses of immunocytokines as cancer immunotherapy. Antibodies 1, 149–171 (2012).

    CAS  PubMed  Google Scholar 

  205. Xuan, C., Steward, K. K., Timmerman, J. M. & Morrison, S. L. Targeted delivery of interferon-alpha via fusion to anti-CD20 results in potent antitumor activity against B cell lymphoma. Blood 115, 2864–2871 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Vega, G. G. et al. Overcoming rituximab drug-resistance by the genetically engineered anti-CD20-hIFN-alpha fusion protein: direct cytotoxicity and synergy with chemotherapy. Int. J. Oncol. 47, 1735–1748 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Greiner, J. W. et al. Evidence for the elevation of serum carcinoembryonic antigen and tumor-associated glycoprotein-72 levels in patients administered interferons. Cancer Res. 51, 4155–4163 (1991).

    CAS  PubMed  Google Scholar 

  208. Ozzello, L., Derosa, C., Habif, D., Cantell, K. & Pestka, S. Up-regulation of a tumor-associated antigen (tag-72) by interferon-alpha and interferon-gamma in patients with cutaneous breast-cancer recurrences. Int. J. Oncol. 6, 985–991 (1995).

    CAS  PubMed  Google Scholar 

  209. Sivaraman, S. et al. Effect of interferon-alpha on CD20 antigen expression of B cell chronic lymphocytic leukemia. Cytokines Cell. Mol. Ther. 6, 81–87 (2000).

    CAS  PubMed  Google Scholar 

  210. Prowell, T. M., Theoret, M. R. & Pazdur, R. Seamless oncology—-drug development. N. Engl. J. Med. 374, 2001–2003 (2016).

    PubMed  Google Scholar 

  211. Meyer, M. S. et al. Genetic variation in RNASEL associated with prostate cancer risk and progression. Carcinogenesis 31, 1597–1603 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Slattery, M. L., Lundgreen, A., Bondurant, K. L. & Wolff, R. K. Interferon-signaling pathway: associations with colon and rectal cancer risk and subsequent survival. Carcinogenesis 32, 1660–1667 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Lenci, R. E. et al. Influence of genetic variants in type I interferon genes on melanoma survival and therapy. PLOS ONE 7, e50692 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Lu, S. et al. Single nucleotide polymorphisms within interferon signaling pathway genes are associated with colorectal cancer susceptibility and survival. PLOS ONE 9, e111061 (2014).

    PubMed  PubMed Central  Google Scholar 

  215. Galon, J. et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 232, 199–209 (2014).

    CAS  PubMed  Google Scholar 

  216. Zainulabadeen, A., Yao, P. & Zare, H. Underexpression of specific interferon genes is associated with poor prognosis of melanoma. PLOS ONE 12, e0170025 (2017).

    PubMed  PubMed Central  Google Scholar 

  217. Doherty, M. R. et al. Interferon-beta represses cancer stem cell properties in triple-negative breast cancer. Proc. Natl Acad. Sci. USA 114, 13792–13797 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Piccaluga, P. P. et al. IFI16 reduced expression is correlated with unfavorable outcome in chronic lymphocytic leukemia. APMIS 125, 511–522 (2017).

    CAS  PubMed  Google Scholar 

  219. Callari, M. et al. Subtype-dependent prognostic relevance of an interferon-induced pathway metagene in node-negative breast cancer. Mol. Oncol. 8, 1278–1289 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Godoy, P. et al. Interferon-inducible guanylate binding protein (GBP2) is associated with better prognosis in breast cancer and indicates an efficient T cell response. Breast Cancer 21, 491–499 (2014).

    PubMed  Google Scholar 

  221. Parkes, E. E. et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J. Natl Cancer Inst. 109, djw199 (2017).

    Google Scholar 

  222. Danish, H. H. et al. Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) as a prognostic marker for local control in T1-2 N0 breast cancer treated with breast-conserving surgery and radiation therapy (BCS + RT). Breast J. 19, 231–239 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhang, J. F. et al. High IFIT1 expression predicts improved clinical outcome, and IFIT1 along with MGMT more accurately predicts prognosis in newly diagnosed glioblastoma. Hum. Pathol. 52, 136–144 (2016).

    CAS  PubMed  Google Scholar 

  224. Cohen, S. et al. Interferon regulatory factor 1 is an independent predictor of platinum resistance and survival in high-grade serous ovarian carcinoma. Gynecol. Oncol. 134, 591–598 (2014).

    CAS  PubMed  Google Scholar 

  225. Ranoa, D. R. et al. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget 7, 26496–26515 (2016).

    PubMed  PubMed Central  Google Scholar 

  226. Legrier, M. E. et al. Activation of IFN/STAT1 signalling predicts response to chemotherapy in oestrogen receptor-negative breast cancer. Br. J. Cancer 114, 177–187 (2016).

    CAS  PubMed  Google Scholar 

  227. Kim, Y. A. et al. MxA expression is associated with tumor-infiltrating lymphocytes and is a prognostic factor in triple-negative breast cancer. Breast Cancer Res. Treat. 156, 597–606 (2016).

    CAS  PubMed  Google Scholar 

  228. Mushinski, J. F. et al. Inhibition of tumor cell motility by the interferon-inducible GTPase MxA. J. Biol. Chem. 284, 15206–15214 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Brown, S. G. et al. Interferon inducible antiviral MxA is inversely associated with prostate cancer and regulates cell cycle, invasion and Docetaxel induced apoptosis. Prostate 75, 266–279 (2015).

    CAS  PubMed  Google Scholar 

  230. Margolis, S. R., Wilson, S. C. & Vance, R. E. Evolutionary origins of cGAS-STING signaling. Trends Immunol. 38, 733–743 (2017).

    CAS  PubMed  Google Scholar 

  231. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Juergens, R. A. et al. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov. 1, 598–607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Reu, F. J. et al. Expression of RASSF1A, an epigenetically silenced tumor suppressor, overcomes resistance to apoptosis induction by interferons. Cancer Res. 66, 2785–2793 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Reu, F. J. et al. Overcoming resistance to interferon-induced apoptosis of renal carcinoma and melanoma cells by DNA demethylation. J. Clin. Oncol. 24, 3771–3779 (2006).

    CAS  PubMed  Google Scholar 

  235. Lucarini, V. et al. Combining type I interferons and 5-aza-2′-deoxycitidine to improve anti-tumor response against melanoma. J. Invest. Dermatol. 137, 159–169 (2017).

    CAS  PubMed  Google Scholar 

  236. Lipnik, K. et al. Interferon gamma-induced human guanylate binding protein 1 inhibits mammary tumor growth in mice. Mol. Med. 16, 177–187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Britzen-Laurent, N. et al. GBP-1 acts as a tumor suppressor in colorectal cancer cells. Carcinogenesis 34, 153–162 (2013).

    CAS  PubMed  Google Scholar 

  238. Weinlander, K. et al. Guanylate binding protein-1 inhibits spreading and migration of endothelial cells through induction of integrin alpha4 expression. FASEB J. 22, 4168–4178 (2008).

    PubMed  Google Scholar 

  239. Guenzi, E. et al. The guanylate binding protein-1 GTPase controls the invasive and angiogenic capability of endothelial cells through inhibition of MMP-1 expression. EMBO J. 22, 3772–3782 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Bleiziffer, O. et al. Guanylate-binding protein 1 expression from embryonal endothelial progenitor cells reduces blood vessel density and cellular apoptosis in an axially vascularised tissue-engineered construct. BMC Biotechnol. 12, 94 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Naschberger, E. et al. Angiostatic immune reaction in colorectal carcinoma: Impact on survival and perspectives for antiangiogenic therapy. Int. J. Cancer 123, 2120–2129 (2008).

    CAS  PubMed  Google Scholar 

  242. Zoon, K. C. & Smith, M. E. The purification and characterization of interferons. Horiz. Biochem. Biophys. 6, 123–135 (1982).

    CAS  PubMed  Google Scholar 

  243. Pestka, S. The human interferons—from protein purification and sequence to cloning and expression in bacteria: before, between, and beyond. Arch. Biochem. Biophys. 221, 1–37 (1983).

    CAS  PubMed  Google Scholar 

  244. Gutterman, J. U. et al. Recombinant leukocyte A interferon: pharmacokinetics, single-dose tolerance, and biologic effects in cancer patients. Ann. Intern. Med. 96, 549–556 (1982).

    CAS  PubMed  Google Scholar 

  245. Foote, J. B. et al. A STING agonist given with OX40 receptor and PD-L1 modulators primes immunity and reduces tumor growth in tolerized mice. Cancer Immunol. Res. 5, 468–479 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Weiss, J. M. et al. The STING agonist DMXAA triggers a cooperation between T lymphocytes and myeloid cells that leads to tumor regression. Oncoimmunology 6, e1346765 (2017).

    PubMed  PubMed Central  Google Scholar 

  247. Daei Farshchi Adli, A., Jahanban-Esfahlan, R., Seidi, K., Samandari-Rad, S. & Zarghami, N. An overview on Vadimezan (DMXAA): the vascular disrupting agent. Chem. Biol. Drug Des. 91, 996–1006 (2018).

    CAS  PubMed  Google Scholar 

  248. Adamus, T. & Kortylewski, M. The revival of CpG oligonucleotide-based cancer immunotherapies. Contemp. Oncol. 22, 56–60 (2018).

    Google Scholar 

  249. Hou, J. et al. Hepatic RIG-I predicts survival and interferon-alpha therapeutic response in hepatocellular carcinoma. Cancer Cell 25, 49–63 (2014).

    CAS  PubMed  Google Scholar 

  250. Engel, C. et al. RIG-I resists hypoxia-induced immunosuppression and dedifferentiation. Cancer Immunol. Res. 5, 455–467 (2017).

    CAS  PubMed  Google Scholar 

  251. Crow, M. K. Type I interferon in the pathogenesis of lupus. J. Immunol. 192, 5459–5468 (2014).

    CAS  PubMed  Google Scholar 

  252. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Yu, F. et al. IFITM1 promotes the metastasis of human colorectal cancer via CAV-1. Cancer Lett. 368, 135–143 (2015).

    CAS  PubMed  Google Scholar 

  254. Ogony, J., Choi, H. J., Lui, A., Cristofanilli, M. & Lewis-Wambi, J. Interferon-induced transmembrane protein 1 (IFITM1) overexpression enhances the aggressive phenotype of SUM149 inflammatory breast cancer cells in a signal transducer and activator of transcription 2 (STAT2)-dependent manner. Breast Cancer Res. 18, 25 (2016).

    PubMed  PubMed Central  Google Scholar 

  255. Yang, Y. G. et al. Interferon-induced transmembrane protein 1-mediated EGFR/SOX2 signaling axis is essential for progression of non-small cell lung cancer. Int. J. Cancer https://doi.org/10.1002/ijc.31926 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Chen, R. H. et al. ISG15 predicts poor prognosis and promotes cancer stem cell phenotype in nasopharyngeal carcinoma. Oncotarget 7, 16910–16922 (2016).

    PubMed  PubMed Central  Google Scholar 

  257. D’Cunha, J. et al. Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc. Natl Acad. Sci. USA 93, 211–215 (1996).

    PubMed  PubMed Central  Google Scholar 

  258. Han, H. G., Moon, H. W. & Jeon, Y. J. ISG15 in cancer: beyond ubiquitin-like protein. Cancer Lett. 438, 52–62 (2018).

    CAS  PubMed  Google Scholar 

  259. Machiraju, D. et al. STAT5 expression correlates with recurrence and survival in melanoma patients treated with interferon-alpha. Melanoma Res. 28, 204–210 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Instrumental to completion of this commentary were constructive suggestions from critical readings by colleagues G. Stark, R. Silverman, H. J. Cheon, P. Sondel and M. Mastrangelo. K. Kraus provided crucial editorial assistance, as did R. Gordon in his initial preparation of figure 2. For purposes of summation, reference has sometimes been made to reviews (usually those from laboratories in which the seminal discoveries originated), but this has thus occasionally led to omission of complementary publications — to whose authors the author of this Review apologizes. External support over the years to the author’s laboratory from the American Cancer Society, the National Institutes of Health and the Comprehensive Cancer Centers of the US National Cancer Institute at the University of Wisconsin and Cleveland Clinic/Case Western Reserve University contributed to the author’s insights, as did many institutional colleagues at the latter clinical research centers who also had critical roles in helping identify improvements in outcomes for patients with cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest C. Borden.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Interferome: the database of Interferon Regulated Genes: http://www.interferome.org

Glossary

Polyriboinosinic: polyribocytidylic acid

(Poly(I:C)). A double-stranded RNA with one strand being a homopolymer of inosinic acid and the other being a homopolymer of cytidylic acid, with lengths of 0.2–8.0 kb.

Abscopal

An effect in cancer therapy in which the treatment of a localized site results in regression of tumour(s) at distant sites (derived from ab scopus, which means away from target).

Immunoscore

A prognostic immunoprofiling based upon immune cell infiltrates and/or functional activities that can be beneficial for prediction of patient outcome; the tool was pioneered by Jerome Galon and refined by international collaborations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borden, E.C. Interferons α and β in cancer: therapeutic opportunities from new insights. Nat Rev Drug Discov 18, 219–234 (2019). https://doi.org/10.1038/s41573-018-0011-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-018-0011-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research