Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Williams syndrome

Abstract

Williams syndrome (WS) is a relatively rare microdeletion disorder that occurs in as many as 1:7,500 individuals. WS arises due to the mispairing of low-copy DNA repetitive elements at meiosis. The deletion size is similar across most individuals with WS and leads to the loss of one copy of 25–27 genes on chromosome 7q11.23. The resulting unique disorder affects multiple systems, with cardinal features including but not limited to cardiovascular disease (characteristically stenosis of the great arteries and most notably supravalvar aortic stenosis), a distinctive craniofacial appearance, and a specific cognitive and behavioural profile that includes intellectual disability and hypersociability. Genotype–phenotype evidence is strongest for ELN, the gene encoding elastin, which is responsible for the vascular and connective tissue features of WS, and for the transcription factor genes GTF2I and GTF2IRD1, which are known to affect intellectual ability, social functioning and anxiety. Mounting evidence also ascribes phenotypic consequences to the deletion of BAZ1B, LIMK1, STX1A and MLXIPL, but more work is needed to understand the mechanism by which these deletions contribute to clinical outcomes. The age of diagnosis has fallen in regions of the world where technological advances, such as chromosomal microarray, enable clinicians to make the diagnosis of WS without formally suspecting it, allowing earlier intervention by medical and developmental specialists. Phenotypic variability is considerable for all cardinal features of WS but the specific sources of this variability remain unknown. Further investigation to identify the factors responsible for these differences may lead to mechanism-based rather than symptom-based therapies and should therefore be a high research priority.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Salient features of Williams syndrome.
Fig. 2: Genomic organization of the Williams syndrome critical region.
Fig. 3: Phenotypic consequences of deleting key genes in the Williams syndrome critical region.
Fig. 4: Facial features of children and adults with Williams syndrome of different ethnic backgrounds.
Fig. 5: Developmental milestones for very young children with Williams syndrome.
Fig. 6: Prevalence of psychiatric diagnoses in individuals with Williams syndrome throughout the lifespan.

Similar content being viewed by others

References

  1. Beuren, A. J., Apitz, J. & Harmjanz, D. Supravalvular aortic stenosis in association with mental retardation and a certain facial appearance. Circulation 26, 1235–1240 (1962).

    CAS  PubMed  Google Scholar 

  2. Williams, J. C., Barratt-Boyes, B. G. & Lowe, J. B. Supravalvular aortic stenosis. Circulation 24, 1311–1318 (1961).

    CAS  PubMed  Google Scholar 

  3. Fanconi, G., Girardet, P., Schlesinger, B., Butler, N. & Black, J. Chronische hypercalcaemie kombiniert mit osteosklerose, hyperazotaemie, minderwuchs, und kongenitalen Missbildungen [Chronic hypercalcemia, combined with osteosclerosis, hyperazotemia, nanism, and congenital malformations]. Helv. Paediatr. Acta 7, 314–349 (1952).

    CAS  PubMed  Google Scholar 

  4. Cha, S. G. et al. Long-term cardiovascular outcome of Williams syndrome. Congenit. Heart Dis. 14, 684–690 (2019).

    PubMed  Google Scholar 

  5. Del Pasqua, A. et al. New findings concerning cardiovascular manifestations emerging from long-term follow-up of 150 patients with the Williams-Beuren-Beuren syndrome. Cardiol. Young. 19, 563–567 (2009). This paper reports the cardiovascular outcomes from a large number of individuals with WS over a range of 0.5–25 years (average 6 years) of age.

    PubMed  Google Scholar 

  6. Collins, R. T. II Cardiovascular disease in Williams syndrome. Curr. Opin. Pediatr. 30, 609–615 (2018).

    PubMed  Google Scholar 

  7. Li, D. Y. et al. Novel arterial pathology in mice and humans hemizygous for elastin. J. Clin. Invest. 102, 1783–1787 (1998). This paper describes the impact of elastin insufficiency in humans and mice, cementing its role in the vasculopathy of WS.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bouchireb, K. et al. Clinical features and management of arterial hypertension in children with Williams-Beuren syndrome. Nephrol. Dial. Transpl. 25, 434–438 (2010).

    Google Scholar 

  9. Rose, C., Wessel, A., Pankau, R., Partsch, C. J. & Bursch, J. Anomalies of the abdominal aorta in Williams-Beuren syndrome-another cause of arterial hypertension. Eur. J. Pediatr. 160, 655–658 (2001).

    CAS  PubMed  Google Scholar 

  10. Latham, G. J. et al. Perioperative morbidity in children with elastin arteriopathy. Paediatr. Anaesth. 26, 926–935 (2016). This is the largest study (n = 48) that discusses risks associated with anaesthesia in individuals with WS.

    PubMed  Google Scholar 

  11. Furusawa, E. A. et al. Diagnosis and management of systemic hypertension due to renovascular and aortic stenosis in patients with Williams-Beuren syndrome. Rev. Assoc. Med. Bras. 64, 723–728 (2018).

    PubMed  Google Scholar 

  12. Wessel, A. et al. Risk of sudden death in the Williams-Beuren syndrome. Am. J. Med. Genet. A 127A, 234–237 (2004). This is the first study to demonstrate an elevated relative risk of sudden cardiovascular death in individuals with WS.

    PubMed  Google Scholar 

  13. Mervis, C. B. & Greiner de Magalhães, C. In Pediatric Neuropsychology: Research, theory, and practice (eds Beauchamp, M., et al.) Ch. Williams syndrome (Guilford Press, 2021). This article provides a thorough characterization of the WS behavioural phenotype with a special focus on intellectual disability, language and literacy development, memory, and executive function development along with suggested interventional approaches.

  14. Mervis, C. B. & John, A. E. Cognitive and behavioral characteristics of children with Williams syndrome: implications for intervention approaches. Am. J. Med. Genet. C. Semin. Med. Genet. 154C, 229–248 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. Jarvinen, A., Korenberg, J. R. & Bellugi, U. The social phenotype of Williams syndrome. Curr. Opin. Neurobiol. 23, 414–422 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Klein-Tasman, B. P. & Mervis, C. B. Distinctive personality characteristics of 8-, 9-, and 10-year-olds with Williams syndrome. Dev. Neuropsychol. 23, 269–290 (2003).

    PubMed  Google Scholar 

  17. Ewart, A. K. et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat. Genet. 5, 11–16 (1993).

    CAS  PubMed  Google Scholar 

  18. Perez Jurado, L. A., Peoples, R., Kaplan, P., Hamel, B. C. & Francke, U. Molecular definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin effects on growth. Am. J. Hum. Genet. 59, 781–792 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stromme, P., Bjornstad, P. G. & Ramstad, K. Prevalence estimation of Williams syndrome. J. Child. Neurol. 17, 269–271 (2002).

    PubMed  Google Scholar 

  20. Greenberg, F. Williams syndrome professional symposium. Am. J. Med. Genet. 37, 85–88 (1990).

    Google Scholar 

  21. National Organization for Rare Disorders. Williams Syndrome https://rarediseases.org/rare-diseases/williams-syndrome/ (2006).

  22. Honjo, R. S. et al. Williams-Beuren syndrome: a clinical study of 55 Brazilian patients and the diagnostic use of MLPA. Biomed. Res. Int. 2015, 903175 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Sharma, P. et al. Williams-Beuren syndrome: experience of 43 patients and a report of an atypical case from a tertiary care center in India. Cytogenet. Genome Res. 146, 187–194 (2015).

    PubMed  Google Scholar 

  24. Gold, N. B. et al. Delayed diagnosis of Williams-Beuren syndrome in an adolescent of Jamaican descent: examining racial disparities in genetics education. Clin. Dysmorphol. 30, 69–70 (2021).

    PubMed  Google Scholar 

  25. Lumaka, A. et al. Williams-Beuren syndrome: pitfalls for diagnosis in limited resources setting. Clin. Case Rep. 4, 294–297 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. Tekendo-Ngongang, C. et al. Challenges in clinical diagnosis of Williams-Beuren syndrome in sub-Saharan Africans: case reports from Cameroon. Mol. Syndromol. 5, 287–292 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Kruszka, P. et al. Williams-Beuren syndrome in diverse populations. Am. J. Med. Genet. A 176, 1128–1136 (2018). This paper presents the largest series of facial photographs of individuals with WS from multiple regions throughout the world; this is crucial for increasing international awareness of WS.

    PubMed  PubMed Central  Google Scholar 

  28. Scheiber, D. et al. Echocardiographic findings in patients with Williams-Beuren syndrome. Wien. Klin. Wochenschr. 118, 538–542 (2006).

    PubMed  Google Scholar 

  29. Parrish, P. C. R. et al. Whole exome sequencing in patients with Williams-Beuren syndrome followed by disease modeling in mice points to four novel pathways that may modify stenosis risk. Hum. Mol. Genet. 29, 2035–2050 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sadler, L. S. et al. Differences by sex in cardiovascular disease in Williams syndrome. J. Pediatr. 139, 849–853 (2001).

    CAS  PubMed  Google Scholar 

  31. Morris, C. A. et al. Alpha 1 antitrypsin deficiency alleles are associated with joint dislocation and scoliosis in Williams syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 154C, 299–306 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, M. S. et al. Molecular and clinical correlation study of Williams-Beuren syndrome: no evidence of molecular factors in the deletion region or imprinting affecting clinical outcome. Am. J. Med. Genet. 86, 34–43 (1999).

    CAS  PubMed  Google Scholar 

  33. Elison, S., Stinton, C. & Howlin, P. Health and social outcomes in adults with Williams syndrome: findings from cross-sectional and longitudinal cohorts. Res. Dev. Disabil. 31, 587–599 (2010).

    PubMed  Google Scholar 

  34. Sauna-Aho, O., Bjelogrlic-Laakso, N., Siren, A., Kangasmaki, V. & Arvio, M. Cognition in adults with Williams syndrome-A 20-year follow-up study. Mol. Genet. Genom. Med. 7, e695 (2019). These authors provide long-term follow-up information on some of the oldest adults with WS reported to date and document difficulties across numerous medical and functional domains.

    Google Scholar 

  35. Sadler, L. S., Robinson, L. K., Verdaasdonk, K. R. & Gingell, R. The Williams syndrome: evidence for possible autosomal dominant inheritance. Am. J. Med. Genet. 47, 468–470 (1993).

    CAS  PubMed  Google Scholar 

  36. Morris, C. A., Thomas, I. T. & Greenberg, F. Williams syndrome: autosomal dominant inheritance. Am. J. Med. Genet. 47, 478–481 (1993).

    CAS  PubMed  Google Scholar 

  37. Metcalfe, K., Simeonov, E., Beckett, W., Donnai, D. & Tassabehji, M. Autosomal dominant inheritance of Williams-Beuren syndrome in a father and son with haploinsufficiency for FKBP6. Clin. Dysmorphol. 14, 61–65 (2005).

    PubMed  Google Scholar 

  38. Pankau, R. et al. Familial Williams-Beuren syndrome showing varying clinical expression. Am. J. Med. Genet. 98, 324–329 (2001).

    CAS  PubMed  Google Scholar 

  39. Bayes, M., Magano, L. F., Rivera, N., Flores, R. & Perez Jurado, L. A. Mutational mechanisms of Williams-Beuren syndrome deletions. Am. J. Hum. Genet. 73, 131–151 (2003). This paper dissects the complex make-up of the low-copy repeats that mediate the WS deletion.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Antonell, A. et al. Partial 7q11.23 deletions further implicate GTF2I and GTF2IRD1 as the main genes responsible for the Williams-Beuren syndrome neurocognitive profile. J. Med. Genet. 47, 312–320 (2010).

    CAS  PubMed  Google Scholar 

  41. Cusco, I. et al. Copy number variation at the 7q11.23 segmental duplications is a susceptibility factor for the Williams-Beuren syndrome deletion. Genome Res. 18, 683–694 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Osborne, L. R. et al. A 1.5 million-base pair inversion polymorphism in families with Williams-Beuren syndrome. Nat. Genet. 29, 321–325 (2001). This paper identifies 7q11.23 inversion as a polymorphism that is a risk factor for the WS deletion.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Somerville, M. J. et al. Severe expressive-language delay related to duplication of the Williams-Beuren locus. N. Engl. J. Med. 353, 1694–1701 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hobart, H. H. et al. Inversion of the Williams syndrome region is a common polymorphism found more frequently in parents of children with Williams syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 154C, 220–228 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tam, E. et al. The common inversion of the Williams-Beuren syndrome region at 7q11.23 does not cause clinical symptoms. Am. J. Med. Genet. A 146A, 1797–1806 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramocki, M. B. et al. Recurrent distal 7q11.23 deletion including HIP1 and YWHAG identified in patients with intellectual disabilities, epilepsy, and neurobehavioral problems. Am. J. Hum. Genet. 87, 857–865 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Marshall, C. R. et al. Infantile spasms is associated with deletion of the MAGI2 gene on chromosome 7q11.23-q21.11. Am. J. Hum. Genet. 83, 106–111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nicita, F. et al. Epilepsy is a possible feature in Williams-Beuren syndrome patients harboring typical deletions of the 7q11.23 critical region. Am. J. Med. Genet. A 170A, 148–155 (2016).

    PubMed  Google Scholar 

  49. Lugo, M. et al. Social, neurodevelopmental, endocrine, and head size differences associated with atypical deletions in Williams-Beuren syndrome. Am. J. Med. Genet. A 182, 1008–1020 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fusco, C. et al. Smaller and larger deletions of the Williams Beuren syndrome region implicate genes involved in mild facial phenotype, epilepsy and autistic traits. Eur. J. Hum. Genet. 22, 64–70 (2014).

    CAS  PubMed  Google Scholar 

  51. Stock, A. D. et al. Heat shock protein 27 gene: chromosomal and molecular location and relationship to Williams syndrome. Am. J. Med. Genet. A 120A, 320–325 (2003).

    PubMed  Google Scholar 

  52. Vandeweyer, G., Van der Aa, N., Reyniers, E. & Kooy, R. F. The contribution of CLIP2 haploinsufficiency to the clinical manifestations of the Williams-Beuren syndrome. Am. J. Hum. Genet. 90, 1071–1078 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tassabehji, M. et al. Williams syndrome: use of chromosomal microdeletions as a tool to dissect cognitive and physical phenotypes. Am. J. Hum. Genet. 64, 118–125 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tassabehji, M. et al. GTF2IRD1 in craniofacial development of humans and mice. Science 310, 1184–1187 (2005).

    CAS  PubMed  Google Scholar 

  55. Plaja, A. et al. A novel recurrent breakpoint responsible for rearrangements in the Williams-Beuren region. Cytogenet. Genome Res. 146, 181–186 (2015).

    CAS  PubMed  Google Scholar 

  56. Morris, C. A. et al. GTF2I hemizygosity implicated in mental retardation in Williams syndrome: genotype-phenotype analysis of five families with deletions in the Williams syndrome region. Am. J. Med. Genet. A 123A, 45–59 (2003). This paper demonstrates the roles of the deletion of centromeric and telomeric portions of the WSCR in the WS neurocognitive profile.

    PubMed  Google Scholar 

  57. Hoeft, F. et al. Mapping genetically controlled neural circuits of social behavior and visuo-motor integration by a preliminary examination of atypical deletions with Williams syndrome. PLoS One 9, e104088 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Hirota, H. et al. Williams syndrome deficits in visual spatial processing linked to GTF2IRD1 and GTF2I on chromosome 7q11.23. Genet. Med. 5, 311–321 (2003).

    CAS  PubMed  Google Scholar 

  59. Gagliardi, C., Bonaglia, M. C., Selicorni, A., Borgatti, R. & Giorda, R. Unusual cognitive and behavioural profile in a Williams syndrome patient with atypical 7q11.23 deletion. J. Med. Genet. 40, 526–530 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ferrero, G. B. et al. An atypical 7q11.23 deletion in a normal IQ Williams-Beuren syndrome patient. Eur. J. Hum. Genet. 18, 33–38 (2010).

    PubMed  Google Scholar 

  61. Delgado, L. M. et al. A 1.3-mb 7q11.23 atypical deletion identified in a cohort of patients with Williams-Beuren syndrome. Mol. Syndromol. 4, 143–147 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Botta, A. et al. Detection of an atypical 7q11.23 deletion in Williams syndrome patients which does not include the STX1A and FZD3 genes. J. Med. Genet. 36, 478–480 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Alesi, V. et al. Atypical 7q11.23 deletions excluding ELN gene result in Williams-Beuren syndrome craniofacial features and neurocognitive profile. Am. J. Med. Genet. A 185, 242–249 (2021).

    CAS  PubMed  Google Scholar 

  64. Frangiskakis, J. M. et al. LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell 86, 59–69 (1996).

    CAS  PubMed  Google Scholar 

  65. Antonell, A., Vilardell, M. & Perez Jurado, L. A. Transcriptome profile in Williams-Beuren syndrome lymphoblast cells reveals gene pathways implicated in glucose intolerance and visuospatial construction deficits. Hum. Genet. 128, 27–37 (2010).

    CAS  PubMed  Google Scholar 

  66. Kimura, R. et al. Integrated DNA methylation analysis reveals a potential role for ANKRD30B in Williams syndrome. Neuropsychopharmacology 45, 1627–1636 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Karagiannis, P. et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiol. Rev. 99, 79–114 (2019).

    CAS  PubMed  Google Scholar 

  68. Khattak, S. et al. Human induced pluripotent stem cell derived neurons as a model for Williams-Beuren syndrome. Mol. Brain 8, 77 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. Adamo, A. et al. 7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages. Nat. Genet. 47, 132–141 (2015). This paper uses iPSC models of 7q11.23 CNV to identify transcription changes associated with these genetic alterations.

    CAS  PubMed  Google Scholar 

  70. Strong, E. et al. Symmetrical dose-dependent DNA-methylation profiles in children with deletion or duplication of 7q11.23. Am. J. Hum. Genet. 97, 216–227 (2015). This paper identifies extensive genome-wide changes in DNA methylation in WS that could have significant impacts on gene regulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Segura-Puimedon, M. et al. Heterozygous deletion of the Williams-Beuren syndrome critical interval in mice recapitulates most features of the human disorder. Hum. Mol. Genet. 23, 6481–6494 (2014).

    CAS  PubMed  Google Scholar 

  72. Borralleras, C. et al. Synaptic plasticity and spatial working memory are impaired in the CD mouse model of Williams-Beuren syndrome. Mol. Brain 9, 76 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Jimenez-Altayo, F. et al. Stenosis coexists with compromised alpha1-adrenergic contractions in the ascending aorta of a mouse model of Williams-Beuren syndrome. Sci. Rep. 10, 889 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Campuzano, V. et al. Reduction of NADPH-oxidase activity ameliorates the cardiovascular phenotype in a mouse model of Williams-Beuren Syndrome. PLoS Genet. 8, e1002458 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Harkness, M. L., Harkness, R. D. & McDonald, D. A. The collagen and elastin content of the arterial wall in the dog. Proc. R. Soc. Lond. B Biol. Sci. 146, 541–551 (1957).

    CAS  PubMed  Google Scholar 

  77. Leung, D. Y., Glagov, S. & Mathews, M. B. Elastin and collagen accumulation in rabbit ascending aorta and pulmonary trunk during postnatal growth. Correlation of cellular synthetic response with medial tension. Circ. Res. 41, 316–323 (1977).

    CAS  PubMed  Google Scholar 

  78. Li, B. & Daggett, V. Molecular basis for the extensibility of elastin. J. Muscle Res. Cell Motil. 23, 561–573 (2002).

    PubMed  Google Scholar 

  79. Kozel, B. A. & Mecham, R. P. Elastic fiber ultrastructure and assembly. Matrix Biol. 84, 31–40 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Shapiro, S. D., Endicott, S. K., Province, M. A., Pierce, J. A. & Campbell, E. J. Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J. Clin. Invest. 87, 1828–1834 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Parks, W. C. Posttranscriptional regulation of lung elastin production. Am. J. Respir. Cell Mol. Biol. 17, 1–2 (1997).

    CAS  PubMed  Google Scholar 

  82. Ott, C. E. et al. MicroRNAs differentially expressed in postnatal aortic development downregulate elastin via 3’ UTR and coding-sequence binding sites. PLoS One 6, e16250 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, M. & Parks, W. C. Posttranscriptional regulation of lung elastin expression involves binding of a developmentally regulated cytosolic protein to an open-reading frame cis-element in the messenger RNA. Chest 116, 74S (1999).

    CAS  PubMed  Google Scholar 

  84. Li, D. Y. et al. Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum. Mol. Genet. 6, 1021–1028 (1997).

    CAS  PubMed  Google Scholar 

  85. Tassabehji, M. et al. Elastin: genomic structure and point mutations in patients with supravalvular aortic stenosis. Hum. Mol. Genet. 6, 1029–1036 (1997).

    CAS  PubMed  Google Scholar 

  86. Urban, Z. et al. Isolated supravalvular aortic stenosis: functional haploinsufficiency of the elastin gene as a result of nonsense-mediated decay. Hum. Genet. 106, 577–588 (2000).

    CAS  PubMed  Google Scholar 

  87. Olson, T. M. et al. A 30 kb deletion within the elastin gene results in familial supravalvular aortic stenosis. Hum. Mol. Genet. 4, 1677–1679 (1995).

    CAS  PubMed  Google Scholar 

  88. Pober, B. R., Johnson, M. & Urban, Z. Mechanisms and treatment of cardiovascular disease in Williams-Beuren syndrome. J. Clin. Invest. 118, 1606–1615 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Collins, R. T. II, Kaplan, P., Somes, G. W. & Rome, J. J. Long-term outcomes of patients with cardiovascular abnormalities and Williams syndrome. Am. J. Cardiol. 105, 874–878 (2010).

    PubMed  Google Scholar 

  90. Collins, R. T. II Cardiovascular disease in Williams syndrome. Circulation 127, 2125–2134 (2013).

    PubMed  Google Scholar 

  91. Kozel, B. A. et al. Williams syndrome predisposes to vascular stiffness modified by antihypertensive use and copy number changes in NCF1. Hypertension 63, 74–79 (2014).

    CAS  PubMed  Google Scholar 

  92. Abu-Sultaneh, S., Gondim, M. J., Alexy, R. D. & Mastropietro, C. W. Sudden cardiac death associated with cardiac catheterization in Williams syndrome: a case report and review of literature. Cardiol. Young. https://doi.org/10.1017/S1047951119000295 (2019).

    Article  PubMed  Google Scholar 

  93. Matisoff, A. J., Olivieri, L., Schwartz, J. M. & Deutsch, N. Risk assessment and anesthetic management of patients with Williams syndrome: a comprehensive review. Paediatr. Anaesth. 25, 1207–1215 (2015).

    PubMed  Google Scholar 

  94. Staudt, G. E. & Eagle, S. S. Anesthetic considerations for patients with Williams syndrome. J. Cardiothorac. Vasc. Anesth. 35, 176–186 (2021). This is a well-organized paper that reviews anaesthesia risks and provides management guidelines for both children and adults with WS.

    PubMed  Google Scholar 

  95. Burch, T. M., McGowan, F. X. Jr., Kussman, B. D., Powell, A. J. & DiNardo, J. A. Congenital supravalvular aortic stenosis and sudden death associated with anesthesia: what’s the mystery? Anesth. Analg. 107, 1848–1854 (2008).

    PubMed  Google Scholar 

  96. Hirano, E., Knutsen, R. H., Sugitani, H., Ciliberto, C. H. & Mecham, R. P. Functional rescue of elastin insufficiency in mice by the human elastin gene: implications for mouse models of human disease. Circ. Res. 101, 523–531 (2007).

    CAS  PubMed  Google Scholar 

  97. Lin, C. J. et al. Heterogeneous cellular contributions to elastic laminae formation in arterial wall development. Circ. Res. 125, 1006–1018 (2019). This paper dissects the role of endothelial and smooth muscle cells in the elastin-insufficiency phenotype and is the first mouse model to show neointima formation in an elastin mutant.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Karnik, S. K. et al. A critical role for elastin signaling in vascular morphogenesis and disease. Development 130, 411–423 (2003).

    CAS  PubMed  Google Scholar 

  99. Li, D. Y. et al. Elastin is an essential determinant of arterial morphogenesis. Nature 393, 276–280 (1998).

    CAS  PubMed  Google Scholar 

  100. Urban, Z. et al. Connection between elastin haploinsufficiency and increased cell proliferation in patients with supravalvular aortic stenosis and Williams-Beuren syndrome. Am. J. Hum. Genet. 71, 30–44 (2002). This paper links elastin insufficiency to changes in smooth muscle cell proliferation.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Misra, A. et al. Integrin beta3 inhibition is a therapeutic strategy for supravalvular aortic stenosis. J. Exp. Med. 213, 451–463 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Jiao, Y. et al. Deficient circumferential growth is the primary determinant of aortic obstruction attributable to partial elastin deficiency. Arterioscler. Thromb. Vasc. Biol. 37, 930–941 (2017). This paper posits that elastin insufficiency impacts the circumferential growth of developing arteries.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Faury, G. et al. Developmental adaptation of the mouse cardiovascular system to elastin haploinsufficiency. J. Clin. Invest. 112, 1419–1428 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jiao, Y. et al. mTOR (Mechanistic target of rapamycin) inhibition decreases mechanosignaling, collagen accumulation, and stiffening of the thoracic aorta in elastin-deficient mice. Arterioscler. Thromb. Vasc. Biol. 37, 1657–1666 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kinnear, C. et al. Everolimus rescues the phenotype of elastin insufficiency in patient induced pluripotent stem cell-derived vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 40, 1325–1339 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, W. et al. Rapamycin inhibits smooth muscle cell proliferation and obstructive arteriopathy attributable to elastin deficiency. Arterioscler. Thromb. Vasc. Biol. 33, 1028–1035 (2013).

    CAS  PubMed  Google Scholar 

  107. Wan, E. S., Pober, B. R., Washko, G. R., Raby, B. A. & Silverman, E. K. Pulmonary function and emphysema in Williams-Beuren syndrome. Am. J. Med. Genet. A 152A, 653–656 (2010).

    PubMed  PubMed Central  Google Scholar 

  108. Shifren, A., Durmowicz, A. G., Knutsen, R. H., Hirano, E. & Mecham, R. P. Elastin protein levels are a vital modifier affecting normal lung development and susceptibility to emphysema. Am. J. Physiol. Lung Cell Mol. Physiol. 292, L778–L787 (2007).

    CAS  PubMed  Google Scholar 

  109. Pangallo, E. et al. Pulmonary function in Williams-Beuren syndrome: spirometric data of 22 Italian patients. Am. J. Med. Genet. A 185, 390–396 (2020).

    PubMed  Google Scholar 

  110. Urban, Z. et al. Elastin gene deletions in Williams syndrome patients result in altered deposition of elastic fibers in skin and a subclinical dermal phenotype. Pediatr. Dermatol. 17, 12–20 (2000).

    CAS  PubMed  Google Scholar 

  111. Kozel, B. A. et al. Skin findings in Williams syndrome. Am. J. Med. Genet. A 164A, 2217–2225 (2014).

    PubMed  Google Scholar 

  112. Sammour, Z. M. et al. Congenital genitourinary abnormalities in children with Williams-Beuren syndrome. J. Pediatr. Urol. 10, 804–809 (2014).

    PubMed  Google Scholar 

  113. Vaux, K. K., Wojtczak, H., Benirschke, K. & Jones, K. L. Vocal cord abnormalities in Williams syndrome: a further manifestation of elastin deficiency. Am. J. Med. Genet. A 119A, 302–304 (2003).

    PubMed  Google Scholar 

  114. Drummond, G. R., Selemidis, S., Griendling, K. K. & Sobey, C. G. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. Drug Discov. 10, 453–471 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lassegue, B. & Griendling, K. K. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler. Thromb. Vasc. Biol. 30, 653–661 (2010).

    CAS  PubMed  Google Scholar 

  116. Del Campo, M. et al. Hemizygosity at the NCF1 gene in patients with Williams-Beuren syndrome decreases their risk of hypertension. Am. J. Hum. Genet. 78, 533–542 (2006). This is the first paper to show a role for NCF1 gene dosage in modifying the risk of hypertension in WS.

    PubMed  PubMed Central  Google Scholar 

  117. Kozel, B. A. et al. Genetic modifiers of cardiovascular phenotype caused by elastin haploinsufficiency act by extrinsic noncomplementation. J. Biol. Chem. 286, 44926–44936 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Troia, A. et al. Inhibition of NOX1 mitigates blood pressure increases in elastin insufficiency. Function 2, zqab015 (2021).

    PubMed  PubMed Central  Google Scholar 

  119. Caraveo, G., van Rossum, D. B., Patterson, R. L., Snyder, S. H. & Desiderio, S. Action of TFII-I outside the nucleus as an inhibitor of agonist-induced calcium entry. Science 314, 122–125 (2006).

    CAS  PubMed  Google Scholar 

  120. Hakre, S. et al. Opposing functions of TFII-I spliced isoforms in growth factor-induced gene expression. Mol. Cell 24, 301–308 (2006).

    CAS  PubMed  Google Scholar 

  121. Roy, A. L. Signal-induced functions of the transcription factor TFII-I. Biochim. Biophys. Acta 1769, 613–621 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Enkhmandakh, B. et al. Essential functions of the Williams-Beuren syndrome-associated TFII-I genes in embryonic development. Proc. Natl Acad. Sci. USA 106, 181–186 (2009).

    CAS  PubMed  Google Scholar 

  123. Hinsley, T. A., Cunliffe, P., Tipney, H. J., Brass, A. & Tassabehji, M. Comparison of TFII-I gene family members deleted in Williams-Beuren syndrome. Protein Sci. 13, 2588–2599 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Lucena, J. et al. Essential role of the N-terminal region of TFII-I in viability and behavior. BMC Med. Genet. 11, 61 (2010).

    PubMed  PubMed Central  Google Scholar 

  125. Roy, A. L. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I: 10 years later. Gene 492, 32–41 (2012).

    CAS  PubMed  Google Scholar 

  126. Cheriyath, V., Desgranges, Z. P. & Roy, A. L. c-Src-dependent transcriptional activation of TFII-I. J. Biol. Chem. 277, 22798–22805 (2002).

    CAS  PubMed  Google Scholar 

  127. Desgranges, Z. P. et al. Inhibition of TFII-I-dependent cell cycle regulation by p53. Mol. Cell Biol. 25, 10940–10952 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Roy, A. L. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I. Gene 274, 1–13 (2001).

    CAS  PubMed  Google Scholar 

  129. Enkhmandakh, B., Bitchevaia, N., Ruddle, F. & Bayarsaihan, D. The early embryonic expression of TFII-I during mouse preimplantation development. Gene Expr. Patterns 4, 25–28 (2004).

    CAS  PubMed  Google Scholar 

  130. Makeyev, A. V. & Bayarsaihan, D. New TFII-I family target genes involved in embryonic development. Biochem. Biophys. Res. Commun. 386, 554–558 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ashworth, T. & Roy, A. L. Phase specific functions of the transcription factor TFII-I during cell cycle. Cell Cycle 8, 596–605 (2009).

    CAS  PubMed  Google Scholar 

  132. Chimge, N. O., Makeyev, A. V., Ruddle, F. H. & Bayarsaihan, D. Identification of the TFII-I family target genes in the vertebrate genome. Proc. Natl Acad. Sci. USA 105, 9006–9010 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Tussie-Luna, M. I., Bayarsaihan, D., Seto, E., Ruddle, F. H. & Roy, A. L. Physical and functional interactions of histone deacetylase 3 with TFII-I family proteins and PIASxbeta. Proc. Natl Acad. Sci. USA 99, 12807–12812 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bayarsaihan, D. What role does TFII-I have to play in epigenetic modulation during embryogenesis? Epigenomics 5, 9–11 (2013).

    CAS  PubMed  Google Scholar 

  135. Howald, C. et al. Two high throughput technologies to detect segmental aneuploidies identify new Williams-Beuren syndrome patients with atypical deletions. J. Med. Genet. 43, 266–273 (2006).

    CAS  PubMed  Google Scholar 

  136. Karmiloff-Smith, A. et al. Social cognition in Williams syndrome: genotype/phenotype insights from partial deletion patients. Front. Psychol. 3, 168 (2012).

    PubMed  PubMed Central  Google Scholar 

  137. van Hagen, J. M. et al. Contribution of CYLN2 and GTF2IRD1 to neurological and cognitive symptoms in Williams syndrome. Neurobiol. Dis. 26, 112–124 (2007).

    PubMed  Google Scholar 

  138. Karmiloff-Smith, A. et al. Using case study comparisons to explore genotype-phenotype correlations in Williams-Beuren syndrome. J. Med. Genet. 40, 136–140 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Dai, L. et al. Is it Williams syndrome? GTF2IRD1 implicated in visual-spatial construction and GTF2I in sociability revealed by high resolution arrays. Am. J. Med. Genet. A 149A, 302–314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Pinelli, M. et al. A small 7q11.23 microduplication involving GTF2I in a family with intellectual disability. Clin. Genet. 97, 940–942 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Sakurai, T. et al. Haploinsufficiency of Gtf2i, a gene deleted in Williams Syndrome, leads to increases in social interactions. Autism Res. 4, 28–39 (2011).

    PubMed  Google Scholar 

  142. Martin, L. A., Iceberg, E. & Allaf, G. Consistent hypersocial behavior in mice carrying a deletion of Gtf2i but no evidence of hyposocial behavior with Gtf2i duplication: implications for Williams-Beuren syndrome and autism spectrum disorder. Brain Behav. 8, e00895 (2018).

    PubMed  Google Scholar 

  143. Barak, B. et al. Neuronal deletion of Gtf2i, associated with Williams syndrome, causes behavioral and myelin alterations rescuable by a remyelinating drug. Nat. Neurosci. 22, 700–708 (2019). This paper demonstrates the neuronal functions of Gtf2i in mediating myelination properties in the mouse brain and that correcting myelination deficits rescues social and motor behaviour deficits; light is also shed on molecular and cellular defects related to myelination deficits in the brain of individuals with WS.

    CAS  PubMed  Google Scholar 

  144. Osso, L. A. & Chan, J. R. A surprising role for myelin in Williams syndrome. Nat. Neurosci. 22, 681–683 (2019).

    CAS  PubMed  Google Scholar 

  145. Borralleras, C., Sahun, I., Perez-Jurado, L. A. & Campuzano, V. Intracisternal Gtf2i gene therapy ameliorates deficits in cognition and synaptic plasticity of a mouse model of Williams-Beuren syndrome. Mol. Ther. 23, 1691–1699 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Mervis, C. B. et al. Duplication of GTF2I results in separation anxiety in mice and humans. Am. J. Hum. Genet. 90, 1064–1070 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Osborne, L. R. Animal models of Williams syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 154C, 209–219 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Mervis, C. B. et al. Children with 7q11.23 duplication syndrome: psychological characteristics. Am. J. Med. Genet. A 167, 1436–1450 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Morris, C. A. et al. 7q11.23 Duplication syndrome: physical characteristics and natural history. Am. J. Med. Genet. A 167A, 2916–2935 (2015).

    PubMed  PubMed Central  Google Scholar 

  150. Deurloo, M. H. S. et al. Transcription factor 2I regulates neuronal development via TRPC3 in 7q11.23 disorder models. Mol. Neurobiol. 56, 3313–3325 (2019).

    CAS  PubMed  Google Scholar 

  151. Wang, Y. et al. Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons. J. Neurosci. 30, 5334–5345 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Poitras, L. et al. An SNP in an ultraconserved regulatory element affects Dlx5/Dlx6 regulation in the forebrain. Development 137, 3089–3097 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Barak, B. & Feng, G. Neurobiology of social behavior abnormalities in autism and Williams syndrome. Nat. Neurosci. 19, 647–655 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Becerra, A. M. & Mervis, C. B. Age at onset of declarative gestures and 24-month expressive vocabulary predict later language and intellectual abilities in young children with Williams syndrome. Front. Psychol. 10, 2648 (2019).

    PubMed  PubMed Central  Google Scholar 

  155. Richards, C., Jones, C., Groves, L., Moss, J. & Oliver, C. Prevalence of autism spectrum disorder phenomenology in genetic disorders: a systematic review and meta-analysis. Lancet Psychiat. 2, 909–916 (2015).

    Google Scholar 

  156. Klein-Tasman, B. P. & Mervis, C. B. Autism spectrum symptomatology among children with duplication 7q11.23 syndrome. J. Autism Dev. Disord. 48, 1982–1994 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Zanella, M. et al. Dosage analysis of the 7q11.23 Williams region identifies BAZ1B as a major human gene patterning the modern human face and underlying self-domestication. Sci. Adv. 5, eaaw7908 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Barnett, C. et al. Williams syndrome transcription factor is critical for neural crest cell function in Xenopus laevis. Mech. Dev. 129, 324–338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Nagy, N. & Goldstein, A. M. Enteric nervous system development: a crest cell’s journey from neural tube to colon. Semin. Cell Dev. Biol. 66, 94–106 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. Gregory, M. D. et al. Williams syndrome hemideletion and LIMK1 variation both affect dorsal stream functional connectivity. Brain 142, 3963–3974 (2019).

    PubMed  PubMed Central  Google Scholar 

  161. Ravindran, S., Nalavadi, V. C. & Muddashetty, R. S. BDNF induced translation of Limk1 in developing neurons regulates dendrite growth by fine-tuning cofilin1 activity. Front. Mol. Neurosci. 12, 64 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Todorovski, Z. et al. LIMK1 regulates long-term memory and synaptic plasticity via the transcriptional factor CREB. Mol. Cell. Biol. 35, 1316–1328 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Durdiakova, J., Warrier, V., Banerjee-Basu, S., Baron-Cohen, S. & Chakrabarti, B. STX1A and Asperger syndrome: a replication study. Mol. Autism 5, 14 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Sanchez-Mora, C. et al. Evaluation of common variants in 16 genes involved in the regulation of neurotransmitter release in ADHD. Eur. Neuropsychopharmacol. 23, 426–435 (2013).

    CAS  PubMed  Google Scholar 

  165. Aslamy, A. & Thurmond, D. C. Exocytosis proteins as novel targets for diabetes prevention and/or remediation? Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R739–R752 (2017).

    PubMed  PubMed Central  Google Scholar 

  166. Andersson, S. A. et al. Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. Mol. Cell Endocrinol. 364, 36–45 (2012).

    CAS  PubMed  Google Scholar 

  167. Pober, B. R. et al. High prevalence of diabetes and pre-diabetes in adults with Williams syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 154C, 291–298 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Morigny, P. et al. Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nat. Metab. 1, 133–146 (2019).

    CAS  PubMed  Google Scholar 

  169. Vijayakumar, A. et al. Absence of carbohydrate response element binding protein in adipocytes causes systemic insulin resistance and impairs glucose transport. Cell Rep. 21, 1021–1035 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Mejhert, N. et al. Partitioning of MLX-family transcription factors to lipid droplets regulates metabolic gene expression. Mol. Cell 77, 1251–1264.e9 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Stenton, S. L. et al. Impaired complex I repair causes recessive Leber’s hereditary optic neuropathy. J. Clin. Invest. 131, e138267 (2021).

    CAS  PubMed Central  Google Scholar 

  172. Tebbenkamp, A. T. N. et al. The 7q11.23 protein DNAJC30 interacts with ATP synthase and links mitochondria to brain development. Cell 175, 1088–1104.e23 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Pober, B. R. Williams-Beuren syndrome. N. Engl. J. Med. 362, 239–252 (2010).

    CAS  PubMed  Google Scholar 

  174. Pober, B. R. & Morris, C. A. Diagnosis and management of medical problems in adults with Williams-Beuren syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 145C, 280–290 (2007).

    PubMed  Google Scholar 

  175. Morris, C. A. in GeneReviews® (University of Washington, 1999).

  176. Sindhar, S. et al. Hypercalcemia in patients with Williams-Beuren syndrome. J. Pediatr. 178, 254–260.e4 (2016). This is a large series showing a relatively low frequency of ‘actionable’ hypercalcaemia in children with WS, along with recommendations for medical management.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. de Sousa Lima Strafacci, A., Fernandes Camargo, J., Bertapelli, F. & Guerra Junior, G. Growth assessment in children with Williams-Beuren syndrome: a systematic review. J. Appl. Genet. 61, 205–212 (2020).

    PubMed  Google Scholar 

  178. Morris, C. A., Braddock, S. R. & Council On Genetics. Health care supervision for children with Williams syndrome. Pediatrics 145, e20193761 (2020). These are the most recent US general health-care recommendations for children with WS.

    PubMed  Google Scholar 

  179. Martin, N. D., Smith, W. R., Cole, T. J. & Preece, M. A. New height, weight and head circumference charts for British children with Williams syndrome. Arch. Dis. Child. 92, 598–601 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Jehee, F. S. et al. Using a combination of MLPA kits to detect chromosomal imbalances in patients with multiple congenital anomalies and mental retardation is a valuable choice for developing countries. Eur. J. Med. Genet. 54, e425–e432 (2011).

    PubMed  Google Scholar 

  181. Dutra, R. L. et al. Copy number variation in Williams-Beuren syndrome: suitable diagnostic strategy for developing countries. BMC Res. Notes 5, 13 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Lumaka, A. et al. Facial dysmorphism is influenced by ethnic background of the patient and of the evaluator. Clin. Genet. 92, 166–171 (2017).

    CAS  PubMed  Google Scholar 

  183. Mishima, H. et al. Evaluation of Face2Gene using facial images of patients with congenital dysmorphic syndromes recruited in Japan. J. Hum. Genet. 64, 789–794 (2019).

    PubMed  Google Scholar 

  184. Elmas, M. & Gogus, B. Success of face analysis technology in rare genetic diseases diagnosed by whole-exome sequencing: a single-center experience. Mol. Syndromol. 11, 4–14 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Scherer, S. W. et al. Observation of a parental inversion variant in a rare Williams-Beuren syndrome family with two affected children. Hum. Genet. 117, 383–388 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Kara-Mostefa, A. et al. Recurrent Williams-Beuren syndrome in a sibship suggestive of maternal germ-line mosaicism. Am. J. Hum. Genet. 64, 1475–1478 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Mulik, V. V., Temple, K. I. & Howe, D. T. Two pregnancies in a woman with Williams syndrome. BJOG 111, 511–512 (2004).

    PubMed  Google Scholar 

  188. van der Tuuk, K., Drenthen, W., Moons, P. & Budts, W. Three live-birth pregnancies in a woman with Williams syndrome. Congenit. Heart Dis. 2, 139–142 (2007).

    PubMed  Google Scholar 

  189. Yuan, M., Deng, L., Yang, Y. & Sun, L. Intrauterine phenotype features of fetuses with Williams-Beuren syndrome and literature review. Ann. Hum. Genet. 84, 169–176 (2020).

    CAS  PubMed  Google Scholar 

  190. Stanley, T. L., Leong, A. & Pober, B. R. Growth, body composition, and endocrine issues in Williams syndrome. Curr. Opin. Endocrinol. Diabetes Obes. 28, 64–74 (2021).

    PubMed  PubMed Central  Google Scholar 

  191. Riby, D. M. & Porter, M. A. Williams syndrome. Adv. Child. Dev. Behav. 39, 163–209 (2010).

    PubMed  Google Scholar 

  192. Porter, M. A. In Magill’s Medical Guide (eds Auday, B., Buratovich, M., Marrocco, G., & Moglia, P.) 2385–2387 (Salem Press Inc., 2013).

  193. Castro, T., de Paula Martins Santos, C., de Oliveira Lira Ortega, A. & Gallottini, M. Oral characteristics and medical considerations in the dental treatment of individuals with Williams syndrome. Spec. Care Dent. 39, 108–113 (2019).

    Google Scholar 

  194. Hertzberg, J., Nakisbendi, L., Needleman, H. L. & Pober, B. Williams syndrome–oral presentation of 45 cases. Pediatr. Dent. 16, 262–267 (1994).

    CAS  PubMed  Google Scholar 

  195. Williams Syndrome Guideline Development Group. Management of Williams Syndrome. A Clinical Guideline. https://williams-syndrome.org.uk/wp-content/uploads/2018/07/williams_syndrome_guidelines_pdf.pdf (The Williams Syndrome Foundation UK, London, 2017).

  196. Wu, F. Y. et al. Long-term surgical prognosis of primary supravalvular aortic stenosis repair. Ann. Thorac. Surg. 108, 1202–1209 (2019).

    PubMed  Google Scholar 

  197. Rastelli, G. C., McGoon, D. C., Ongley, P. A., Mankin, H. T. & Kirklin, J. W. Surgical treatment of supravalvular aortic stenosis. Report of 16 cases and review of literature. J. Thorac. Cardiovasc. Surg. 51, 873–882 (1966).

    CAS  PubMed  Google Scholar 

  198. McGoon, D. C., Mankin, H. T., Vlad, P. & Kirklin, J. W. The surgical treatment of supravalvular aortic stenosis. J. Thorac. Cardiovasc. Surg. 41, 123–133 (1961).

    Google Scholar 

  199. Doty, D. B., Polansky, D. B. & Jenson, C. B. Supravalvular aortic stenosis. Repair by extended aortoplasty. J. Thorac. Cardiovasc. Surg. 74, 362–371 (1977).

    CAS  PubMed  Google Scholar 

  200. Brom, A. G. in Cardiac surgery: safeguards and pitfalls in operative technique (ed. Khonsari, S.) 276–280 (Aspen Publishers, 1988).

  201. Kaushal, S., Backer, C. L., Patel, S., Gossett, J. G. & Mavroudis, C. Midterm outcomes in supravalvular aortic stenosis demonstrate the superiority of multisinus aortoplasty. Ann. Thorac. Surg. 89, 1371–1377 (2010).

    PubMed  Google Scholar 

  202. Pham, P. P., Moller, J. H., Hills, C., Larson, V. & Pyles, L. Cardiac catheterization and operative outcomes from a multicenter consortium for children with Williams syndrome. Pediatr. Cardiol. 30, 9–14 (2009).

    PubMed  Google Scholar 

  203. Brown, M. L., Nasr, V. G., Toohey, R. & DiNardo, J. A. Williams syndrome and anesthesia for non-cardiac surgery: high risk can be mitigated with appropriate planning. Pediatr. Cardiol. 39, 1123–1128 (2018).

    PubMed  Google Scholar 

  204. Collins Ii, R. T., Collins, M. G., Schmitz, M. L. & Hamrick, J. T. Peri-procedural risk stratification and management of patients with Williams syndrome. Congenit. Heart Dis. 12, 133–142 (2017).

    PubMed  Google Scholar 

  205. Hayashi, A. et al. Minoxidil stimulates elastin expression in aortic smooth muscle cells. Arch. Biochem. Biophys. 315, 137–141 (1994).

    CAS  PubMed  Google Scholar 

  206. Slove, S. et al. Potassium channel openers increase aortic elastic fiber formation and reverse the genetically determined elastin deficit in the BN rat. Hypertension 62, 794–801 (2013).

    CAS  PubMed  Google Scholar 

  207. Knutsen, R. H. et al. Minoxidil improves vascular compliance, restores cerebral blood flow, and alters extracellular matrix gene expression in a model of chronic vascular stiffness. Am. J. Physiol. Heart Circ. Physiol. 315, H18–H32 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Coquand-Gandit, M. et al. Chronic treatment with minoxidil induces elastic fiber neosynthesis and functional improvement in the aorta of aged mice. Rejuvenation Res. 20, 218–230 (2017).

    CAS  PubMed  Google Scholar 

  209. Fhayli, W. et al. Chronic administration of minoxidil protects elastic fibers and stimulates their neosynthesis with improvement of the aorta mechanics in mice. Cell Signal. 62, 109333 (2019).

    CAS  PubMed  Google Scholar 

  210. Kassai, B. et al. Minoxidil versus placebo in the treatment of arterial wall hypertrophy in children with Williams Beuren syndrome: a randomized controlled trial. BMC Pediatr. 19, 170 (2019).

    PubMed  PubMed Central  Google Scholar 

  211. Zhang, P. et al. Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels–brief report. Arterioscler. Thromb. Vasc. Biol. 32, 756–759 (2012).

    CAS  PubMed  Google Scholar 

  212. French, J. W. & Guntheroth, W. G. An explanation of asymmetric upper extremity blood pressures in supravalvular aortic stenosis: the Coanda effect. Circulation 42, 31–36 (1970).

    CAS  PubMed  Google Scholar 

  213. Cherniske, E. M. et al. Multisystem study of 20 older adults with Williams syndrome. Am. J. Med. Genet. A 131, 255–264 (2004). This article presents multisystem assessments on adults with WS, emphasizing the major medical conditions in adults with WS, and provides recommendations for monitoring guidelines.

    PubMed  Google Scholar 

  214. Walton, J. R., Martens, M. A. & Pober, B. R. The proceedings of the 15th professional conference on Williams syndrome. Am. J. Med. Genet. A 173, 1159–1171 (2017).

    PubMed  Google Scholar 

  215. Halabi, C. M. et al. Chronic antihypertensive treatment improves pulse pressure but not large artery mechanics in a mouse model of congenital vascular stiffness. Am. J. Physiol. Heart Circ. Physiol. 309, H1008–H1016 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Ferrari, M. & Stagi, S. Oxidative stress in Down and Williams-Beuren syndromes: an overview. Molecules 26, 3139 (2021).

    PubMed  PubMed Central  Google Scholar 

  217. Martens, M. A., Wilson, S. J. & Reutens, D. C. Research review: Williams syndrome: a critical review of the cognitive, behavioral, and neuroanatomical phenotype. J. Child. Psychol. Psychiat. 49, 576–608 (2008).

    PubMed  Google Scholar 

  218. Miezah, D. et al. Cognitive profile of young children with Williams syndrome. J. Intellect. Disabil. Res. https://doi.org/10.1111/jir.12860 (2021).

  219. Meyer-Lindenberg, A., Mervis, C. B. & Berman, K. F. Neural mechanisms in Williams syndrome: a unique window to genetic influences on cognition and behaviour. Nat. Rev. Neurosci. 7, 380–393 (2006).

    CAS  PubMed  Google Scholar 

  220. Mervis, C. B. & Pitts, C. H. Children with Williams syndrome: developmental trajectories for intellectual abilities, vocabulary abilities, and adaptive behavior. Am. J. Med. Genet. C. Semin. Med. Genet. 169, 158–171 (2015).

    PubMed  PubMed Central  Google Scholar 

  221. Porter, M. & Dodd, H. A longitudinal study of cognitive abilities in Williams syndrome. Dev. Neuropsychol. 36, 255–272 (2011).

    PubMed  Google Scholar 

  222. Fisher, M. H., Lense, M. D. & Dykens, E. M. Longitudinal trajectories of intellectual and adaptive functioning in adolescents and adults with Williams syndrome. J. Intellect. Disabil. Res. 60, 920–932 (2016).

    CAS  PubMed  Google Scholar 

  223. Mervis, C. B., Kistler, D. J., John, A. E. & Morris, C. A. Longitudinal assessment of intellectual abilities of children with Williams syndrome: multilevel modeling of performance on the Kaufman brief intelligence test-second edition. Am. J. Intellect. Dev. Disabil. 117, 134–155 (2012).

    PubMed  PubMed Central  Google Scholar 

  224. Zitzer-Comfort, C., Doyle, T., Masataka, N., Korenberg, J. & Bellugi, U. Nature and nurture: Williams syndrome across cultures. Dev. Sci. 10, 755–762 (2007).

    PubMed  Google Scholar 

  225. Leyfer, O. T., Woodruff-Borden, J., Klein-Tasman, B. P., Fricke, J. S. & Mervis, C. B. Prevalence of psychiatric disorders in 4 to 16-year-olds with Williams syndrome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141B, 615–622 (2006). Clinical diagnostic interview of children and teens with WS that demonstrated a high frequency of ADHD and an increasing frequency of generalized anxiety disorder with age.

    PubMed  PubMed Central  Google Scholar 

  226. Perez-Garcia, D., Brun-Gasca, C., Perez-Jurado, L. A. & Mervis, C. B. Behavioral profiles of children with Williams syndrome from Spain and the United States: cross-cultural similarities and differences. Am. J. Intellect. Dev. Disabil. 122, 156–172 (2017).

    PubMed  PubMed Central  Google Scholar 

  227. Tomc, S. A., Williamson, N. K. & Pauli, R. M. Temperament in Williams syndrome. Am. J. Med. Genet. 36, 345–352 (1990).

    CAS  PubMed  Google Scholar 

  228. Vonarnim, G. & Engel, P. Mental retardation related to hypercalcaemia. Dev. Med. Child. Neurol. 6, 366–377 (1964).

    CAS  PubMed  Google Scholar 

  229. Thurman, A. J. & Fisher, M. H. The Williams syndrome social phenotypes: disentangling the contributions of social interest and social difficulties. Int. Rev. Res. Dev. Disabil. 49, 191–227 (2015).

    Google Scholar 

  230. American Psychiatric Association. DSM-4: Diagnostic and Statistical Manual of Mental Disorders 4th ed. (American Psychiatric Association, 2000).

  231. Copes, L. E., Pober, B. R. & Terilli, C. A. Description of common musculoskeletal findings in Williams syndrome and implications for therapies. Clin. Anat. 29, 578–589 (2016).

    CAS  PubMed  Google Scholar 

  232. Van Herwegen, J., Ashworth, M. & Palikara, O. Parental views on special educational needs provision: cross-syndrome comparisons in Williams syndrome, Down syndrome, and autism spectrum disorders. Res. Dev. Disabil. 80, 102–111 (2018).

    PubMed  Google Scholar 

  233. Klein-Tasman, B. P., van der Fluit, F. & Mervis, C. B. Autism spectrum symptomatology in children with Williams syndrome who have phrase speech or fluent language. J. Autism Dev. Disord. 48, 3037–3050 (2018).

    PubMed  PubMed Central  Google Scholar 

  234. Klein-Tasman, B. P. & Albano, A. M. Intensive, short-term cognitive-behavioral treatment of OCD-like behavior with a young adult with Williams syndrome. Clin. Case Stud. 6, 483–492 (2017).

    Google Scholar 

  235. Phillips, K. D. & Klein-Tasman, B. P. Mental health concerns in Williams syndrome: Intervention considerations and illustrations from case examples. J. Ment. Health Res. Intellect. Disabil. 2, 110–133 (2009).

    Google Scholar 

  236. Thom, R. P., Keary, C. J., Waxler, J. L., Pober, B. R. & McDougle, C. J. Buspirone for the treatment of generalized anxiety disorder in Williams syndrome: a case series. J. Autism Dev. Disord. 50, 676–682 (2020).

    PubMed  Google Scholar 

  237. Green, T. et al. Phenotypic psychiatric characterization of children with Williams syndrome and response of those with ADHD to methylphenidate treatment. Am. J. Med. Genet. B Neuropsychiatr. Genet. 159B, 13–20 (2012).

    PubMed  Google Scholar 

  238. Thom, R. P., Pober, B. R. & McDougle, C. J. Psychopharmacology of Williams syndrome: safety, tolerability, and effectiveness. Expert Opin. Drug Saf. 20, 293–306 (2020).

    Google Scholar 

  239. Reilly, C., Senior, J. & Murtagh, L. A comparative study of educational provision for children with neurogenetic syndromes: parent and teacher survey. J. Intellect. Disabil. Res. 59, 1094–1107 (2015).

    CAS  PubMed  Google Scholar 

  240. UNESCO. Education and disability: analysis of data from 49 countries (Information Paper N. 49) (UNESCO, 2018).

  241. Karr, V., Hayes, A. & Hayford, S. Inclusion of children with learning difficulties in literacy and numeracy in Ghana: a literature review. Int. J. Disabil. Dev. Educ. https://doi.org/10.1080/1034912X.2020.1792419 (2020).

    Article  Google Scholar 

  242. Fisher, M. H., Josol, C. K. & Shivers, C. M. An examination of social skills, friendship quality, and loneliness for adults with Williams syndrome. J. Autism Dev. Disord. 50, 3649–3660 (2020).

    PubMed  Google Scholar 

  243. Howlin, P. & Udwin, O. Outcome in adult life for people with Williams syndrome – results from a survey of 239 families. J. Intellect. Disabil. Res. 50, 151–160 (2006).

    CAS  PubMed  Google Scholar 

  244. Pagon, R. A., Bennett, F. C., LaVeck, B., Stewart, K. B. & Johnson, J. Williams syndrome: features in late childhood and adolescence. Pediatrics 80, 85–91 (1987).

    CAS  PubMed  Google Scholar 

  245. Brawn, G., Kohnen, S., Tassabehji, M. & Porter, M. Functional basic reading skills in Williams syndrome. Dev. Neuropsychol. 43, 454–477 (2018).

    PubMed  Google Scholar 

  246. Levy, Y. & Antebi, V. Word reading and reading-related skills in Hebrew-speaking adolescents with Williams syndrome. Neurocase 10, 444–451 (2004).

    PubMed  Google Scholar 

  247. Mervis, C. B. Language and literacy development of children with Williams syndrome. Top. Lang. Disord. 29, 149–169 (2009).

    PubMed  PubMed Central  Google Scholar 

  248. Mervis, C. B., Greiner de Magalhães, C. & Cardoso-Martins, C. Concurrent predictors of word reading and reading comprehension for 9-year-olds with Williams syndrome. Read. Writ. https://doi.org/10.1007/s11145-021-10163-4 (2021).

  249. Van Herwegen, J. & Simms, V. Mathematical development in Williams syndrome: a systematic review. Res. Dev. Disabil. 100, 103609 (2020).

    PubMed  Google Scholar 

  250. Brawn, G. & Porter, M. Adaptive functioning in Williams syndrome: a systematic review. Int. J. Disabil. Dev. Educ. 65, 123–147 (2018).

    Google Scholar 

  251. Pitts, C. H., Klein-Tasman, B. P., Osborne, J. W. & Mervis, C. B. Predictors of specific phobia in children with Williams syndrome. J. Intellect. Disabil. Res. 60, 1031–1042 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Edgin, J. O., Pennington, B. F. & Mervis, C. B. Neuropsychological components of intellectual disability: the contributions of immediate, working, and associative memory. J. Intellect. Disabil. Res. 54, 406–417 (2010).

    PubMed  PubMed Central  Google Scholar 

  253. Fu, T. J., Lincoln, A. J., Bellugi, U. & Searcy, Y. M. The association of intelligence, visual-motor functioning, and personality characteristics with adaptive behavior in individuals with Williams syndrome. Am. J. Intellect. Dev. Disabil. 120, 273–288 (2015).

    PubMed  Google Scholar 

  254. Palikara, O., Ashworth, M. & Van Herwegen, J. Addressing the educational needs of children with Williams syndrome: a rather neglected area of research? J. Autism Dev. Disord. 48, 3256–3259 (2018).

    PubMed  Google Scholar 

  255. Gillooly, A. E., Riby, D. M., Durkin, K. & Rhodes, S. M. Peer relationships in children with Williams syndrome: parent and teacher insights. J. Autism Dev. Disord. 51, 169–178 (2020).

    Google Scholar 

  256. Lough, E. & Fisher, M. H. Parent and self-report ratings on the perceived levels of social vulnerability of adults with Williams syndrome. J. Autism Dev. Disord. 46, 3424–3433 (2016).

    PubMed  Google Scholar 

  257. Fisher, M. H., Moskowitz, A. L. & Hodapp, R. M. Differences in social vulnerability among individuals with autism spectrum disorder, Williams syndrome, and down syndrome. Res. Autism Spectr. Disord. 7, 931–937 (2013).

    PubMed  PubMed Central  Google Scholar 

  258. Ridley, E., Riby, D. M. & Leekam, S. R. A cross-syndrome approach to the social phenotype of neurodevelopmental disorders: Focusing on social vulnerability and social interaction style. Res. Dev. Disabil. 100, 103604 (2020).

    PubMed  Google Scholar 

  259. Fisher, M. H. Evaluation of a stranger safety training programme for adults with Williams syndrome. J. Intellect. Disabil. Res. 58, 903–914 (2014).

    CAS  PubMed  Google Scholar 

  260. Riby, D. M., Kirk, H., Hanley, M. & Riby, L. M. Stranger danger awareness in Williams syndrome. J. Intellect. Disabil. Res. 58, 572–582 (2014).

    CAS  PubMed  Google Scholar 

  261. Fisher, M. H. & Morin, L. Addressing social skills deficits in adults with Williams syndrome. Res. Dev. Disabil. 71, 77–87 (2017).

    PubMed  Google Scholar 

  262. Morris, C. A., Demsey, S. A., Leonard, C. O., Dilts, C. & Blackburn, B. L. Natural history of Williams syndrome: physical characteristics. J. Pediatr. 113, 318–326 (1988). A hallmark paper in delineating the natural history of WS, in both children and adults.

    CAS  PubMed  Google Scholar 

  263. Udwin, O., Howlin, P., Davies, M. & Mannion, E. Community care for adults with Williams syndrome: how families cope and the availability of support networks. J. Intellect. Disabil. Res. 42, 238–245 (1998).

    PubMed  Google Scholar 

  264. Pao, M. & Bosk, A. Anxiety in medically ill children/adolescents. Depress. Anxiety 28, 40–49 (2011).

    CAS  PubMed  Google Scholar 

  265. American Heart Association. American Heart Association Recommendations for Physical Activity in Adults and Kids https://www.heart.org/en/healthy-living/fitness/fitness-basics/aha-recs-for-physical-activity-in-adults (2018).

  266. CDC National Center on Birth Defects and Developmental Disabilities. Physical Activity for People with Disability https://www.cdc.gov/ncbddd/disabilityandhealth/features/physical-activity-for-all.html (2020).

  267. Leyfer, O., Woodruff-Borden, J. & Mervis, C. B. Anxiety disorders in children with williams syndrome, their mothers, and their siblings: implications for the etiology of anxiety disorders. J. Neurodev. Disord. 1, 4–14 (2009).

    PubMed  PubMed Central  Google Scholar 

  268. Papaeliou, C. et al. Behavioural profile and maternal stress in Greek young children with Williams syndrome. Child Care Health Dev. 38, 844–853 (2012).

    CAS  PubMed  Google Scholar 

  269. Sarimski, K. Behavioural phenotypes and family stress in three mental retardation syndromes. Eur. Child. Adolesc. Psychiat. 6, 26–31 (1997).

    CAS  Google Scholar 

  270. John, A. E. & Mervis, C. B. Sensory modulation impairments in children with Williams syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 154C, 266–276 (2010).

    PubMed  PubMed Central  Google Scholar 

  271. Fidler, D. J., Hodapp, R. M. & Dykens, E. M. Stress in families of young children with Down syndrome, Williams syndrome, and Smith-Magenis syndrome. Early Educ. Dev. 11, 395–406 (2000).

    Google Scholar 

  272. Reilly, C., Murtagh, L. & Senior, J. The impact on the family of four neurogenetic syndromes: a comparative study of parental views. J. Genet. Couns. 24, 851–861 (2015).

    PubMed  Google Scholar 

  273. Ashworth, M., Palikara, O. & Van Herwegen, J. Comparing parental stress of children with neurodevelopmental disorders: the case of Williams syndrome, Down syndrome and autism spectrum disorders. J. Appl. Res. Intellect. Disabil. 32, 1047–1057 (2019).

    PubMed  Google Scholar 

  274. Nir, A. & Barak, B. White matter alterations in Williams syndrome related to behavioral and motor impairments. Glia 69, 5–19 (2021).

    PubMed  Google Scholar 

  275. Chailangkarn, T. et al. A human neurodevelopmental model for Williams syndrome. Nature 536, 338–343 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Lalli, M. A. et al. Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. Hum. Mol. Genet. 25, 1294–1306 (2016).

    CAS  PubMed  Google Scholar 

  277. Kinnear, C. et al. Modeling and rescue of the vascular phenotype of Williams-Beuren syndrome in patient induced pluripotent stem cells. Stem Cell Transl. Med. 2, 2–15 (2013).

    CAS  Google Scholar 

  278. Amin, N. D. & Pasca, S. P. Building models of brain disorders with three-dimensional organoids. Neuron 100, 389–405 (2018).

    CAS  PubMed  Google Scholar 

  279. Baldassari, S. et al. Brain organoids as model systems for genetic neurodevelopmental disorders. Front. Cell Dev. Biol. 8, 590119 (2020).

    PubMed  PubMed Central  Google Scholar 

  280. Wimmer, R. A. et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505–510 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Huang, A. H. et al. Biaxial stretch improves elastic fiber maturation, collagen arrangement, and mechanical properties in engineered arteries. Tissue Eng. C. Methods 22, 524–533 (2016).

    CAS  Google Scholar 

  282. Liu, C., Niu, K. & Xiao, Q. Updated perspectives on vascular cell specification and pluripotent stem cell-derived vascular organoids for studying vasculopathies. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvaa313 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Ellis, M. W., Luo, J. & Qyang, Y. Modeling elastin-associated vasculopathy with patient induced pluripotent stem cells and tissue engineering. Cell Mol. Life Sci. 76, 893–901 (2019).

    CAS  PubMed  Google Scholar 

  284. Kurki, M. I. et al. Contribution of rare and common variants to intellectual disability in a sub-isolate of northern Finland. Nat. Commun. 10, 410 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Magavern, E. F. et al. An academic clinician’s road map to hypertension genomics: recent advances and future directions MMXX. Hypertension 77, 284–295 (2021).

    CAS  PubMed  Google Scholar 

  286. Girirajan, S. & Eichler, E. E. Phenotypic variability and genetic susceptibility to genomic disorders. Hum. Mol. Genet. 19, R176–R187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Levitin, D. J., Cole, K., Lincoln, A. & Bellugi, U. Aversion, awareness, and attraction: investigating claims of hyperacusis in the Williams syndrome phenotype. J. Child. Psychol. Psychiat. 46, 514–523 (2005).

    PubMed  Google Scholar 

  288. Levy, G. & Barak, B. Postnatal therapeutic approaches in genetic neurodevelopmental disorders. Neural Regen. Res. 16, 414–422 (2021).

    PubMed  Google Scholar 

  289. Powell, S. K., Gregory, J., Akbarian, S. & Brennand, K. J. Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease. Mol. Cell. Neurosci. 82, 157–166 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Ramdas, S. & Servais, L. New treatments in spinal muscular atrophy: an overview of currently available data. Expert Opin. Pharmacother. 21, 307–315 (2020).

    CAS  PubMed  Google Scholar 

  291. Oetjens, M. T., Kelly, M. A., Sturm, A. C., Martin, C. L. & Ledbetter, D. H. Quantifying the polygenic contribution to variable expressivity in eleven rare genetic disorders. Nat. Commun. 10, 4897 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Osborne, L. R. & Mervis, C. B. 7q11.23 deletion and duplication. Curr. Opin. Genet. Dev. 68, 41–48 (2021).

    CAS  PubMed  Google Scholar 

  293. Wing, L. & Gould, J. Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. J. Autism Dev. Disord. 9, 11–29 (1979).

    CAS  PubMed  Google Scholar 

  294. Schubert, C. The genomic basis of the Williams-Beuren syndrome. Cell Mol. Life Sci. 66, 1178–1197 (2009).

    CAS  PubMed  Google Scholar 

  295. Scherer, S. W. & Osborne, L. R. in Genomic disorders. The genomic basis of disease. (eds Lupinski, J. R. & Stankiewicz, P.) 221–236 (Humana Press, Totowa, NJ, 2006).

  296. Masataka, N. Why early developmental milestones are delayed in children with Williams syndrome: late onset of hand banging as a possible rate-limiting constraint on the emergence of canonical babbling. Dev. Sci. 4, 158–164 (2001).

    Google Scholar 

  297. Plissart, L. & Fryns, J. P. Early development (5 to 48 months) in Williams syndrome. A study of 14 children. Genet. Couns. 10, 151–156 (1999).

    CAS  PubMed  Google Scholar 

  298. Sarimski, K. Early development of children with Williams syndrome. Genet. Couns. 10, 141–150 (1999).

    CAS  PubMed  Google Scholar 

  299. WHO Multicentre Growth Reference Study Group. WHO motor development study: windows of achievement for six gross motor development milestones. Acta Paediatr. Suppl. 450, 86–95 (2006).

    Google Scholar 

  300. Bayley, N. Manual for the Bayley Scales of Infant Development 2nd edn, (Psychological Corp., 1993).

  301. Fenson, L. et al. Variability in early communicative development. Monogr. Soc. Res. Child. Dev. 59, 1–173 (1994).

    CAS  PubMed  Google Scholar 

  302. Fenson, L. et al. MacArthur-Bates Communicative Development Inventories: User’s guide and technical manual 2nd edn, (Brookes, 2007).

  303. Mervis, C. B., Becerra, A. M., Pitts, C. H. & Marchman, V. A. in Symposium on Research in Child Language Disorders (Madison, WI, 2019).

  304. Weisberg, D. S. Pretend play. Wiley Interdiscip. Rev. Cogn. Sci. 6, 249–261 (2015).

    PubMed  Google Scholar 

  305. Lincoln, A. J., Searcy, Y. M., Jones, W. & Lord, C. Social interaction behaviors discriminate young children with autism and Williams syndrome. J. Am. Acad. Child. Adolesc. Psychiat. 46, 323–331 (2007).

    Google Scholar 

  306. Dodd, H. F. & Porter, M. A. Psychopathology in Williams syndrome: the effect of individual differences across the life span. J. Ment. Health Res. Intellect. Disabil. 2, 89–109 (2009). Clinical diagnostic interview of psychopathology and behaviour, as opposed to just a symptom checklist. This study looks at children and adults separately.

    Google Scholar 

  307. Dykens, E. M. Anxiety, fears, and phobias in persons with Williams syndrome. Dev. Neuropsychol. 23, 291–316 (2003).

    PubMed  Google Scholar 

  308. Kennedy, J. C., Kaye, D. L. & LS, S. Psychiatric diagnoses in patients with Williams syndrome and their families. Jefferson J. Psychiat. 20, 22–31 (2006).

    Google Scholar 

  309. Zarchi, O. et al. A comparative study of the neuropsychiatric and neurocognitive phenotype in two microdeletion syndromes: velocardiofacial (22q11.2 deletion) and Williams (7q11.23 deletion) syndromes. Eur. Psychiat. 29, 203–210 (2014).

    CAS  Google Scholar 

  310. Lord, C. et al. Autism spectrum disorder. Nat. Rev. Dis. Prim. 6, 5 (2020).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous individual with WS and her parents who provided the family experience interview as well as those who provided facial photographs for Fig. 4 and Supplementary Table 1. The authors thank the persons with WS and their families belonging to the Associação Brasileira de Síndrome de Williams, Canadian Association for Williams Syndrome, WIlliams Syndrome Australia Limited, and Williams Syndrome Association (USA) for continued participation in studies and the support of research that allows the knowledge of WS to grow. The authors thank Z. Urban for discussion of elastin biology and management strategies for vascular disease in WS. B.A.K. was supported by the Department of Intramural Research at the National Heart, Lung and Blood Institute of the National Institutes of Health. C.B.M. was supported by the Williams Syndrome Association (grant number 0111). B.R.P. was supported by the Williams Syndrome Association and the Williams Syndrome Charitable Foundation, USA. M.P. was funded by Williams Syndrome Australia Limited. B.B. was funded by the Fritz Thyssen Stiftung and the Israel Science Foundation (Grant No.2305/20). L.R.O. was supported by a Canada Research Chair in the Genetics of Neurodevelopmental Disorders. C.A.K. was supported by FAPESP 2019/21644-0 and CNPq 304897/2020-5.

Author information

Authors and Affiliations

Authors

Contributions

B.A.K. and B.R.P. developed the outline for the manuscript, engaged the contributors and synthesized the final manuscript. All authors participated in the research, writing, and editing of the document and all approved the final version of the manuscript. C.A.K. provided clinical photos and M.P. conducted the family experience interview.

Corresponding author

Correspondence to Barbara R. Pober.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Informed consent

The authors affirm that human research participants provided informed consent for: publication of the photographs in Fig. 4 and Supplementary Table 1 and taking part in the family experience interview.

Peer review information

Nature Reviews Disease Primers thanks A. Selicorni, D. Gothelf, J. Van Herwegen, P. Ortiz-Romero, who co-reviewed with V. Campuzano, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

NCBI Gene: https://www.ncbi.nlm.nih.gov/gene/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozel, B.A., Barak, B., Kim, C.A. et al. Williams syndrome. Nat Rev Dis Primers 7, 42 (2021). https://doi.org/10.1038/s41572-021-00276-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-021-00276-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing