Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Autosomal dominant tubulointerstitial kidney disease

Abstract

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a recently defined entity that includes rare kidney diseases characterized by tubular damage and interstitial fibrosis in the absence of glomerular lesions, with inescapable progression to end-stage renal disease. These diseases have long been neglected and under-recognized, in part due to confusing and inconsistent terminology. The introduction of a gene-based, unifying terminology led to the identification of an increasing number of cases, with recent data suggesting that ADTKD is one of the more common monogenic kidney diseases after autosomal dominant polycystic kidney disease, accounting for ~5% of monogenic disorders causing chronic kidney disease. ADTKD is caused by mutations in at least five different genes, including UMOD, MUC1, REN, HNF1B and, more rarely, SEC61A1. These genes encode various proteins with renal and extra-renal functions. The mundane clinical characteristics and lack of appreciation of family history often result in a failure to diagnose ADTKD. This Primer highlights the different types of ADTKD and discusses the distinct genetic and clinical features as well as the underlying mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Function of uromodulin.
Fig. 2: Mechanisms of ADTKD-UMOD.
Fig. 3: Pathobiology of ADTKD-MUC1.
Fig. 4: The transcription factor HNF1β and ADTKD-HNF1B.
Fig. 5: Pathobiology of ADTKD-REN.
Fig. 6: Pathobiology of ADTKD-SEC61A1.
Fig. 7: ER stress and unfolded protein response in ADTKD.
Fig. 8: Diagnostic algorithm for ADTKD.

Similar content being viewed by others

Stylianos E. Antonarakis, Brian G. Skotko, … Roger H. Reeves

References

  1. Eckardt, K. U. et al. Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management – KDIGO consensus report. Kidney Int. 88, 676–683 (2015). This consensus document established the gene-based, unifying terminology for ADTKD as well as the clinical criteria and principles of management.

    Article  CAS  PubMed  Google Scholar 

  2. Gast, C. et al. Autosomal dominant tubulointerstitial kidney disease-UMOD is the most frequent non polycystic genetic kidney disease. BMC Nephrol. 19, 301 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Groopman, E. E. et al. Diagnostic utility of exome sequencing for kidney disease. N. Engl. J. Med. 380, 142–151 (2019). This first large-scale study of exome sequencing in >3,000 patients with CKD yielded a genetic diagnosis in 9.3%, with mutations in UMOD being among the most frequently detected after PKD1 and PKD2 , which are involved in ADPKD.

    Article  CAS  PubMed  Google Scholar 

  4. Hart, T. C. et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med. Genet. 39, 882–892 (2002). This study provided the first direct evidence that UMOD mutations cause ADTKD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dahan, K. et al. A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin. J. Am. Soc. Nephrol. 14, 2883–2893 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Rampoldi, L. et al. Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum. Mol. Genet. 12, 3369–3384 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Turner, J. J. et al. UROMODULIN mutations cause familial juvenile hyperuricemic nephropathy. J. Clin. Endocrinol. Metab. 88, 1398–1401 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Wolf, M. T. et al. Mutations of the uromodulin gene in MCKD type 2 patients cluster in exon 4, which encodes three EGF-like domains. Kidney Int. 64, 1580–1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Kirby, A. et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 45, 299–303 (2013). This report described that mutations in a large VNTR of MUC1 , that escaped detection by NGS, cause ADTKD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Živná, M. et al. Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am. J. Hum. Genet. 85, 204–213 (2009). This paper demonstrated that mutations in REN (coding for renin) cause ADTKD associated with congenital anaemia.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lindner, T. H. et al. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1β. Hum. Mol. Genet. 8, 2001–2008 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Bolar, N. A. et al. Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am. J. Hum. Genet. 99, 174–187 (2016). This report showed that mutations in SEC61A1 cause protein translocation defects across the ER membrane leading to ADTKD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cornec-Le Gall, E. et al. Monoallelic mutations to dnajb11 cause atypical autosomal-dominant polycystic kidney disease. Am. J. Hum. Genet. 102, 832–844 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Snoek, R. et al. NPHP1 (nephrocystin-1) gene deletions cause adult-onset ESRD. J. Am. Soc. Nephrol. 29, 1772–1779 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haghighi, A. et al. Identification of an NPHP1 deletion causing adult form of nephronophthisis. Ir. J. Med. Sci. 185, 589–595 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Bower, M. A., Schimmenti, L. A. & Eccles, M. R. PAX2-related disorder. GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK1451/ (updated 8 February 2018).

  17. Connor, T. M. et al. Mutations in mitochondrial DNA causing tubulointerstitial kidney disease. PLOS Genet. 13, e1006620 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bohle, A., Mackensen-Haen, S. & von Gise, H. Significance of tubulointerstitial changes in the renal cortex for the excretory function and concentration ability of the kidney: a morphometric contribution. Am. J. Nephrol. 7, 421–433 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Humphreys, B. D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309–326 (2017).

    Article  PubMed  CAS  Google Scholar 

  20. Heidet, L. et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin. J. Am. Soc. Nephrol. 5, 1079–1090 (2010). This large series demonstrated that mutations in HNF1B are associated with ( UMOD -negative) hyperuricaemic tubulointerstitial nephropathy and a large variety of kidney phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Faguer, S. et al. Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood. Kidney Int. 80, 768–776 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Perneger, T. V., Whelton, P. K., Klag, M. J. & Rossiter, K. A. Diagnosis of hypertensive end-stage renal disease: effect of patient’s race. Am. J. Epidemiol. 141, 10–15 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Freedman, B. I., Limou, S., Ma, L. & Kopp, J. B. APOL1-associated nephropathy: a key contributor to racial disparities in CKD. Am. J. Kidney Dis. 72, S8–S16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Connaughton, D. M. et al. Monogenic causes of chronic kidney disease in adults. Kidney Int. 95, 914–928 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lhotta, K. et al. Epidemiology of uromodulin-associated kidney disease - results from a nation-wide survey. Nephron Extra 2, 147–158 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Quaglia, M. et al. Unexpectedly high prevalence of rare genetic disorders in kidney transplant recipients with an unknown causal nephropathy. Clin. Transplant. 28, 995–1003 (2014).

    Article  PubMed  Google Scholar 

  27. Cormican, S. C., Kidd, K. O., Bleyer, A. J., Conlon, P. J. & Connaughton, D. M. The burden of autosomal dominant tubulo-interstitial kidney disease (ADTKD) in Ireland [abstract FR-PO327]. J. Am. Soc. Nephrol. 28 (Abstract Edition), 485–486 (2017).

  28. Clissold, R. L., Hamilton, A. J., Hattersley, A. T., Ellard, S. & Bingham, C. HNF1B-associated renal and extra-renal disease—an expanding clinical spectrum. Nat. Rev. Nephrol. 11, 102–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Edghill, E. L. et al. HNF1B deletions in patients with young-onset diabetes but no known renal disease. Diabet. Med. 30, 114–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Bleyer, A. J. et al. Clinical and molecular characterization of a family with a dominant renin gene mutation and response to treatment with fludrocortisone. Clin. Nephrol. 74, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Beck, B. B. et al. Autosomal dominant mutation in the signal peptide of renin in a kindred with anemia, hyperuricemia, and CKD. Am. J. Kidney Dis. 58, 821–825 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clissold, R. L. et al. Discovery of a novel dominant mutation in the REN gene after forty years of renal disease: a case report. BMC Nephrol. 18, 234 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schubert, D. et al. Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon alpha 1 subunit (SEC61A1). J. Allergy Clin. Immunol. 141, 1427–1438 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Devuyst, O., Olinger, E. & Rampoldi, L. Uromodulin: from physiology to rare and complex kidney disorders. Nat. Rev. Nephrol. 13, 525–544 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Thornley, C., Dawnay, A. & Cattell, W. R. Human Tamm-Horsfall glycoprotein: urinary and plasma levels in normal subjects and patients with renal disease determined by a fully validated radioimmunoassay. Clin. Sci. 68, 529–535 (1985).

    Article  CAS  Google Scholar 

  36. Steubl, D. et al. Plasma uromodulin correlates with kidney function and identifies early stages in chronic kidney disease patients. Medicine 95, e3011 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scherberich, J. E. et al. Serum uromodulin—a marker of kidney function and renal parenchymal integrity. Nephrol. Dial. Transpl. 33, 284–295 (2018).

    Article  CAS  Google Scholar 

  38. Tokonami, N. et al. Uromodulin is expressed in the distal convoluted tubule, where it is critical for regulation of the sodium chloride cotransporter NCC. Kidney Int. 94, 701–715 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Risch, L. et al. The serum uromodulin level is associated with kidney function. Clin. Chem. Lab. Med. 52, 1755–1761 (2014).

    CAS  PubMed  Google Scholar 

  40. Pruijm, M. et al. Associations of urinary uromodulin with clinical characteristics and markers of tubular function in the general population. Clin. J. Am. Soc. Nephrol. 11, 70–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Pivin, E. et al. Uromodulin and nephron mass. Clin. J. Am. Soc. Nephrol. 13, 1556–1557 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Mo, L. et al. Ablation of the Tamm-Horsfall protein gene increases susceptibility of mice to bladder colonization by type 1-fimbriated Escherichia coli. Am. J. Physiol. Renal Physiol. 286, F795–F802 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Bates, J. M. et al. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection rapid communication. Kidney Int. 65, 791–797 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Gudbjartsson, D. F. et al. Association of variants at UMOD with chronic kidney disease and kidney stones-role of age and comorbid diseases. PLOS Genet. 6, e1001039 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Trudu, M. et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat. Med. 19, 1655–1660 (2013). This work demonstrated the biological role of a common variant in the promoter of UMOD associated with the risk of CKD and hypertension in the general population.

    Article  CAS  PubMed  Google Scholar 

  46. El-Achkar, T. M. et al. Tamm-Horsfall protein translocates to the basolateral domain of thick ascending limbs, interstitium, and circulation during recovery from acute kidney injury. Am. J. Physiol. Renal Physiol. 304, F1066–F1075 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Micanovic, R. et al. Tamm-Horsfall protein regulates mononuclear phagocytes in the kidney. J. Am. Soc. Nephrol. 29, 841–856 (2018).

    CAS  PubMed  Google Scholar 

  48. Vylet’al, P. et al. Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome. Kidney Int. 70, 1155–1169 (2006).

    Article  PubMed  CAS  Google Scholar 

  49. Williams, S. et al. Uromodulin mutations causing familial juvenile hyperuricaemic nephropathy lead to protein maturation defects and retention in the endoplasmic reticulum. Hum. Mol. Genet. 18, 2963–2974 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adam, J. et al. Endoplasmic reticulum stress in UMOD-related kidney disease: a human pathologic study. Am. J. Kidney Dis. 59, 117–121 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Schaeffer, C., Merella, S., Pasqualetto, E., Lazarevic, D. & Rampoldi, L. Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response. PLOS ONE 12, e0175970 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Nasr, S. H., Lucia, J. P., Galgano, S. J., Markowitz, G. S. & D’Agati, V. D. Uromodulin storage disease. Kidney Int. 73, 971–976 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Bleyer, A. J., Hart, T. C., Shihabi, Z. A. K., Robins, V. & Hoyer, J. R. Mutations in the uromodulin gene decrease urinary excretion of Tamm-Horsfall protein. Kidney Int. 66, 974–977 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Satanovskij, R. et al. A new missense mutation in UMOD gene leads to severely reduced serum uromodulin concentrations — a tool for the diagnosis of uromodulin-associated kidney disease. Clin. Biochem. 50, 155–158 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Choi, S. W. et al. Mutant Tamm-Horsfall glycoprotein accumulation in endoplasmic reticulum induces apoptosis reversed by colchicine and sodium 4-phenylbutyrate. J. Am. Soc. Nephrol. 16, 3006–3014 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Ma, L., Liu, Y., El-Achkar, T. M. & Wu, X. R. Molecular and cellular effects of Tamm-Horsfall protein mutations and their rescue by chemical chaperones. J. Biol. Chem. 287, 1290–1305 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Utami, S. B. et al. Apoptosis induced by an uromodulin mutant C112Y and its suppression by topiroxostat. Clin. Exp. Nephrol. 19, 576–584 (2015).

    Article  PubMed  Google Scholar 

  58. Kemter, E. et al. No amelioration of uromodulin maturation and trafficking defect by sodium 4-phenylbutyrate in vivo: studies in mouse models of uromodulin-associated kidney disease. J. Biol. Chem. 289, 10715–10726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bernascone, I. et al. A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure. Hum. Mol. Genet. 19, 2998–3010 (2010). This study described the first humanized mouse model that recapitulates the clinical and pathological features of ADTKD- UMOD.

    Article  CAS  PubMed  Google Scholar 

  60. Ma, L. et al. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia. PLOS ONE 12, e0186769 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kemter, E. et al. Standardized, systemic phenotypic analysis of Umod(C93F) and Umod(A227T) mutant mice. PLOS ONE 8, e78337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kemter, E., Fröhlich, T., Arnold, G. J., Wolf, E. & Wanke, R. Mitochondrial dysregulation secondary to endoplasmic reticulum stress in autosomal dominant tubulointerstitial kidney disease – UMOD (ADTKD-UMOD). Sci. Rep. 7, 42970 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Piret, S. E. et al. A mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress. Dis. Model. Mech. 10, 773–786 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnson, B. G. et al. Uromodulin p.Cys147Trp mutation drives kidney disease by activating ER stress and apoptosis. J. Clin. Invest. 127, 3954–3969 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ayasreh, N. et al. Autosomal dominant tubulointerstitial kidney disease: clinical presentation of patients with ADTKD-UMOD and ADTKD-MUC1. Am. J. Kidney Dis. 72, 411–418 (2018).

    Article  PubMed  Google Scholar 

  66. Bollée, G. et al. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin. J. Am. Soc. Nephrol. 6, 2429–2438 (2011). The first large, multicentre series reporting the phenotype, kidney disease progression and outcome for patients with ADTKD-UMOD.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Scolari, F. et al. Uromodulin storage diseases: clinical aspects and mechanisms. Am. J. Kidney Dis. 44, 987–999 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Trudu, M. et al. Early involvement of cellular stress and inflammatory signals in the pathogenesis of tubulointerstitial kidney disease due to UMOD mutations. Sci. Rep. 7, 7383 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Raffi, H., Bates, J. M., Laszik, Z. & Kumar, S. Tamm–Horsfall protein knockout mice do not develop medullary cystic kidney disease. Kidney Int. 69, 1914–1915 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Moskowitz, J. L. et al. Association between genotype and phenotype in uromodulin-associated kidney disease. Clin. J. Am. Soc. Nephrol. 8, 1349–1357 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rezende-Lima, W. et al. Homozygosity for uromodulin disorders: FJHN and MCKD-type 2. Kidney Int. 66, 558–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Edwards, N. et al. A novel homozygous UMOD mutation reveals gene dosage effects on uromodulin processing and urinary excretion. Nephrol. Dial. Transpl. 32, 1994–1999 (2017).

    Article  CAS  Google Scholar 

  73. Patton, S., Gendler, S. J. & Spicer, A. P. The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim. Biophys. Acta 1241, 407–423 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Al-Bataineh, M. M., Sutton, T. A. & Hughey, R. P. Novel roles for mucin 1 in the kidney. Curr. Opin. Nephrol. Hypertens. 26, 384–391 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nie, M. et al. Mucin-1 increases renal TRPV5 activity in vitro, and urinary level associates with calcium nephrolithiasis in patients. J. Am. Soc. Nephrol. 27, 3447–3458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Živná, M. et al. Noninvasive immunohistochemical diagnosis and novel MUC1 mutations causing autosomal dominant tubulointerstitial kidney disease. J. Am. Soc. Nephrol. 29, 2418–2431 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yu, S. M.-W. et al. Autosomal dominant tubulointerstitial kidney disease due to MUC1 mutation. Am. J. Kidney Dis. 71, 495–500 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Bleyer, A. J. & Kmoch, S. Autosomal dominant tubulointerstitial kidney disease, MUC1-related. GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK153723/ (updated 30 June 2016).

  79. Spicer, A. P., Rowse, G. J., Lidner, T. K. & Gendler, S. J. Delayed mammary tumor progression in Muc-1 null mice. J. Biol. Chem. 270, 30093–30101 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Bleyer, A. J. et al. Variable clinical presentation of an MUC1 mutation causing medullary cystic kidney disease type 1. Clin. J. Am. Soc. Nephrol. 9, 527–535 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Musetti, C. et al. Testing for the cytosine insertion in the VNTR of the MUC1 gene in a cohort of Italian patients with autosomal dominant tubulointerstitial kidney disease. J. Nephrol. 29, 451–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Yamamoto, S. et al. Analysis of an ADTKD family with a novel frameshift mutation in MUC1 reveals characteristic features of mutant MUC1 protein. Nephrol. Dial. Transpl. 32, 2010–2017 (2017).

    Article  CAS  Google Scholar 

  83. Wenzel, A. et al. Single molecule real time sequencing in ADTKD-MUC1 allows complete assembly of the VNTR and exact positioning of causative mutations. Sci. Rep. 8, 4170 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Knaup, K. X. et al. Biallelic expression of mucin-1 in autosomal dominant tubulointerstitial kidney disease: implications for nongenetic disease recognition. J. Am. Soc. Nephrol. 29, 2298–2309 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, Y. & Wingert, R. A. Regenerative medicine for the kidney: stem cell prospects & challenges. Clin. Transl. Med. 2, 11 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Horikawa, Y. et al. Mutation in hepatocyte nuclear factor-1β gene (TCF2) associated with MODY. Nat. Genet. 17, 384–385 (1997). The first report of dominantly inherited mutations in HNF1B associated with kidney disease and maturity-onset diabetes of the young.

    Article  CAS  PubMed  Google Scholar 

  87. Bingham, C. et al. Mutations in the hepatocyte nuclear factor-1β gene are associated with familial hypoplastic glomerulocystic kidney disease. Am. J. Hum. Genet. 68, 219–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Okorn, C. et al. HNF1B nephropathy has a slow-progressive phenotype in childhood-with the exception of very early onset cases: results of the German Multicenter HNF1B Childhood Registry. Pediatr. Nephrol. 34, 1065–1075 (2019).

    Article  PubMed  Google Scholar 

  89. Barbacci, E. et al. HNF1β/TCF2 mutations impair transactivation potential through altered co-regulator recruitment. Hum. Mol. Genet. 13, 3139–3149 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Massa, F. et al. Hepatocyte nuclear factor 1β controls nephron tubular development. Development 140, 886–896 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Gresh, L. et al. A transcriptional network in polycystic kidney disease. EMBO J. 23, 1657–1668 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hiesberger, T. et al. Mutation of hepatocyte nuclear factor-1β inhibits Pkhd1 gene expression and produces renal cysts in mice. J. Clin. Invest. 113, 814–825 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Adalat, S. et al. HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J. Am. Soc. Nephrol. 20, 1123–1131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kompatscher, A. et al. Loss of transcriptional activation of the potassium channel Kir5.1 by HNF1β drives autosomal dominant tubulointerstitial kidney disease. Kidney Int. 92, 1145–1156 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Aboudehen, K. et al. Hepatocyte nuclear factor-1β regulates urinary concentration and response to hypertonicity. J. Am. Soc. Nephrol. 28, 2887–2900 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chan, S. C. et al. Mechanism of fibrosis in HNF1B-related autosomal dominant tubulointerstitial kidney disease. J. Am. Soc. Nephrol. 29, 2493–2509 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Casemayou, A. et al. Hepatocyte nuclear factor-1β controls mitochondrial respiration in renal tubular cells. J. Am. Soc. Nephrol. 28, 3205–3217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sun, Z. & Hopkins, N. vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev. 15, 3217–3229 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Weber, S. et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J. Am. Soc. Nephrol. 17, 2864–2870 (2006). First systematic study on renal developmental genes including HNF1B in children with end-stage renal disease.

    Article  CAS  PubMed  Google Scholar 

  100. Verdeguer, F. et al. A mitotic transcriptional switch in polycystic kidney disease. Nat. Med. 16, 106–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Bergmann, C. et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J. Am. Soc. Nephrol. 22, 2047–2056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mefford, H. C. et al. Recurrent reciprocal genomic rearrangements of 17q12 are associated with renal disease, diabetes, and epilepsy. Am. J. Hum. Genet. 81, 1057–1069 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Roehlen, N. et al. 17q12 deletion syndrome as a rare cause for diabetes mellitus type MODY5. J. Clin. Endocrinol. Metab. 103, 3601–3610 (2018).

    Article  PubMed  Google Scholar 

  104. Moreno-De-Luca, D. et al. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am. J. Hum. Genet. 87, 618–630 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Clissold, R. L. et al. Chromosome 17q12 microdeletions but not intragenic HNF1B mutations link developmental kidney disease and psychiatric disorder. Kidney Int. 90, 203–211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mitchel, M. W. et al. 17q12 recurrent deletion syndrome. GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK401562/ (updated 8 December 2016).

  107. Ulinski, T. et al. Renal phenotypes related to hepatocyte nuclear factor-1β (TCF2) mutations in a pediatric cohort. J. Am. Soc. Nephrol. 17, 497–503 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Dubois-Laforgue, D. et al. Diabetes, associated clinical spectrum, long-term prognosis, and genotype/phenotype correlations in 201 adult patients with hepatocyte nuclear factor 1B (HNF1B) molecular defects. Diabetes Care 40, 1436–1443 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Vlahakos, D. V. et al. Renin-angiotensin system stimulates erythropoietin secretion in chronic hemodialysis patients. Clin. Nephrol. 43, 53–59 (1995).

    CAS  PubMed  Google Scholar 

  110. Kim, H. S. et al. Genetic control of blood pressure and the angiotensinogen locus. Proc. Natl Acad. Sci. USA 92, 2735–2739 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gribouval, O. et al. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat. Genet. 37, 964–968 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Haßdenteufel, S., Klein, M.-C., Melnyk, A. & Zimmermann, R. Protein transport into the human ER and related diseases, Sec61-channelopathies. Biochem. Cell Biol. 92, 499–509 (2014).

    Article  PubMed  CAS  Google Scholar 

  113. Lang, S. et al. An update on Sec 61 channel functions, mechanisms, and related diseases. Front. Physiol. 8, 887 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Shen, Y. & Hendershot, L. M. ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP’s interactions with unfolded substrates. Mol. Biol. Cell 16, 40–50 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bleyer, A. J. et al. Clinical characterization of a family with a mutation in the uromodulin (Tamm-Horsfall glycoprotein) gene. Kidney Int. 64, 36–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Decramer, S. et al. Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J. Am. Soc. Nephrol. 18, 923–933 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Gondra, L. et al. Hyperechogenic kidneys and polyhydramnios associated with HNF1B gene mutation. Pediatr. Nephrol. 31, 1705–1708 (2016).

    Article  PubMed  Google Scholar 

  118. Shuster, S. et al. Prenatal detection of isolated bilateral hyperechogenic kidneys: etiologies and outcomes. Prenat. Diagn. 39, 693–700 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Bingham, C. & Hattersley, A. T. Renal cysts and diabetes syndrome resulting from mutations in hepatocyte nuclear factor-1beta. Nephrol. Dial. Transplant. 19, 2703–2708 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Ferrè, S., Veenstra, G. J., Bouwmeester, R., Hoenderop, J. G. & Bindels, R. J. HNF-1B specifically regulates the transcription of the γa-subunit of the Na+/K+-ATPase. Biochem. Biophys. Res. Commun. 404, 284–290 (2011).

    Article  PubMed  CAS  Google Scholar 

  121. van der Wijst, J., Belge, H., Bindels, R. J. M. & Devuyst, O. Learning physiology from inherited kidney disorders. Physiol. Rev. 99, 1575–1653 (2019).

    Article  PubMed  Google Scholar 

  122. Kanda, S. et al. New-onset diabetes after renal transplantation in a patient with a novel HNF1B mutation. Pediatr. Transplant. 20, 467–471 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Hecking, M. et al. Novel views on new-onset diabetes after transplantation: development, prevention and treatment. Nephrol. Dial. Transplant. 28, 550–566 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Iwasaki, N. et al. Splice site mutation in the hepatocyte nuclear factor-1β gene, IVS2nt+1G>A, associated with maturity-onset diabetes of the young, renal dysplasia and bicornuate uterus. Diabetologia 44, 387–388 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Bingham, C. et al. Solitary functioning kidney and diverse genital tract malformations associated with hepatocyte nuclear factor-1beta mutations. Kidney Int. 61, 1243–1251 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Oram, R. A. et al. Mutations in the hepatocyte nuclear factor-1β (HNF1B) gene are common with combined uterine and renal malformations but are not found with isolated uterine malformations. Am. J. Obstet. Gynecol. 203, 364.e1–364.e5 (2010).

    Article  CAS  Google Scholar 

  127. Dahan, K. et al. Familial juvenile hyperuricemic nephropathy and autosomal dominant medullary cystic kidney disease type 2: two facets of the same disease? J. Am. Soc. Nephrol. 12, 2348–2357 (2001).

    CAS  PubMed  Google Scholar 

  128. Duval, H. et al. Fetal anomalies associated with HNF1B mutations: report of 20 autopsy cases. Prenat. Diagn. 36, 744–751 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. MacArthur, D. G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508, 469–476 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Braun, D. A. & Hildebrandt, F. Ciliopathies. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a028191 (2017).

    Article  CAS  Google Scholar 

  131. Ross, L. F., Saal, H. M., David, K. L. & Anderson, R. R. Technical report: ethical and policy issues in genetic testing and screening of children. Genet. Med. 15, 234–245 (2013).

    Article  PubMed  Google Scholar 

  132. Schouten, J. P. et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 30, e57 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Levin, A. & Stevens, P. E. Summary of KDIGO 2012 CKD Guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney Int. 85, 49–61 (2014).

    Article  PubMed  Google Scholar 

  134. Hamada, T. et al. Uricosuric action of losartan via the inhibition of urate transporter 1 (URAT 1) in hypertensive patients. Am. J. Hypertens. 21, 1157–1162 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Labriola, L. et al. Paradoxical response to furosemide in uromodulin-associated kidney disease. Nephrol. Dial. Transplant. 30, 330–335 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Faruque, L. I. et al. A systematic review and meta-analysis on the safety and efficacy of febuxostat versus allopurinol in chronic gout. Semin. Arthritis Rheum. 43, 367–375 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Fairbanks, L. D. et al. Early treatment with allopurinol in familial juvenile hyerpuricaemic nephropathy (FJHN) ameliorates the long-term progression of renal disease. QJM 95, 597–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Liu, X. et al. Effects of uric acid-lowering therapy on the progression of chronic kidney disease: a systematic review and meta-analysis. Ren. Fail. 40, 289–297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Stavrou, C., Deltas, C. C., Christophides, T. C. & Pierides, A. Outcome of kidney transplantation in autosomal dominant medullary cystic kidney disease type 1. Nephrol. Dial. Transplant. 18, 2165–2169 (2003).

    Article  PubMed  Google Scholar 

  140. Tudorache, E. et al. Childhood onset diabetes posttransplant in a girl with TCF2 mutation. Pediatr. Diabetes 13, e35–e39 (2012).

    Article  PubMed  Google Scholar 

  141. Abdel-Kader, K., Unruh, M. L. & Weisbord, S. D. Symptom burden, depression, and quality of life in chronic and end-stage kidney disease. Clin. J. Am. Soc. Nephrol. 4, 1057–1064 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Cruz, M. C. et al. Quality of life in patients with chronic kidney disease. Clinics 66, 991–995 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Devuyst, O., Knoers, N. V., Remuzzi, G. & Schaefer, F. Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet 383, 1844–1859 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kim, Y. et al. Elevated urinary CRELD2 is associated with endoplasmic reticulum stress–mediated kidney disease. JCI Insight 2, 92896 (2017).

    Article  PubMed  Google Scholar 

  145. Levin, A. A. Treating disease at the RNA level with oligonucleotides. N. Engl. J. Med. 380, 57–70 (2019).

    Article  PubMed  Google Scholar 

  146. Dvela-Levitt, M. et al. Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell 178, 521–535.e23 (2019).

    Article  PubMed  CAS  Google Scholar 

  147. Cruz, N. M. & Freedman, B. S. CRISPR gene editing in the kidney. Am. J. Kidney Dis. 71, 874–883 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363, eaau0629 (2019).

  149. Rocca, C. J. & Cherqui, S. Gene transfer to mouse kidney in vivo. Methods Mol. Biol. 1937, 227-234 (2019).

  150. Ekici, A. B. et al. Renal fibrosis is the common feature of autosomal dominant tubulointerstitial kidney diseases caused by mutations in mucin 1 or uromodulin. Kidney Int. 86, 589–599 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Bleyer, A. J. & Kmoch, S. Autosomal dominant tubulointerstitial kidney disease: of names and genes. Kidney Int. 86, 459–461 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Collins, S. C. Preimplantation genetic diagnosis: technical advances and expanding applications. Curr. Opin. Obstet. Gynecol. 25, 201–206 (2013).

    Article  PubMed  Google Scholar 

  153. Parikh, F. R. et al. Preimplantation genetic testing: its evolution, where are we today? J. Hum. Reprod. Sci. 11, 306–314 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Brunati, M. et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. eLife 4, e08887 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Tokonami, N., Olinger, E., Debaix, H., Houillier, P. & Devuyst, O. The excretion of uromodulin is modulated by the calcium-sensing receptor. Kidney Int. 94, 882–886 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Devuyst, O. & Bochud, M. Uromodulin, kidney function, cardiovascular disease, and mortality. Kidney Int. 88, 944–946 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

O.D. is supported by the European Community’s 7th Framework Programme (FP7/2007–2013) under grant agreement numbers 246539 and 608847 (IKPP Marie Curie) and grant number 305608 (EURenOmics), the FNRS and FRSM (Belgium), the NCCR Kidney.ch programme (Swiss National Science Foundation), the Gebert Rüf Stiftung (Project GRS-038/12), and the Swiss National Science Foundation 310030–146490. S.W. is supported by the German Federal Ministry of Research and Education (BMBF, grant number 01GM1515). S.K. is supported by grant NV17–29786A from the Ministry of Health of the Czech Republic, by institutional programmes of Charles University in Prague UNCE/MED/007 and PROGRES-Q26/LF1, and by the project LQ1604 NPU II from the Ministry of Education, Youth and Sports of the Czech Republic. L.R. is supported by Telethon-Italy (GGP14263), the Italian Ministry of Health (grant RF-2010–2319394), and Fondazione Cariplo (2014–0827). The authors thank Dr Martina Živná (Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Czech Republic), Drs Guglielmo Schiano and Jennifer Lake (Department of Physiology, University of Zurich, Switzerland), Dr Maria Pia Cratere (IRCCS San Raffaele Scientific Institute, Italy) and Prof Patrick H. Maxwell (University of Cambridge, UK) for help and discussions. The authors apologize to the authors whose contributions could not be referenced due to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (O.D., S.K., A.J.B. and K.-U.E.); Epidemiology (O.D., E.O., S.W., A.J.B. and K.-U.E.); Mechanisms/pathophysiology (O.D., L.R. and S.K.); Diagnosis, screening and prevention (O.D, E.O., S.K., S.W. and A.J.B.); Management (O.D., E.O., S.W., A.J.B. and K.-U.E.); Quality of life (O.D., S.W. and A.J.B.); Outlook (O.D., L.R., S.K., A.J.B. and K.-U.E.); Overview of the Primer (O.D. and AJ.B.).

Corresponding author

Correspondence to Olivier Devuyst.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devuyst, O., Olinger, E., Weber, S. et al. Autosomal dominant tubulointerstitial kidney disease. Nat Rev Dis Primers 5, 60 (2019). https://doi.org/10.1038/s41572-019-0109-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0109-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing