Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A bacterial effector deubiquitinase specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling

Abstract

Linear ubiquitin (Ub) chains regulate many cellular processes, including NF-κB immune signalling. Pathogenic bacteria have evolved to secrete effector proteins that harbour deubiquitinase activity into host cells to disrupt host ubiquitination signalling. All previously identified effector deubiquitinases hydrolyse isopeptide-linked polyubiquitin (polyUb). It has been a long-standing question whether bacterial pathogens have evolved an effector deubiquitinase to directly cleave linear Ub chains. In this study, we performed extensive screening of bacterial pathogens and found that Legionella pneumophila—the causative agent of human Legionnaire’s disease—encodes an effector protein, RavD, which harbours deubiquitinase activity exquisitely specific for linear Ub chains. RavD hydrolyses linear Ub chains but not any type of isopeptide-linked polyUb. The crystal structure of RavD with linear diubiquitin reveals that RavD adopts a papain-like fold with a Cys–His–Ser catalytic triad. The Ub-binding surface and specific interacting residues in RavD determine its specificity for Met1 linkages. RavD prevents the accumulation of linear Ub chains on Legionella-containing vacuoles established by the pathogen in host cells to inhibit the NF-κB pathway during infection. This study identified a unique linear Ub chain-specific effector deubiquitinase and indicates its potential application as a tool to dissect linear polyUb-mediated signalling in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A deubiquitinase activity screen of bacterial pathogens revealed that L. pneumophila can hydrolyse linear Ub chains.
Fig. 2: The Legionella effector RavD hydrolyses linear Ub chains.
Fig. 3: RavD is a linear Ub chain-specific deubiquitinase.
Fig. 4: Complex structure of RavDlc with linear diUb.
Fig. 5: RavD can inhibit linear Ub chain-mediated NF-κB signalling.
Fig. 6: RavD prevents the accumulation of linear Ub chains on LCVs and inhibits IκBα degradation during infection.

Similar content being viewed by others

Data availability

Coordinates and structure factors for RavD and the RavD-linear diUb complex have been deposited in the Protein Data Bank under accession codes 6NII and 6NJD, respectively. All data generated during this study are included in this published article and its Supplementary Information.

References

  1. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  Google Scholar 

  2. Zhou, Y. & Zhu, Y. Diversity of bacterial manipulation of the host ubiquitin pathways. Cell Microbiol. 17, 26–34 (2015).

    Article  Google Scholar 

  3. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).

    Article  CAS  Google Scholar 

  4. Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).

    Article  CAS  Google Scholar 

  5. Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877–4887 (2006).

    Article  CAS  Google Scholar 

  6. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  CAS  Google Scholar 

  7. Hrdinka, M. & Gyrd-Hansen, M. The Met1-linked ubiquitin machinery: emerging themes of (de)regulation. Mol. Cell 68, 265–280 (2017).

    Article  CAS  Google Scholar 

  8. Komander, D., Clague, M. J. & Urbe, S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563 (2009).

    Article  CAS  Google Scholar 

  9. Mevissen, T. E. T. & Komander, D. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86, 159–192 (2017).

    Article  CAS  Google Scholar 

  10. Keusekotten, K. et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153, 1312–1326 (2013).

    Article  CAS  Google Scholar 

  11. Rivkin, E. et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498, 318–324 (2013).

    Article  CAS  Google Scholar 

  12. Damgaard, R. B. et al. The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 166, 1215–1230 (2016).

    Article  CAS  Google Scholar 

  13. Zhou, Q. et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc. Natl Acad. Sci. USA 113, 10127–10132 (2016).

    Article  CAS  Google Scholar 

  14. Hubber, A. & Roy, C. R. Modulation of host cell function by Legionella pneumophila type IV effectors. Annu. Rev. Cell Dev. Biol. 26, 261–283 (2010).

    Article  CAS  Google Scholar 

  15. Wan, M., Zhou, Y. & Zhu, Y. Subversion of macrophage functions by bacterial protein toxins and effectors. Curr. Issues Mol. Biol. 25, 61–80 (2018).

    Article  Google Scholar 

  16. Zhou, Y. et al. Nε-fatty acylation of Rho GTPases by a MARTX toxin effector. Science 358, 528–531 (2017).

    Article  CAS  Google Scholar 

  17. Cui, J. & Shao, F. Biochemistry and cell signaling taught by bacterial effectors. Trends Biochem. Sci. 36, 532–540 (2011).

    Article  CAS  Google Scholar 

  18. Pruneda, J. N. et al. The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol. Cell 63, 261–276 (2016).

    Article  CAS  Google Scholar 

  19. Noad, J. et al. LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB. Nat. Microbiol. 2, 17063 (2017).

    Article  CAS  Google Scholar 

  20. Van Wijk, S. J. L. et al. Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation. Nat. Microbiol. 2, 17066 (2017).

    Article  CAS  Google Scholar 

  21. Rytkonen, A. et al. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc. Natl Acad. Sci. USA 104, 3502–3507 (2007).

    Article  Google Scholar 

  22. Swanson, M. S. & Hammer, B. K. Legionella pneumophila pathogesesis: a fateful journey from amoebae to macrophages. Annu. Rev. Microbiol. 54, 567–613 (2000).

    Article  CAS  Google Scholar 

  23. Isberg, R. R., O’Connor, T. J. & Heidtman, M. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat. Rev. Microbiol. 7, 13–24 (2009).

    Article  CAS  Google Scholar 

  24. Zhu, W. et al. Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS ONE 6, e17638 (2011).

    Article  CAS  Google Scholar 

  25. Sheedlo, M. J. et al. Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc. Natl Acad. Sci. USA 112, 15090–15095 (2015).

    Article  CAS  Google Scholar 

  26. Hilbi, H., Weber, S. & Finsel, I. Anchors for effectors: subversion of phosphoinositide lipids by Legionella. Front Microbiol 2, 91 (2011).

    Article  CAS  Google Scholar 

  27. Haneburger, I. & Hilbi, H. Phosphoinositide lipids and the Legionella pathogen vacuole. Curr. Top. Microbiol. Immunol. 376, 155–173 (2013).

    PubMed  Google Scholar 

  28. Zhu, M., Shao, F., Innes, R. W., Dixon, J. E. & Xu, Z. The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Proc. Natl Acad. Sci. USA 101, 302–307 (2004).

    Article  CAS  Google Scholar 

  29. Shao, F. et al. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301, 1230–1233 (2003).

    Article  CAS  Google Scholar 

  30. Sanada, T. et al. The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 483, 623–626 (2012).

    Article  CAS  Google Scholar 

  31. Fu, P. et al. Complex structure of OspI and Ubc13: the molecular basis of Ubc13 deamidation and convergence of bacterial and host E2 recognition. PLoS Pathog. 9, e1003322 (2013).

    Article  CAS  Google Scholar 

  32. Schlieker, C. et al. Structure of a herpesvirus-encoded cysteine protease reveals a unique class of deubiquitinating enzymes. Mol. Cell 25, 677–687 (2007).

    Article  CAS  Google Scholar 

  33. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    Article  CAS  Google Scholar 

  34. Price, C. T., Al-Quadan, T., Santic, M., Rosenshine, I. & Abu Kwaik, Y. Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334, 1553–1557 (2011).

    Article  CAS  Google Scholar 

  35. Hsu, F. et al. The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proc. Natl Acad. Sci. USA 111, 10538–10543 (2014).

    Article  CAS  Google Scholar 

  36. Pike, C. M., Boyer-Andersen, R., Kinch, L. N., Caplan, J. L. & Neunuebel, M. R. Legionella effector RavD binds phosphatidylinositol-3-phosphate and helps suppress endolysosomal maturation of the Legionella-containing vacuole.J. Biol. Chem. 294, 6405–6415 (2019).

    Article  CAS  Google Scholar 

  37. Peltzer, N. et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature 557, 112–117 (2018).

    Article  CAS  Google Scholar 

  38. Heger, K. et al. OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature 559, 120–124 (2018).

    Article  CAS  Google Scholar 

  39. Takiuchi, T. et al. Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Genes Cells 19, 254–272 (2014).

    Article  CAS  Google Scholar 

  40. Zinngrebe, J. et al. LUBAC deficiency perturbs TLR3 signaling to cause immunodeficiency and autoinflammation. J. Exp. Med. 213, 2671–2689 (2016).

    Article  CAS  Google Scholar 

  41. Yin, Q. et al. E2 interaction and dimerization in the crystal structure of TRAF6. Nat. Struct. Mol. Biol. 16, 658–666 (2009).

    Article  CAS  Google Scholar 

  42. Stieglitz, B. et al. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Nature 503, 422–426 (2013).

    Article  CAS  Google Scholar 

  43. Doublie, S. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276, 523–530 (1997).

    Article  CAS  Google Scholar 

  44. Wang, Z. et al. Automatic crystal centring procedure at the SSRF macromolecular crystallography beamline. J. Synchrotron Radiat. 23, 1323–1332 (2016).

    Article  CAS  Google Scholar 

  45. Kabsch, W. XDS. Acta Crystallogr. D. Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  46. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D. Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  47. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  49. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D. Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  50. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D. Biol. Crystallogr. 62, 859–866 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff at the beamline BL18U1 of SSRF and the National Center for Protein Science Shanghai for assistance with diffraction data collection, F. Shao, L. Wang, V. Dixit and Z.-Q. Luo for providing bacterial strains and antibodies, and the staff at the core facilities of the Life Sciences Institute Zhejiang University for assistance with SIM. This work was supported by grants from MOST (2017YFA0503900 to Y.Zhu), NSFC (81530068 to Y.Zhu and 81501717 to Y.Zhou), the National High-level Talents Special Support Plan, the leading scientist program of Zhejiang High-level Talents Special Support Plan and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Y.Zhu designed the study. M.W. performed the biochemical, cell and infection assays with assistance from Y.Zhou, X.W., C.H., D.X. and Z.W. X.W. determined the structures and generated the mutant strains. M.W., X.W., Y.Zhou and Y.Zhu analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Yongqun Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–19, Supplementary Table 1 and uncropped blots

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, M., Wang, X., Huang, C. et al. A bacterial effector deubiquitinase specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling. Nat Microbiol 4, 1282–1293 (2019). https://doi.org/10.1038/s41564-019-0454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0454-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing