Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inducible developmental reprogramming redefines commitment to sexual development in the malaria parasite Plasmodium berghei

Abstract

During malaria infection, Plasmodium spp. parasites cyclically invade red blood cells and can follow two different developmental pathways. They can either replicate asexually to sustain the infection, or differentiate into gametocytes, the sexual stage that can be taken up by mosquitoes, ultimately leading to disease transmission. Despite its importance for malaria control, the process of gametocytogenesis remains poorly understood, partially due to the difficulty of generating high numbers of sexually committed parasites in laboratory conditions1. Recently, an apicomplexa-specific transcription factor (AP2-G) was identified as necessary for gametocyte production in multiple Plasmodium species2,3, and suggested to be an epigenetically regulated master switch that initiates gametocytogenesis4,5. Here we show that in a rodent malaria parasite, Plasmodium berghei, conditional overexpression of AP2-G can be used to synchronously convert the great majority of the population into fertile gametocytes. This discovery allowed us to redefine the time frame of sexual commitment, identify a number of putative AP2-G targets and chart the sequence of transcriptional changes through gametocyte development, including the observation that gender-specific transcription occurred within 6 h of induction. These data provide entry points for further detailed characterization of the key process required for malaria transmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Establishment of an AP2-G-overexpression system.
Fig. 2: AP2-G overexpression results in gametocyte conversion.
Fig. 3: Transcriptome changes in PBGAMiR and PBGAMiR+ parasites reveal a gametocyte-specific transcriptional programme.
Fig. 4: PBANKA_0312700 is an AP2-G-induced gene involved in gametocyte development.

Similar content being viewed by others

References

  1. Meibalan, E. & Marti, M. Biology of malaria transmission. Cold Spring Harb. Perspect. Med. 7, a025452 (2017).

    Article  Google Scholar 

  2. Sinha, A. et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 507, 253–257 (2014).

    Article  CAS  Google Scholar 

  3. Kafsack, B. F. C. et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507, 248–252 (2014).

    Article  CAS  Google Scholar 

  4. Brancucci, N. M. B. et al. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 16, 165–176 (2014).

    Article  CAS  Google Scholar 

  5. Filarsky, M. et al. GDV1 induces sexual commitment of malaria parasites by antagonizing HP1-dependent gene silencing. Science 359, 1259–1263 (2018).

    Article  CAS  Google Scholar 

  6. Brancucci, N. M. B. et al. Lysophosphatidylcholine regulates sexual stage differentiation in the human malaria parasite Plasmodium falciparum. Cell 171, 1532–1544 (2017).

    Article  CAS  Google Scholar 

  7. Jullien, N., Sampieri, F., Enjalbert, A. & Herman, J.-P. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. Nucleic Acids Res. 31, e131 (2003).

    Article  Google Scholar 

  8. Albert, H., Dale, E. C., Lee, E. & Ow, D. W. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 7, 649–659 (1995).

    Article  CAS  Google Scholar 

  9. Mair, G. R. et al. Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog. 6, e1000767 (2010).

    Article  Google Scholar 

  10. Bruce, M. C., Alano, P., Duthie, S. & Carter, R. Commitment of the malaria parasite Plasmodium falciparum to sexual and asexual development. Parasitology 100, 191–200 (1990).

    Article  Google Scholar 

  11. Otto, T. D. et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol. 12, 86 (2014).

    Article  Google Scholar 

  12. Mair, G. R. et al. Regulation of sexual development of Plasmodium by translational repression. Science 313, 667–669 (2006).

    Article  CAS  Google Scholar 

  13. Lal, K. et al. Plasmodium male development gene-1 (mdv-1) is important for female sexual development and identifies a polarised plasma membrane during zygote development. Int. J. Parasitol. 39, 755–761 (2009).

    Article  CAS  Google Scholar 

  14. Bushell, E. et al. Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell 170, 260–272 (2017).

    Article  CAS  Google Scholar 

  15. Yeoh, L. M., Goodman, C. D., Mollard, V., McFadden, G. I. & Ralph, S. A. Comparative transcriptomics of female and male gametocytes in Plasmodium berghei and the evolution of sex in alveolates. Genomics 18, 734 (2017).

    PubMed  Google Scholar 

  16. Campbell, T. L., De Silva, E. K., Olszewski, K. L., Elemento, O. & Llinás, M. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathog. 6, e1001165 (2010).

    Article  Google Scholar 

  17. Poran, A. et al. Single-cell RNA sequencing reveals a signature of sexual commitment in malaria parasites. Nature 551, 95–99 (2017).

    Article  Google Scholar 

  18. Tibúrcio, M., Sauerwein, R., Lavazec, C. & Alano, P. Erythrocyte remodeling by Plasmodium falciparum gametocytes in the human host interplay. Trends Parasitol. 31, 270–278 (2015).

    Article  Google Scholar 

  19. Painter, H. J., Carrasquilla, M. & Llinás, M. Capturing in vivo RNA transcriptional dynamics from the malaria parasite Plasmodium falciparum. Genome Res. 27, 1074–1086 (2017).

    Article  CAS  Google Scholar 

  20. Lin, J. et al. A novel ‘gene insertion/marker out’ (GIMO) method for transgene expression and gene complementation in rodent malaria parasites. PLoS ONE 6, e29289 (2011).

    Article  CAS  Google Scholar 

  21. Chomczynski, P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15, 532-4–536-7 (1993).

  22. Kozarewa, I. et al. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes. Nat. Methods 6, 291–295 (2009).

    Article  CAS  Google Scholar 

  23. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  Google Scholar 

  24. Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2014).

    Article  Google Scholar 

  25. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  26. Modrzynska, K. et al. A knockout screen of ApiAP2 genes reveals networks of interacting transcriptional regulators controlling the Plasmodium life cycle. Cell Host Microbe 21, 11–22 (2017).

    Article  CAS  Google Scholar 

  27. Guerreiro, A. et al. Genome-wide RIP-Chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte. Genome Biol. 15, 493 (2014).

    Article  Google Scholar 

  28. Young, J. A. et al. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol. Biochem. Parasitol. 143, 67–79 (2005).

    Article  CAS  Google Scholar 

  29. Bailey, T. L. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27, 1653–1659 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Menard and D. Bargieri for the diCre test plasmid used in this study, and M. Sanders and the WTSI sequencing service for assistance with RNA-seq sample processing. K.K.M. is supported by the Wellcome Trust and the Royal Society (ref. 202600/Z/16/Z). R.S.K. is supported by BBSRC (ref. BB/J013854/1). A.P.W. is supported by the Wellcome Trust (refs 083811 and 107046). O.B. is supported by the Wellcome Trust Sanger Institute (ref. WT098051).

Author information

Authors and Affiliations

Authors

Contributions

R.S.K. generated and phenotyped HP diCre, diCre test and PBANKA_0312700 lines, performed phenotyping experiments on the PBGAMi line and generated parasites for transcriptome sequencing. K.K.M. generated the AP2-G overexpression construct and PBGAMi line, performed phenotyping experiments on the PBGAMi line, generated RNA-seq libraries and performed RNA-seq data analysis. R.C. generated 820 diCre and GIMO lines and parasites for transcriptome sequencing. N.P. performed the ookinete conversion assay for PBANKA_0312700 line. O.B. and A.P.W. led and supervised the study. K.K.M. and A.P.W. wrote the manuscript with contributions from the other authors.

Corresponding authors

Correspondence to Katarzyna K. Modrzynska, Oliver Billker or Andrew P. Waters.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials, Supplementary Figures 1–9, legends for Supplementary Tables 1–3 and original blots.

Reporting Summary

Supplementary Table 1

List of oligonucleotide primers used in the study.

Supplementary Table 2

Differential gene expression analysis between PBGAMiR+ and PBGAMiR populations at various time points post induction.

Supplementary Table 3

Gene ontology terms enriched in genes differentially expressed at different time points post induction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kent, R.S., Modrzynska, K.K., Cameron, R. et al. Inducible developmental reprogramming redefines commitment to sexual development in the malaria parasite Plasmodium berghei. Nat Microbiol 3, 1206–1213 (2018). https://doi.org/10.1038/s41564-018-0223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0223-6

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology