Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chromatin replication and epigenetic cell memory

Abstract

Propagation of the chromatin landscape across cell divisions is central to epigenetic cell memory. Mechanistic analysis of the interplay between DNA replication, the cell cycle, and the epigenome has provided insights into replication-coupled chromatin assembly and post-replicative chromatin maintenance. These breakthroughs are critical for defining how proliferation impacts the epigenome during cell identity changes in development and disease. Here we review these findings in the broader context of epigenetic inheritance across mitotic cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct pathways for parental histone recycling during DNA replication.
Fig. 2: Genome-wide methods for studying chromatin replication.
Fig. 3: Epigenome propagation mechanisms.

Similar content being viewed by others

References

  1. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hauer, M. H. & Gasser, S. M. Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev. 31, 2204–2221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).

    CAS  PubMed  Google Scholar 

  4. Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kurimoto, K. & Saitou, M. Epigenome regulation during germ cell specification and development from pluripotent stem cells. Curr. Opin. Genet. Dev. 52, 57–64 (2018).

    CAS  PubMed  Google Scholar 

  7. Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science 357, eaal2380 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    CAS  PubMed  Google Scholar 

  10. Annunziato, A. T. The fork in the road: histone partitioning during DNA replication. Genes (Basel) 6, 353–371 (2015).

    CAS  Google Scholar 

  11. Siddiqui, K., On, K. F. & Diffley, J. F. X. Regulating DNA replication in eukarya. Cold Spring Harb. Perspect. Biol. 5, a012930 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Marchal, C., Sima, J. & Gilbert, D. M. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20, 721–737 (2019).

    CAS  PubMed  Google Scholar 

  13. Kschonsak, M. & Haering, C. H. Shaping mitotic chromosomes: from classical concepts to molecular mechanisms. BioEssays 37, 755–766 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Palozola, K. C., Lerner, J. & Zaret, K. S. A changing paradigm of transcriptional memory propagation through mitosis. Nat. Rev. Mol. Cell Biol. 20, 55–64 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hammond, C. M., Strømme, C. B., Huang, H., Patel, D. J. & Groth, A. Histone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell Biol. 18, 141–158 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Grover, P., Asa, J. S. & Campos, E. I. H3-H4 histone chaperone pathways. Annu. Rev. Genet. 52, 109–130 (2018).

    CAS  PubMed  Google Scholar 

  17. Buschbeck, M. & Hake, S. B. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat. Rev. Mol. Cell Biol. 18, 299–314 (2017).

    CAS  PubMed  Google Scholar 

  18. Smolle, M. & Workman, J. L. Transcription-associated histone modifications and cryptic transcription. Biochim. Biophys. Acta 1829, 84–97 (2013).

    CAS  PubMed  Google Scholar 

  19. Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

    CAS  PubMed  Google Scholar 

  20. Alabert, C. & Groth, A. Chromatin replication and epigenome maintenance. Nat. Rev. Mol. Cell Biol. 13, 153–167 (2012).

    CAS  PubMed  Google Scholar 

  21. Luger, K., Dechassa, M. L. & Tremethick, D. J. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol. 13, 436–447 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stillman, B. Histone modifications: insights into their influence on gene expression. Cell 175, 6–9 (2018).

    CAS  PubMed  Google Scholar 

  23. Alabert, C. et al. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat. Cell Biol. 16, 281–293 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sirbu, B. M. et al. Identification of proteins at active, stalled, and collapsed replication forks using isolation of proteins on nascent DNA (iPOND) coupled with mass spectrometry. J. Biol. Chem. 288, 31458–31467 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, H. & O’Donnell, M. E. The eukaryotic CMG helicase at the replication fork: emerging architecture reveals an unexpected mechanism. BioEssays 40, 1700208 (2018).

    Google Scholar 

  26. Burgers, P. M. J. & Kunkel, T. A. Eukaryotic DNA replication fork. Annu. Rev. Biochem. 86, 417–438 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Alabert, C. et al. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev. 29, 585–590 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Loyola, A., Bonaldi, T., Roche, D., Imhof, A. & Almouzni, G. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol. Cell 24, 309–316 (2006).

    CAS  PubMed  Google Scholar 

  29. Scharf, A. N. D. et al. Monomethylation of lysine 20 on histone H4 facilitates chromatin maturation. Mol. Cell. Biol. 29, 57–67 (2009).

    CAS  PubMed  Google Scholar 

  30. Burgess, R. J. & Zhang, Z. Histone chaperones in nucleosome assembly and human disease. Nat. Struct. Mol. Biol. 20, 14–22 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nagarajan, P. et al. Histone acetyl transferase 1 is essential for mammalian development, genome stability, and the processing of newly synthesized histones H3 and H4. PLoS Genet. 9, e1003518 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu, M., Wang, W., Chen, S. & Zhu, B. A model for mitotic inheritance of histone lysine methylation. EMBO Rep. 13, 60–67 (2011).

    PubMed  PubMed Central  Google Scholar 

  33. Zee, B. M., Levin, R. S., DiMaggio, P. A. & Garcia, B. A. Global turnover of histone post-translational modifications and variants in human cells. Epigenetics Chromatin 3, 22 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Probst, A. V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10, 192–206 (2009).

    CAS  PubMed  Google Scholar 

  35. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004).

    CAS  PubMed  Google Scholar 

  36. Xu, M. et al. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94–98 (2010).

    CAS  PubMed  Google Scholar 

  37. Saredi, G. et al. H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex. Nature 534, 714–718 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakamura, K. et al. H4K20me0 recognition by BRCA1-BARD1 directs homologous recombination to sister chromatids. Nat. Cell Biol. 21, 311–318 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pellegrino, S., Michelena, J., Teloni, F., Imhof, R. & Altmeyer, M. Replication-coupled dilution of H4K20me2 guides 53BP1 to pre-replicative chromatin. Cell Rep. 19, 1819–1831 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Stillman, B. Chromatin assembly during SV40 DNA replication in vitro. Cell 45, 555–565 (1986).

    CAS  PubMed  Google Scholar 

  41. Smith, S. & Stillman, B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58, 15–25 (1989).

    CAS  PubMed  Google Scholar 

  42. Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96, 575–585 (1999).

    CAS  PubMed  Google Scholar 

  43. Petryk, N. et al. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361, 1389–1392 (2018).

    CAS  PubMed  Google Scholar 

  44. Yu, C. et al. A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361, 1386–1389 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gan, H. et al. The Mcm2-Ctf4-Polα axis facilitates parental histone H3-H4 transfer to lagging strands. Mol. Cell 72, 140–151.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pospelov, V., Russev, G., Vassilev, L. & Tsanev, R. Nucleosome segregation in chromatin replicated in the presence of cycloheximide. J. Mol. Biol. 156, 79–91 (1982).

    CAS  PubMed  Google Scholar 

  47. Jackson, V. & Chalkley, R. Histone segregation on replicating chromatin. Biochemistry 24, 6930–6938 (1985).

    CAS  PubMed  Google Scholar 

  48. Cusick, M. E., DePamphilis, M. L. & Wassarman, P. M. Dispersive segregation of nucleosomes during replication of simian virus 40 chromosomes. J. Mol. Biol. 178, 249–271 (1984).

    CAS  PubMed  Google Scholar 

  49. Jackson, V., Granner, D. K. & Chalkley, R. Deposition of histones onto replicating chromosomes. Proc. Natl Acad. Sci. USA 72, 4440–4444 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Russev, G. & Hancock, R. Assembly of new histones into nucleosomes and their distribution in replicating chromatin. Proc. Natl Acad. Sci. USA 79, 3143–3147 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Crémisi, C., Chestier, A. & Yaniv, M. Assembly of SV40 and polyoma minichromosomes during replication. Cold Spring Harb. Symp. Quant. Biol. 42, 409–416 (1978).

    PubMed  Google Scholar 

  52. Ishimi, Y., Komamura-Kohno, Y., Arai, K. & Masai, H. Biochemical activities associated with mouse Mcm2 protein. J. Biol. Chem. 276, 42744–42752 (2001).

    CAS  PubMed  Google Scholar 

  53. Groth, A. et al. Regulation of replication fork progression through histone supply and demand. Science 318, 1928–1931 (2007).

    CAS  PubMed  Google Scholar 

  54. Huang, H. et al. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat. Struct. Mol. Biol. 22, 618–626 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Richet, N. et al. Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic Acids Res. 43, 1905–1917 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Foltman, M. et al. Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep. 3, 892–904 (2013).

    CAS  PubMed  Google Scholar 

  57. Jasencakova, Z. et al. Replication stress interferes with histone recycling and predeposition marking of new histones. Mol. Cell 37, 736–743 (2010).

    CAS  PubMed  Google Scholar 

  58. Wang, H., Wang, M., Yang, N. & Xu, R.-M. Structure of the quaternary complex of histone H3-H4 heterodimer with chaperone ASF1 and the replicative helicase subunit MCM2. Protein Cell 6, 693–697 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zasadzińska, E. et al. Inheritance of CENP-A nucleosomes during DNA replication requires HJURP. Dev. Cell 47, 348–362.e7 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Douglas, M. E., Ali, F. A., Costa, A. & Diffley, J. F. X. The mechanism of eukaryotic CMG helicase activation. Nature 555, 265–268 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Georgescu, R. et al. Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation. Proc. Natl Acad. Sci. USA 114, E697–E706 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Saxton, D. S. & Rine, J. Epigenetic memory independent of symmetric histone inheritance. eLife 8, e51421 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. Simon, A. C. et al. A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome. Nature 510, 293–297 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. He, H. et al. Coordinated regulation of heterochromatin inheritance by Dpb3-Dpb4 complex. Proc. Natl Acad. Sci. USA 114, 12524–12529 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bellelli, R. et al. POLE3-POLE4 is a histone H3-H4 chaperone that maintains chromatin integrity during DNA replication. Mol. Cell 72, 112–126.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Iida, T. & Araki, H. Noncompetitive counteractions of DNA polymerase and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 217–227 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bellelli, R. et al. Polε instability drives replication stress, abnormal development, and tumorigenesis. Mol. Cell 70, 707–721.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mejlvang, J. et al. New histone supply regulates replication fork speed and PCNA unloading. J. Cell Biol. 204, 29–43 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, S. et al. RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly. Science 355, 415–420 (2017).

    CAS  PubMed  Google Scholar 

  70. Evrin, C., Maman, J. D., Diamante, A., Pellegrini, L. & Labib, K. Histone H2A-H2B binding by Pol α in the eukaryotic replisome contributes to the maintenance of repressive chromatin. EMBO J. 37, e99021 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Clément, C. et al. High-resolution visualization of H3 variants during replication reveals their controlled recycling. Nat. Commun. 9, 3181 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Gurova, K., Chang, H.-W., Valieva, M. E., Sandlesh, P. & Studitsky, V. M. Structure and function of the histone chaperone FACT - resolving FACTual issues. Biochim. Biophys. Acta. Gene Regul. Mech. 1861, 892–904 (2018).

    CAS  Google Scholar 

  73. Kurat, C. F., Yeeles, J. T. P., Patel, H., Early, A. & Diffley, J. F. X. Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Mol. Cell 65, 117–130 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Abe, T. et al. The histone chaperone facilitates chromatin transcription (FACT) protein maintains normal replication fork rates. J. Biol. Chem. 286, 30504–30512 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsunaka, Y., Fujiwara, Y., Oyama, T., Hirose, S. & Morikawa, K. Integrated molecular mechanism directing nucleosome reorganization by human FACT. Genes Dev. 30, 673–686 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, T. et al. The histone chaperone FACT modulates nucleosome structure by tethering its components. Life Sci. Alliance 1, e201800107 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Mayanagi, K. et al. Structural visualization of key steps in nucleosome reorganization by human FACT. Sci. Rep. 9, 10183 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Liu, Y. et al. FACT caught in the act of manipulating the nucleosome. Nature 577, 426–431 (2020).

    CAS  PubMed  Google Scholar 

  79. Chereji, R. V. & Clark, D. J. Major determinants of nucleosome positioning. Biophys. J. 114, 2279–2289 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Meyer, C. A. & Liu, X. S. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat. Rev. Genet. 15, 709–721 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ramachandran, S. & Henikoff, S. Transcriptional regulators compete with nucleosomes post-replication. Cell 165, 580–592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Vasseur, P. et al. Dynamics of nucleosome positioning maturation following genomic replication. Cell Rep. 16, 2651–2665 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fennessy, R. T. & Owen-Hughes, T. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing. Nucleic Acids Res. 44, 7189–7203 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gutiérrez, M. P., MacAlpine, H. K. & MacAlpine, D. M. Nascent chromatin occupancy profiling reveals locus- and factor-specific chromatin maturation dynamics behind the DNA replication fork. Genome Res. 29, 1123–1133 (2019).

    PubMed  PubMed Central  Google Scholar 

  85. Stewart-Morgan, K. R., Reverón-Gómez, N. & Groth, A. Transcription restart establishes chromatin accessibility after DNA replication. Mol. Cell 75, 284–297.e6 (2019).

    CAS  PubMed  Google Scholar 

  86. Smith, D. J. & Whitehouse, I. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 483, 434–438 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yadav, T. & Whitehouse, I. Replication-coupled nucleosome assembly and positioning by ATP-dependent chromatin-remodeling enzymes. Cell Rep. 15, 715–723 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

    CAS  PubMed  Google Scholar 

  89. Anderson, J. D. & Widom, J. Poly(dA-dT) promoter elements increase the equilibrium accessibility of nucleosomal DNA target sites. Mol. Cell. Biol. 21, 3830–3839 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ramachandran, S., Ahmad, K. & Henikoff, S. Capitalizing on disaster: establishing chromatin specificity behind the replication fork. BioEssays 39, 1600150 (2017).

    Google Scholar 

  91. Petruk, S. et al. Delayed accumulation of H3K27me3 on nascent DNA is essential for recruitment of transcription factors at early stages of stem cell differentiation. Mol. Cell 66, 247–257.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Petruk, S. et al. Structure of nascent chromatin is essential for hematopoietic lineage Specification. Cell Rep. 19, 295–306 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Iwafuchi-Doi, M. & Zaret, K. S. Pioneer transcription factors in cell reprogramming. Genes Dev. 28, 2679–2692 (2014).

    PubMed  PubMed Central  Google Scholar 

  94. Owens, N. et al. CTCF confers local nucleosome resiliency after DNA replication and during mitosis. eLife 8, e47898 (2019).

    PubMed  PubMed Central  Google Scholar 

  95. Reverón-Gómez, N. et al. Accurate recycling of parental histones reproduces the histone modification landscape during DNA replication. Mol. Cell 72, 239–249.e5 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Madamba, E. V., Berthet, E. B. & Francis, N. J. Inheritance of histones H3 and H4 during DNA Replication In Vitro. Cell Rep. 21, 1361–1374 (2017).

    CAS  PubMed  Google Scholar 

  97. Schlissel, G. & Rine, J. The nucleosome core particle remembers its position through DNA replication and RNA transcription. Proc. Natl Acad. Sci. USA 116, 20605–20611 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Escobar, T. M. et al. Active and repressed chromatin domains exhibit distinct nucleosome segregation during DNA replication. Cell 179, 953–963.e11 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. 10, 1291–1300 (2008).

    CAS  PubMed  Google Scholar 

  100. Hathaway, N. A. et al. Dynamics and memory of heterochromatin in living cells. Cell 149, 1447–1460 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Coleman, R. T. & Struhl, G. Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science 356, eaai8236 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Laprell, F., Finkl, K. & Müller, J. Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA. Science 356, eaai8266 (2017).

    Google Scholar 

  103. Gaydos, L. J., Wang, W. & Strome, S. Gene repression. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science 345, 1515–1518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Audergon, P. N. C. B. et al. Epigenetics. Restricted epigenetic inheritance of H3K9 methylation. Science 348, 132–135 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ragunathan, K., Jih, G. & Moazed, D. Epigenetics. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348, 1258699 (2015).

    PubMed  Google Scholar 

  106. Aygün, O., Mehta, S. & Grewal, S. I. S. HDAC-mediated suppression of histone turnover promotes epigenetic stability of heterochromatin. Nat. Struct. Mol. Biol. 20, 547–554 (2013).

    PubMed  PubMed Central  Google Scholar 

  107. Zentner, G. E. & Henikoff, S. Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 20, 259–266 (2013).

    CAS  PubMed  Google Scholar 

  108. Dodd, I. B., Micheelsen, M. A., Sneppen, K. & Thon, G. Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell 129, 813–822 (2007).

    CAS  PubMed  Google Scholar 

  109. Pesavento, J. J., Yang, H., Kelleher, N. L. & Mizzen, C. A. Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol. Cell. Biol. 28, 468–486 (2008).

    CAS  PubMed  Google Scholar 

  110. Sweet, S. M. M., Li, M., Thomas, P. M., Durbin, K. R. & Kelleher, N. L. Kinetics of re-establishing H3K79 methylation marks in global human chromatin. J. Biol. Chem. 285, 32778–32786 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Alabert, C. et al. Domain model explains propagation dynamics and stability of histone H3K27 and H3K36 methylation landscapes. Cell Rep. 30, 1223–1234.e8 (2020).

    PubMed  Google Scholar 

  112. Bonnet, J. et al. Quantification of proteins and histone marks in Drosophila embryos reveals stoichiometric relationships impacting chromatin regulation. Dev. Cell 51, 632–644.e6 (2019).

    CAS  PubMed  Google Scholar 

  113. Reinberg, D. & Vales, L. D. Chromatin domains rich in inheritance. Science 361, 33–34 (2018).

    CAS  PubMed  Google Scholar 

  114. Laugesen, A., Højfeldt, J. W. & Helin, K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol. Cell 74, 8–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Oksuz, O. et al. Capturing the onset of PRC2-mediated repressive domain formation. Mol. Cell 70, 1149–1162.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Poepsel, S., Kasinath, V. & Nogales, E. Cryo-EM structures of PRC2 simultaneously engaged with two functionally distinct nucleosomes. Nat. Struct. Mol. Biol. 25, 154–162 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Højfeldt, J. W. et al. Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2. Nat. Struct. Mol. Biol. 25, 225–232 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Wang, X. & Moazed, D. DNA sequence-dependent epigenetic inheritance of gene silencing and histone H3K9 methylation. Science 356, 88–91 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yu, R., Wang, X. & Moazed, D. Epigenetic inheritance mediated by coupling of RNAi and histone H3K9 methylation. Nature 558, 615–619 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Howe, F. S., Fischl, H., Murray, S. C. & Mellor, J. Is H3K4me3 instructive for transcription activation? BioEssays 39, 1–12 (2017).

    CAS  PubMed  Google Scholar 

  121. Hörmanseder, E. et al. H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell 21, 135–143.e6 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Lauberth, S. M. et al. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152, 1021–1036 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Thomas, L. R. et al. Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol. Cell 58, 440–452 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Cano-Rodriguez, D. et al. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat. Commun. 7, 12284 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Flury, V. et al. The histone acetyltransferase Mst2 protects active chromatin from epigenetic silencing by acetylating the ubiquitin ligase Brl1. Mol. Cell 67, 294–307.e9 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  127. Liu, L., Michowski, W., Kolodziejczyk, A. & Sicinski, P. The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat. Cell Biol. 21, 1060–1067 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Larson, A. G. & Narlikar, G. J. The role of phase separation in heterochromatin formation, function, and regulation. Biochemistry 57, 2540–2548 (2018).

    CAS  PubMed  Google Scholar 

  129. Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

    CAS  PubMed  Google Scholar 

  130. Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wooten, M. et al. Asymmetric histone inheritance via strand-specific incorporation and biased replication fork movement. Nat. Struct. Mol. Biol. 26, 732–743 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ishiuchi, T. et al. Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat. Struct. Mol. Biol. 22, 662–671 (2015).

    CAS  PubMed  Google Scholar 

  133. Cheloufi, S. et al. The histone chaperone CAF-1 safeguards somatic cell identity. Nature 528, 218–224 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Song, Y. et al. CAF-1 is essential for Drosophila development and involved in the maintenance of epigenetic memory. Dev. Biol. 311, 213–222 (2007).

    CAS  PubMed  Google Scholar 

  135. Nakano, S., Stillman, B. & Horvitz, H. R. Replication-coupled chromatin assembly generates a neuronal bilateral asymmetry in C. elegans. Cell 147, 1525–1536 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Volk, A. et al. A CHAF1B-dependent molecular switch in hematopoiesis and leukemia pathogenesis. Cancer Cell 34, 707–723.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Cheng, L. et al. Chromatin assembly factor 1 (CAF-1) facilitates the establishment of facultative heterochromatin during pluripotency exit. Nucleic Acids Res. 47, 11114–11131 (2019).

    PubMed  PubMed Central  Google Scholar 

  138. Yadav, T., Quivy, J.-P. & Almouzni, G. Chromatin plasticity: a versatile landscape that underlies cell fate and identity. Science 361, 1332–1336 (2018).

    CAS  PubMed  Google Scholar 

  139. Yu, C. et al. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol. Cell 56, 551–563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Xu, C. & Corces, V. G. Nascent DNA methylome mapping reveals inheritance of hemimethylation at CTCF/cohesin sites. Science 359, 1166–1170 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Xu, C. & Corces, V. G. Genome-wide mapping of protein-DNA interactions on nascent chromatin. Methods Mol. Biol. 1766, 231–238 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Charlton, J. et al. Global delay in nascent strand DNA methylation. Nat. Struct. Mol. Biol. 25, 327–332 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Smith, D. J., Yadav, T. & Whitehouse, I. Detection and sequencing of Okazaki fragments in S. cerevisiae. Methods Mol. Biol. 1300, 141–153 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.R.S.-M. is supported by a postdoctoral fellowship from the Lundbeck Foundation and a Marie Curie Individual Fellowship (MSCA-IF-2016 no. 747332). Research in the Groth laboratory is supported by the Lundbeck Foundation (R198-2015-269), the European Research Council (ERC CoG no. 724436), Independent Research Fund Denmark (7016-00042B; 4092-00404B), the Novo Nordisk Foundation (NNF14CC0001; NNF14OC0012839), the NEYE foundation and the Danish Cancer Society.

Author information

Authors and Affiliations

Authors

Contributions

K.R.S.-M., N.P. and A.G. conceived, prepared figures for and wrote the manuscript.

Corresponding author

Correspondence to Anja Groth.

Ethics declarations

Competing Interests

A.G. is CSO and co-founder of Ankrin Therapeutics.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart-Morgan, K.R., Petryk, N. & Groth, A. Chromatin replication and epigenetic cell memory. Nat Cell Biol 22, 361–371 (2020). https://doi.org/10.1038/s41556-020-0487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-020-0487-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing