Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Integrin activation by talin, kindlin and mechanical forces

Abstract

Integrins are the major family of adhesion molecules that mediate cell adhesion to the extracellular matrix. They are essential for embryonic development and influence numerous diseases, including inflammation, cancer cell invasion and metastasis. In this Perspective, we discuss the current understanding of how talin, kindlin and mechanical forces regulate integrin affinity and avidity, and how integrin inactivators function in this framework.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Models of integrin activation and integrin–ligand bond strengthening.
Fig. 2: Integrin clustering regulated by glycocalyx and cortial actin.
Fig. 3: A model of how force controls modalities of integrin clustering.

Similar content being viewed by others

References

  1. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    CAS  PubMed  Google Scholar 

  2. Campbell, I. D. & Humphries, M. J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 3, a004994 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. Luo, B. H., Carman, C. V. & Springer, T. A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhu, J., Zhu, J. & Springer, T. A. Complete integrin headpiece opening in eight steps. J. Cell Biol. 201, 1053–1068 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lefort, C. T. et al. Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood 119, 4275–4282 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, J. et al. Conformational equilibria and intrinsic affinities define integrin activation. EMBO J. 36, 629–645 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun, Z., Guo, S. S. & Fassler, R. Integrin-mediated mechanotransduction. J. Cell Biol. 215, 445–456 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Winograd-Katz, S. E., Fassler, R., Geiger, B. & Legate, K. R. The integrin adhesome: from genes and proteins to human disease. Nat. Rev. Mol. Cell Biol. 15, 273–288 (2014).

    CAS  PubMed  Google Scholar 

  9. Elosegui-Artola, A., Trepat, X. & Roca-Cusachs, P. Control of mechanotransduction by molecular clutch dynamics. Trends Cell Biol. 28, 356–367 (2018).

    CAS  PubMed  Google Scholar 

  10. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shroff, H. et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl Acad. Sci. USA 104, 20308–20313 (2007).

    CAS  PubMed  Google Scholar 

  12. Spiess, M. et al. Active and inactive β1 integrins segregate into distinct nanoclusters in focal adhesions. J. Cell Biol. 217, 1929–1940 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, Z. et al. Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation. Nat. Cell Biol. 18, 941–953 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yao, M. et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4, 4610 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, J. et al. Mechanism of focal adhesion kinase mechanosensing. PLoS Comput. Biol. 11, e1004593 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Schoen, I., Pruitt, B. L. & Vogel, V. The yin–yang of rigidity sensing: how forces and mechanical properties regulate the cellular response to materials. Annu. Rev. Mater. Res. 43, 589–618 (2013).

    CAS  Google Scholar 

  18. Su, Y. et al. Relating conformation to function in integrin α5β1. Proc. Natl Acad. Sci. USA 113, E3872–E3881 (2016).

    CAS  PubMed  Google Scholar 

  19. Li, J. & Springer, T. A. Energy landscape differences among integrins establish the framework for understanding activation. J. Cell Biol. 217, 397–412 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, J. & Springer, T. A. Integrin extension enables ultrasensitive regulation by cytoskeletal force. Proc. Natl Acad. Sci. USA 114, 4685–4690 (2017).

    CAS  PubMed  Google Scholar 

  21. Theodosiou, M. et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. eLife 5, e10130 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Calderwood, D. A., Campbell, I. D. & Critchley, D. R. Talins and kindlins: partners in integrin-mediated adhesion. Nat. Rev. Mol. Cell Biol. 14, 503–517 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lagarrigue, F., Kim, C. & Ginsberg, M. H. The Rap1–RIAM–talin axis of integrin activation and blood cell function. Blood 128, 479–487 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ye, F. et al. Recreation of the terminal events in physiological integrin activation. J. Cell Biol. 188, 157–173 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, X. et al. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat. Cell Biol. 10, 1062–1068 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Austen, K. et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597–1606 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rognoni, E., Ruppert, R. & Fassler, R. The kindlin family: functions, signaling properties and implications for human disease. J. Cell Sci. 129, 17–27 (2016).

    CAS  PubMed  Google Scholar 

  28. Fukuda, K. et al. Molecular basis of kindlin-2 binding to integrin-linked kinase pseudokinase for regulating cell adhesion. J. Biol. Chem. 289, 28363–28375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bottcher, R. T. et al. Kindlin-2 recruits paxillin and Arp2/3 to promote membrane protrusions during initial cell spreading. J. Cell Biol. 216, 3785–3798 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Qadota, H., Moerman, D. G. & Benian, G. M. A molecular mechanism for the requirement of PAT-4 (integrin-linked kinase (ILK)) for the localization of UNC-112 (kindlin) to integrin adhesion sites. J. Biol. Chem. 287, 28537–28551 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, H. et al. Structural basis of kindlin-mediated integrin recognition and activation. Proc. Natl Acad. Sci. USA 114, 9349–9354 (2017).

    CAS  PubMed  Google Scholar 

  32. Bledzka, K. et al. Kindlin-2 directly binds actin and regulates integrin outside-in signaling. J. Cell Biol. 213, 97–108 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, C., Ye, F. & Ginsberg, M. H. Regulation of integrin activation. Annu. Rev. Cell Dev. Biol. 27, 321–345 (2011).

    CAS  PubMed  Google Scholar 

  34. Moser, M., Legate, K. R., Zent, R. & Fassler, R. The tail of integrins, talin, and kindlins. Science 324, 895–899 (2009).

    CAS  PubMed  Google Scholar 

  35. Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11, 288–300 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rossier, O. et al. Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat. Cell Biol. 14, 1057–1067 (2012).

    CAS  PubMed  Google Scholar 

  37. Anthis, N. J., Wegener, K. L., Critchley, D. R. & Campbell, I. D. Structural diversity in integrin/talin interactions. Structure 18, 1654–1666 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nordenfelt, P. et al. Direction of actin flow dictates integrin LFA-1 orientation during leukocyte migration. Nat. Commun. 8, 2047 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Moore, T. I., Aaron, J., Chew, T. L. & Springer, T. A. Measuring integrin conformational change on the cell surface with super-resolution microscopy. Cell Rep. 22, 1903–1912 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bharadwaj, M. et al. αV-Class integrins exert dual roles on α5β1 integrins to strengthen adhesion to fibronectin. Nat. Commun. 8, 14348 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, S. et al. Integrin α4β7 switches its ligand specificity via distinct conformer-specific activation. J. Cell Biol. 217, 2799–2812 (2018).

    CAS  PubMed  Google Scholar 

  42. Sun, H. et al. Distinct chemokine signaling regulates integrin ligand specificity to dictate tissue-specific lymphocyte homing. Dev. Cell 30, 61–70 (2014).

    CAS  PubMed  Google Scholar 

  43. Hogg, N., Patzak, I. & Willenbrock, F. The insider’s guide to leukocyte integrin signalling and function. Nat. Rev. Immunol. 11, 416–426 (2011).

    CAS  PubMed  Google Scholar 

  44. Shamri, R. et al. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat. Immunol. 6, 497–506 (2005).

    CAS  PubMed  Google Scholar 

  45. Chang, A. C. et al. Single molecule force measurements in living cells reveal a minimally tensioned integrin state. ACS Nano 10, 10745–10752 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y., Ge, C., Zhu, C. & Salaita, K. DNA-based digital tension probes reveal integrin forces during early cell adhesion. Nat. Commun. 5, 5167 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, D. L., Bax, N. A., Buckley, C. D., Weis, W. I. & Dunn, A. R. Vinculin forms a directionally asymmetric catch bond with F-actin. Science 357, 703–706 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kong, F., Garcia, A. J., Mould, A. P., Humphries, M. J. & Zhu, C. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185, 1275–1284 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rosetti, F. et al. A lupus-associated Mac-1 variant has defects in integrin allostery and interaction with ligands under force. Cell Rep. 10, P1655–P1664 (2015).

    Google Scholar 

  50. Chen, W., Lou, J. & Zhu, C. Forcing switch from short- to intermediate- and long-lived states of the αA domain generates LFA-1/ICAM-1 catch bonds. J. Biol. Chem. 285, 35967–35978 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Benito-Jardon, M. et al. The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes. eLife 6, e22264 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Strohmeyer, N., Bharadwaj, M., Costell, M., Fassler, R. & Muller, D. J. Fibronectin-bound α5β1 integrins sense load and signal to reinforce adhesion in less than a second. Nat. Mater. 16, 1262–1270 (2017).

    CAS  PubMed  Google Scholar 

  53. Friedland, J. C., Lee, M. H. & Boettiger, D. Mechanically activated integrin switch controls α5β1 function. Science 323, 642–644 (2009).

    CAS  PubMed  Google Scholar 

  54. Tsunoyama, T. A. et al. Super-long single-molecule tracking reveals dynamic-anchorage-induced integrin function. Nat. Chem. Biol. 14, 497–506 (2018).

    CAS  PubMed  Google Scholar 

  55. Oakes, P. W. et al. Lamellipodium is a myosin-independent mechanosensor. Proc. Natl Acad. Sci. USA 115, 2646–2651 (2018).

    CAS  PubMed  Google Scholar 

  56. Guilluy, C. et al. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat. Cell Biol. 13, 722–727 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. Schiller, H. B. et al. β1- and αV-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat. Cell Biol. 15, 625–636 (2013).

    CAS  PubMed  Google Scholar 

  58. Gunawan, M. et al. The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin. Nat. Immunol. 16, 505–516 (2015).

    CAS  PubMed  Google Scholar 

  59. Zacharchenko, T. et al. LD motif recognition by talin: structure of the talin–DLC1 complex. Structure 24, 1130–1141 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, G. et al. Full activity of the deleted in liver cancer 1 (DLC1) tumor suppressor depends on an LD-like motif that binds talin and focal adhesion kinase (FAK). Proc. Natl Acad. Sci. USA 108, 17129–17134 (2011).

    CAS  PubMed  Google Scholar 

  61. Ostrowski, P. P., Grinstein, S. & Freeman, S. A. Diffusion barriers, mechanical forces, and the biophysics of phagocytosis. Dev. Cell 38, 135–146 (2016).

    CAS  PubMed  Google Scholar 

  62. Kusumi, A. et al. Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson’s fluid-mosaic model. Annu. Rev. Cell Dev. Biol. 28, 215–250 (2012).

    CAS  PubMed  Google Scholar 

  63. Springer, T. A. Adhesion receptors of the immune system. Nature 346, 425–434 (1990).

    CAS  PubMed  Google Scholar 

  64. Freeman, S. A. et al. Transmembrane pickets connect cyto- and pericellular skeletons forming barriers to receptor engagement. Cell 172, 305–317.e10 (2018).

    CAS  PubMed  Google Scholar 

  65. Cojoc, D. et al. Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components. PLoS ONE 2, e1072 (2007).

    PubMed  PubMed Central  Google Scholar 

  66. Labernadie, A. et al. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nat. Commun. 5, 5343 (2014).

    CAS  PubMed  Google Scholar 

  67. Bachir, A. I. et al. Integrin-associated complexes form hierarchically with variable stoichiometry in nascent adhesions. Curr. Biol. 24, 1845–1853 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Paszek, M. J., Boettiger, D., Weaver, V. M. & Hammer, D. A. Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLoS Comput. Biol. 5, e1000604 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. Paszek, M. J. et al. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511, 319–325 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cavalcanti-Adam, E. A. et al. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 92, 2964–2974 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Oria, R. et al. Force loading explains spatial sensing of ligands by cells. Nature 552, 219–224 (2017).

    CAS  PubMed  Google Scholar 

  72. Liu, J. et al. Talin determines the nanoscale architecture of focal adhesions. Proc. Natl Acad. Sci. USA 112, E4864–E4873 (2015).

    CAS  PubMed  Google Scholar 

  73. Bouvard, D., Pouwels, J., De Franceschi, N. & Ivaska, J. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat. Rev. Mol. Cell Biol. 14, 430–442 (2013).

    PubMed  Google Scholar 

  74. Rantala, J. K. et al. SHARPIN is an endogenous inhibitor of β1-integrin activation. Nat. Cell Biol. 13, 1315–1324 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lilja, J. et al. SHANK proteins limit integrin activation by directly interacting with Rap1 and R-Ras. Nat. Cell Biol. 19, 292–305 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pouwels, J. et al. SHARPIN regulates uropod detachment in migrating lymphocytes. Cell Rep. 5, 619–628 (2013).

    CAS  PubMed  Google Scholar 

  77. Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).

    CAS  PubMed  Google Scholar 

  78. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Seymour, R. E. et al. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun. 8, 416–421 (2007).

    CAS  PubMed  Google Scholar 

  80. Rickard, J. A. et al. TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. eLife 3, e03464 (2014).

    PubMed Central  Google Scholar 

  81. Kumari, S. et al. Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis. eLife 3, e03422 (2014).

    PubMed Central  Google Scholar 

  82. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    CAS  PubMed  Google Scholar 

  83. Nastase, M. V. et al. An essential role for SHARPIN in the regulation of caspase 1 activity in sepsis. Am. J. Pathol. 186, 1206–1220 (2016).

    CAS  PubMed  Google Scholar 

  84. Peuhu, E. et al. Integrin β1 inhibition alleviates the chronic hyperproliferative dermatitis phenotype of SHARPIN-deficient mice. PLoS ONE 12, e0186628 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Fehon, R. G., McClatchey, A. I. & Bretscher, A. Organizing the cell cortex: the role of ERM proteins. Nat. Rev. Mol. Cell Biol. 11, 276–287 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Prentice-Mott, H. V. et al. Directional memory arises from long-lived cytoskeletal asymmetries in polarized chemotactic cells. Proc. Natl Acad. Sci. USA 113, 1267–1272 (2016).

    CAS  PubMed  Google Scholar 

  87. Vitorino, P. et al. MAP4K4 regulates integrin–FERM binding to control endothelial cell motility. Nature 519, 425–430 (2015).

    CAS  PubMed  Google Scholar 

  88. Elliott, P. R. et al. The structure of the talin head reveals a novel extended conformation of the FERM domain. Structure 18, 1289–1299 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mori, T. et al. Structural basis for CD44 recognition by ERM proteins. J. Biol. Chem. 283, 29602–29612 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Sonneberg for carefully reading the manuscript. The Fässler lab is funded by the ERC, Deutsche Forschungsgesellschaft (SFB-863), Munich Heart Alliance (DZHK) and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqi Sun, Mercedes Costell or Reinhard Fässler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Costell, M. & Fässler, R. Integrin activation by talin, kindlin and mechanical forces. Nat Cell Biol 21, 25–31 (2019). https://doi.org/10.1038/s41556-018-0234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-018-0234-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing