Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanoreciprocity in cell migration

Abstract

Cell migration is an adaptive process that depends on and responds to physical and molecular triggers. Moving cells sense and respond to tissue mechanics and induce transient or permanent tissue modifications, including extracellular matrix stiffening, compression and deformation, protein unfolding, proteolytic remodelling and jamming transitions. Here we discuss how the bi-directional relationship of cell–tissue interactions (mechanoreciprocity) allows cells to change position and contributes to single-cell and collective movement, structural and molecular tissue organization, and cell fate decisions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical ECM modules determining cell migration.
Fig. 2: Mechanical cell modules in cell migration.
Fig. 3: Cellular and molecular mechanoreciprocity in tissue regeneration and disease.

Similar content being viewed by others

References

  1. Gardel, M. L., Schneider, I. C., Aratyn-Schaus, Y. & Waterman, C. M. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol. 26, 315–333 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Charras, G. & Sahai, E. Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 15, 813–824 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. te Boekhorst, V., Preziosi, L. & Friedl, P. Plasticity of cell migration in vivo and in silico. Annu. Rev. Cell Dev. Biol. 32, 491–526 (2016).

    Article  CAS  Google Scholar 

  4. Bornstein, P., McPherson, J. & Sage, H. in Pathobiology of the Endothelial Cell (eds Nossel, H. & Vogel, H.) 215–228 (Academic Press, New York, 1982).

  5. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Friedl, P. & Alexander, S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147, 992–1009 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Paul, C. D., Hung, W.-C., Wirtz, D. & Konstantopoulos, K. Engineered models of confined cell migration. Annu. Rev. Biomed. Eng. 18, 159–180 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Almeida, P. G., Pinheiro, G. G., Nunes, A. M., Gonçalves, A. B. & Thorsteinsdóttir, S. Fibronectin assembly during early embryo development: a versatile communication system between cells and tissues. Dev. Dyn. 245, 520–535 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. Paszek, M. J. & Weaver, V. M. The tension mounts: mechanics meets morphogenesis and malignancy. J. Mammary Gland Biol. Neoplasia 9, 325–342 (2004).

    Article  PubMed  Google Scholar 

  10. Plotnikov, S. V., Pasapera, A. M., Sabass, B. & Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513–1527 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Hoffman, B. D., Grashoff, C. & Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10, 469–475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Doyle, A. D., Carvajal, N., Jin, A., Matsumoto, K. & Yamada, K. M. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nat. Commun. 6, 8720 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Park, J. S. et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials 32, 3921–3930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wolf, K. et al. Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20, 931–941 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cicchi, R. et al. From molecular structure to tissue architecture: collagen organization probed by SHG microscopy. J. Biophotonics 6, 129–142 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Dondossola, E. et al. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 1, 0007 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Provenzano, P. P. et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6, 11 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ilina, O., Bakker, G.-J., Vasaturo, A., Hoffman, R. M. & Friedl, P. Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion. Phys. Biol. 8, 029501 (2011).

    Article  Google Scholar 

  21. Weigelin, B., Bakker, G.-J. & Friedl, P. Intravital third harmonic generation microscopy of collective melanoma cell invasion. IntraVital 1, 32–43 (2012).

    Article  Google Scholar 

  22. Grossman, M. et al. Tumor cell invasion can be blocked by modulators of collagen fibril alignment that control assembly of the extracellular matrix. Cancer Res. 76, 4249–4258 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Maytin, E. V. Hyaluronan: more than just a wrinkle filler. Glycobiology 26, 553–559 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu, X., Margadant, F., Yao, M. & Sheetz, M. Molecular stretching modulates mechanosensing pathways. Protein Sci. 26, 1337–1351 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Houk, A. R. et al. Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148, 175–188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ridley, A. J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 16, 522–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Beningo, K. A., Hamao, K., Dembo, M., Wang, Y. & Hosoya, H. Traction forces of fibroblasts are regulated by the Rho-dependent kinase but not by the myosin light chain kinase. Arch. Biochem. Biophys. 456, 224–231 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Blanchoin, L., Boujemaa-Paterski, R., Sykes, C. & Plastino, J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94, 235–263 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Kronenberg, N. M. et al. Long-term imaging of cellular forces with high precision by elastic resonator interference stress microscopy. Nat. Cell Biol. 19, 864–872 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. McClatchey, A. I. ERM proteins at a glance. J. Cell Sci. 127, 3199–3204 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mellad, J. A., Warren, D. T. & Shanahan, C. M. Nesprins LINC the nucleus and cytoskeleton. Curr. Opin. Cell Biol. 23, 47–54 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Miyoshi, J. & Takai, Y. Molecular perspective on tight-junction assembly and epithelial polarity. Adv. Drug Deliv. Rev. 57, 815–855 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Case, L. B. & Waterman, C. M. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat. Cell Biol. 17, 955–963 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Mitchison, T. & Kirschner, M. Cytoskeletal dynamics and nerve growth. Neuron 1, 761–772 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Ray, A. et al. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration. Nat. Commun. 8, 14923 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1185 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).

    Article  PubMed  CAS  Google Scholar 

  39. Gehler, S. et al. Filamin A–β1 integrin complex tunes epithelial cell response to matrix tension. Mol. Biol. Cell 20, 3224–3238 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Starke, J., Wehrle-Haller, B. & Friedl, P. Plasticity of the actin cytoskeleton in response to extracellular matrix nanostructure and dimensionality. Biochem. Soc. Trans. 42, 1356–1366 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Sun, X. et al. Asymmetric nanotopography biases cytoskeletal dynamics and promotes unidirectional cell guidance. Proc. Natl Acad. Sci. USA 112, 12557–1562 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hall, M. S. et al. Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc. Natl Acad. Sci. USA 113, 14043–14048 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Solon, J., Levental, I., Sengupta, K., Georges, P. C. & Janmey, P. A. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93, 4453–4461 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moon, J. J. et al. Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction. J. Cell. Physiol. 203, 166–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Maruthamuthu, V., Sabass, B., Schwarz, U. S. & Gardel, M. L. Cell–ECM traction force modulates endogenous tension at cell–cell contacts. Proc. Natl Acad. Sci. USA 108, 4708–4713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McGregor, A. L., Hsia, C. R. & Lammerding, J. Squish and squeeze — the nucleus as a physical barrier during migration in confined environments. Curr. Opin. Cell Biol. 40, 32–40 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khatau, S. B. et al. A perinuclear actin cap regulates nuclear shape. Proc. Natl Acad. Sci. USA 106, 19017–19022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Harada, T. et al. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204, 669–682 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rowat, A. C. et al. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J. Biol. Chem. 288, 8610–8618 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Derenyi, I., Julicher, F. & Prost, J. Formation and interaction of membrane tubes. Phys. Rev. Lett. 88, 238101 (2002).

    Article  PubMed  CAS  Google Scholar 

  53. Fischer-Friedrich, E., Hyman, A. A., Jülicher, F., Müller, D. J. & Helenius, J. Quantification of surface tension and internal pressure generated by single mitotic cells. Sci. Rep. 4, 6213 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mueller, J. et al. Load adaptation of lamellipodial actin networks. Cell 171, 188–200 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Diz-Muñoz, A. et al. Membrane tension acts through PLD2 and mTORC2 to limit actin network assembly during neutrophil migration. PLoS Biol. 14, e1002474 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Raucher, D. & Sheetz, M. P. Cell spreading and lamellipodial extension rate is regulated by membrane tension. J. Cell Biol. 148, 127–136 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Petrie, R. J., Gavara, N., Chadwick, R. S. & Yamada, K. M. Nonpolarized signaling reveals two distinct modes of 3D cell migration. J. Cell Biol. 197, 439–455 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stroka, K. M. et al. Water permeation drives tumor cell migration in confined microenvironments. Cell 157, 611–623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Petrie, R. J., Koo, H. & Yamada, K. M. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345, 1062–1065 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lämmermann, T. & Sixt, M. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 21, 636–644 (2009).

    Article  PubMed  CAS  Google Scholar 

  61. Álvarez-González, B. et al. Three-dimensional balance of cortical tension and axial contractility enables fast amoeboid migration. Biophys. J. 108, 821–832 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lämmermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    Article  PubMed  CAS  Google Scholar 

  63. Yip, A. K., Chiam, K.-H. & Matsudaira, P. Traction stress analysis and modeling reveal that amoeboid migration in confined spaces is accompanied by expansive forces and requires the structural integrity of the membrane–cortex interactions. Integr. Biol. 7, 1196–1211 (2015).

    Article  CAS  Google Scholar 

  64. Gjorevski, N., Piotrowski, A. S., Varner, V. D. & Nelson, C. M. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Sci. Rep. 5, 11458 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. van Helvert, S. & Friedl, P. Strain stiffening of fibrillar collagen during individual and collective cell migration identified by AFM nanoindentation. ACS Appl. Mater. Interfaces 8, 21946–21955 (2016).

    Article  PubMed  CAS  Google Scholar 

  66. Jannat, R. A., Dembo, M. & Hammer, D. A. Traction forces of neutrophils migrating on compliant substrates. Biophys. J. 101, 575–584 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reinhart-King, C. A., Dembo, M. & Hammer, D. A. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89, 676–689 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Undyala, V. V. et al. The calpain small subunit regulates cell–substrate mechanical interactions during fibroblast migration. J. Cell Sci. 121, 3581–3588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Renkawitz, J. et al. Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol. 11, 1438–1443 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Sanz-Moreno, V. et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 135, 510–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Ehrbar, M. et al. Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys. J. 100, 284–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hegerfeldt, Y., Tusch, M., Bröcker, E. B. & Friedl, P. Collective cell movement in primary melanoma explants: plasticity of cell–cell interaction, β1-integrin function, and migration strategies. Cancer Res. 62, 2125–2130 (2002).

    CAS  PubMed  Google Scholar 

  73. Matthes, T. & Gruler, H. Analysis of cell locomotion. Contact guidance of human polymorphonuclear leukocytes. Eur. Biophys. J. 15, 343–357 (1988).

    Article  CAS  PubMed  Google Scholar 

  74. Kubow, K. E., Conrad, S. K. & Horwitz, A. R. Matrix microarchitecture and myosin II determine adhesion in 3D matrices. Curr. Biol. 23, 1607–1619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dickinson, R. B., Guido, S. & Tranquillo, R. T. Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann. Biomed. Eng. 22, 342–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Driscoll, M. K., Sun, X., Guven, C., Fourkas, J. T. & Losert, W. Cellular contact guidance through dynamic sensing of nanotopography. ACS Nano 8, 3546–3555 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Gopal, S. et al. Fibronectin-guided migration of carcinoma collectives. Nat. Commun. 8, 14105 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kubow, K. E., Shuklis, V. D., Sales, D. J. & Horwitz, A. R. Contact guidance persists under myosin inhibition due to the local alignment of adhesions and individual protrusions. Sci. Rep. 7, 14380 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wolf, K., Müller, R., Borgmann, S., Bröcker, E. B. & Friedl, P. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102, 3262–3269 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Haeger, A., Krause, M., Wolf, K. & Friedl, P. Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim. Biophys. Acta 1840, 2386–2395 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Nam, K.-H. et al. Multiscale cues drive collective cell migration. Sci. Rep. 6, 29749 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vincent, L. G., Choi, Y. S., Alonso-Latorre, B., del Álamo, J. C. & Engler, A. J. Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol. J. 8, 472–484 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sunyer, R. et al. Collective cell durotaxis emerges from long-range intercellular force transmission. Science 353, 1157–1161 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Elosegui-Artola, A. et al. Rigidity sensing and adaptation through regulation of integrin types. Nat. Mater. 13, 631–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Paszek, M. J., Boettiger, D., Weaver, V. M. & Hammer, D. A. Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLoS Comput. Biol. 5, e1000604 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Weber, M. et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339, 328–332 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. McCarthy, J. B. & Furcht, L. T. Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. J. Cell Biol. 98, 1474–1480 (1984).

    Article  CAS  PubMed  Google Scholar 

  89. Johnson, H. E. et al. F-actin bundles direct the initiation and orientation of lamellipodia through adhesion-based signaling. J. Cell Biol. 208, 443–455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu, C. et al. Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148, 973–987 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Autenrieth, T. J. et al. Actomyosin contractility and RhoGTPases affect cell-polarity and directional migration during haptotaxis. Integr. Biol. 8, 1067–1078 (2016).

    Article  CAS  Google Scholar 

  92. Painter, K. J. Modelling cell migration strategies in the extracellular matrix. J. Math. Biol. 58, 511–543 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Schlüter, D. K. & Ramis-Conde, I. & Chaplain, M. A. J. Computational modeling of single-cell migration: the leading role of extracellular matrix fibers. Biophys. J. 103, 1141–1151 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Schwarz, U. S. & Safran, S. A. Physics of adherent cells. Rev. Mod. Phys. 85, 1327 (2013).

    Article  CAS  Google Scholar 

  95. Mogilner, A. & Keren, K. The shape of motile cells. Curr. Biol. 19, R762–R771 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Novikova, E. A., Raab, M., Discher, D. E. & Storm, C. Persistence-driven durotaxis: generic, directed motility in rigidity gradients. Phys. Rev. Lett. 118, 078103 (2015).

    Article  Google Scholar 

  97. He, X. & Jiang, Y. Substrate curvature regulates cell migration. Phys. Biol. 14, 35006 (2017).

    Article  Google Scholar 

  98. Szabó, A. & Merks, R. M. H. Cellular Potts modeling of tumor growth, tumor invasion, and tumor evolution. Front. Oncol. 3, 87 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. van Hecke, M. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Matter 22, 033101 (2010).

    Article  PubMed  CAS  Google Scholar 

  100. Bi, D., Lopez, J. H., Schwarz, J. M. & Manning, M. L. A density-independent rigidity transition in biological tissues. Nat. Phys. 11, 1074–1079 (2015).

    Article  CAS  Google Scholar 

  101. Park, J.-A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14, 1040–1048 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Scianna, M., Preziosi, L. & Wolf, K. A cellular Potts model simulating cell migration on and in matrix environments. Math. Biosci. Eng. 10, 235–261 (2013).

    Article  PubMed  Google Scholar 

  103. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Schneider, K. R. Britton, N. F.: Reaction-diffusion equations and their application to biology. Academic Press, London 1986, 277 S., $ 65.–. Biometrical J. 31, 720 (1989).

  105. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Carey, S. P. et al. Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK. Integr. Biol. 8, 821–835 (2016).

    Article  CAS  Google Scholar 

  107. Oudin, M. J. et al. Tumor cell-driven extracellular matrix remodeling drives haptotaxis during metastatic progression. Cancer Discov. 6, 516–531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Page-McCaw, A., Ewald, A. J. & Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8, 221–233 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cox, T. R. & Erler, J. T. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Model. Mech. 4, 165–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim, J. et al. Stress-induced plasticity of dynamic collagen networks. Nat. Commun. 8, 842 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9, 893–904 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Kirmse, R., Otto, H. & Ludwig, T. Interdependency of cell adhesion, force generation and extracellular proteolysis in matrix remodeling. J. Cell Sci. 124, 1857–1866 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Stratman, A. N. et al. Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood 114, 237–247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kelley, L. C., Lohmer, L. L., Hagedorn, E. J. & Sherwood, D. R. Traversing the basement membrane in vivo: a diversity of strategies. J. Cell Biol. 204, 291–302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Glentis, A. et al. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat. Commun. 8, 924 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Seano, G. et al. Endothelial podosome rosettes regulate vascular branching in tumour angiogenesis. Nat. Cell Biol. 16, 931–941 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kong, F., Garcia, A. J., Mould, A. P., Humphries, M. J. & Zhu, C. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185, 1275–1284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Guo, B. & Guilford, W. H. Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction. Proc. Natl Acad. Sci. USA 103, 9844–9849 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Buckley, C. D. et al. The minimal cadherin–catenin complex binds to actin filaments under force. Science 346, 1254211 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Klotzsch, E. et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl Acad. Sci. USA 106, 18267–18272 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dong, X. et al. Force interacts with macromolecular structure in activation of TGF-β. Nature 542, 55–59 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Buscemi, L. et al. The single-molecule mechanics of the latent TGF-β1 complex. Curr. Biol. 21, 2046–2054 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Klingberg, F. et al. Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. J. Cell Biol. 207, 283–297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hinz, B. The role of myofibroblasts in wound healing. Curr. Res. Transl. Med. 64, 171–177 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Hotary, K. B. et al. Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and -independent processes. J. Exp. Med. 195, 295–308 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Koivisto, L., Heino, J., Häkkinen, L. & Larjava, H. Integrins in wound healing. Adv. Wound Care 3, 762–783 (2014).

    Article  Google Scholar 

  131. Mohammadi, H. et al. Filamin A mediates wound closure by promoting elastic deformation and maintenance of tension in the collagen matrix. J. Invest. Dermatol. 135, 2852–2861 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Laurens, N. et al. Single and combined effects of αvβ3- and α5β1-integrins on capillary tube formation in a human fibrinous matrix. Angiogenesis 12, 275–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Du, Y. et al. Three-dimensional characterization of mechanical interactions between endothelial cells and extracellular matrix during angiogenic sprouting. Sci. Rep. 6, 21362 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yana, I. et al. Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J. Cell Sci. 120, 1607–1614 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Stratman, A. N., Malotte, K. M., Mahan, R. D., Davis, M. J. & Davis, G. E. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114, 5091–5101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lan, T. H., Huang, X. Q. & Tan, H. M. Vascular fibrosis in atherosclerosis. Cardiovasc. Pathol. 22, 401–407 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Oliveira, C. L. N., Bates, J. H. T. & Suki, B. A network model of correlated growth of tissue stiffening in pulmonary fibrosis. New J. Phys. 16, 065022 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sutcliffe, J. E. S. et al. Changes in the extracellular matrix surrounding human chronic wounds revealed by 2-photon imaging. Int. Wound J. 141225–1236 (2017).

  139. Odenthal, J., Takes, R. & Friedl, P. Plasticity of tumor cell invasion: governance by growth factors and cytokines. Carcinogenesis 37, 1117–1128 (2016).

    CAS  PubMed  Google Scholar 

  140. Alexander, N. R. et al. Extracellular matrix rigidity promotes invadopodia activity. Curr. Biol. 18, 1295–1299 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chang, T. T., Thakar, D. & Weaver, V. M. Force-dependent breaching of the basement membrane. Matrix Biol. 57–58, 178–189 (2017).

    Article  PubMed  CAS  Google Scholar 

  142. Goetz, J. G. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146, 148–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Loeffler, M., Krüger, J. A., Niethammer, A. G. & Reisfeld, R. A. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J. Clin. Invest. 116, 1955–1962 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nia, H. T. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 1, 0004 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ahmadzadeh, H. et al. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proc. Natl Acad. Sci. USA 114, E1617–E1626 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Barriga, E., Franze, K., Charras, G. & Mayor, R. How mechanics orchestrate morphogenesis: mesodermal stiffening triggers neural crest migration in vivo. Mech. Dev. 145, S46 (2017).

    Article  Google Scholar 

  148. Vennin, C. et al. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci. Transl. Med. 9, eaai8504 (2017).

    PubMed  Google Scholar 

  149. Miroshnikova, Y. A., Nava, M. M. & Wickstrom, S. A. Emerging roles of mechanical forces in chromatin regulation. J. Cell Sci. 130, 2243–2250 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Sadok, A. et al. Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res. 75, 2272–2284 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Hirata, E. et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 27, 574–588 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nilsson, M., Adamo, H., Bergh, A. & Halin Bergström, S. Inhibition of lysyl oxidase and lysyl oxidase-like enzymes has tumour-promoting and tumour-suppressing roles in experimental prostate cancer. Sci. Rep. 6, 19608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Couppé, C. et al. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J. Appl. Physiol. 107, 880–886 (2009).

    Article  PubMed  Google Scholar 

  154. Halfter, W. et al. New concepts in basement membrane biology. FEBS J. 282, 4466–4479 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Zioupos, P. & Currey, J. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22, 57–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Marshall, B. T. et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Cluzel, C. et al. The mechanisms and dynamics of αvβ3 integrin clustering in living cells. J. Cell Biol. 171, 383–392 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sabeh, F., Shimizu-Hirota, R. & Weiss, S. J. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J. Cell Biol. 185, 11–19 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Meehan, S. & Nain, A. S. Role of suspended fiber structural stiffness and curvature on single-cell migration, nucleus shape, and focal-adhesion-cluster length. Biophys. J. 107, 2604–2611 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Holmes, D. F. et al. Corneal collagen fibril structure in three dimensions: structural insights into fibril assembly, mechanical properties, and tissue organization. Proc. Natl Acad. Sci. USA 98, 7307–7312 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liliensiek, S. J., Nealey, P. & Murphy, C. J. Characterization of endothelial basement membrane nanotopography in rhesus macaque as a guide for vessel tissue engineering. Tissue Eng. Part A 15, 2643–2651 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pot, S. A. et al. Nanoscale topography-induced modulation of fundamental cell behaviors of rabbit corneal keratocytes, fibroblasts, and myofibroblasts. Investig. Ophthalmol. Vis. Sci. 51, 1373–1381 (2010).

    Article  Google Scholar 

  163. Nelson, C. M. et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. USA 102, 11594–11599 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hatami-Marbini, H., Etebu, E. & Rahimi, A. Swelling pressure and hydration behavior of porcine corneal stroma. Curr. Eye Res. 38, 1124–1132 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Majno, G., Palade, G. E. & Schoefl, G. I. Studies on inflammation. II. the site of action of histamine and serotonin along the vascular tree: a topographic study. J. Biophys. Biochem. Cytol. 11, 607–626 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Weninger, W., Biro, M. & Jain, R. Leukocyte migration in the interstitial space of non-lymphoid organs. Nat. Rev. Immunol. 14, 232–246 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Shields, J. D. et al. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11, 526–538 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Ingber, D. E., Wang, N. & Stamenović, D. Tensegrity, cellular biophysics, and the mechanics of living systems. Rep. Prog. Phys. 77, 46603 (2014).

    Article  CAS  Google Scholar 

  169. Swaminathan, V. et al. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71, 5075–5080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Broedersz, C. P. & MacKintosh, F. C. Modeling semiflexible polymer networks. Rev. Mod. Phys. 86, 995 (2014).

    Article  CAS  Google Scholar 

  171. Bischofs, I. B. & Schwarz, U. S. Cell organization in soft media due to active mechanosensing. Proc. Natl Acad. Sci. USA 100, 9274–9279 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kim, M. C., Whisler, J., Silberberg, Y. R., Kamm, R. D. & Asada, H. H. Cell Invasion dynamics into a three dimensional extracellular matrix fibre network. PLoS Comput. Biol. 11, e1004535 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. MacKintosh, F. C., Käs, J. & Janmey, P. A. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425–4428 (1995).

    Article  CAS  PubMed  Google Scholar 

  174. Gardel, M. L. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Mofrad, M. R. K. & Kamm, R. D. (eds) Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics Ch. 8 (Cambridge Univ. Press, Cambridge, 2006).

  176. Preziosi, L. & Vitale, G. A multiphase model of tumor and tissue growth including cell adhesion and plastic reorganization. Math. Model. Methods Appl. Sci. 21, 1901–1932 (2011).

    Article  CAS  Google Scholar 

  177. Ribeiro, F. O., Gómez-Benito, M. J., Folgado, J., Fernandes, P. R. & García-Aznar, J. M. Computational model of mesenchymal migration in 3D under chemotaxis. Comput. Methods Biomech. Biomed. Engin. 20, 59–74 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Chauvière, A., Preziosi, L. & Verdier, C. Cell Mechanics: from Single Scale-Based Models to Multiscale Modeling (CRC Press, Boca Raton, 2010).

  179. van Oers, R. F. M., Rens, E. G., LaValley, D. J., Reinhart-King, C. A. & Merks, R. M. H. Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro. PLoS Comput. Biol. 10, e1003774 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Zegers for proofreading the manuscript. The P.F. laboratory is supported by the European Research Council (617430-DEEPINSIGHT), NWO-Vici (918.11.626), Horizon 2020 consortium MULTIMOT (634107-2), the Cancer Genomics Center, (CGC.nl), NIH-U54 CA210184-01, the MD Anderson Cancer Center Moon Shot program and the Radboud Nanomedicine Alliance. C.S. was supported by funds from NWO-FOM (E1012M, E1009M, E1013M) and the TU/e Institute for Complex Molecular Systems.

Author information

Authors and Affiliations

Authors

Contributions

All authors prepared the figures and wrote the manuscript.

Corresponding author

Correspondence to Peter Friedl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Helvert, S., Storm, C. & Friedl, P. Mechanoreciprocity in cell migration. Nat Cell Biol 20, 8–20 (2018). https://doi.org/10.1038/s41556-017-0012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-017-0012-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing