Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis

Abstract

The non-random three-dimensional organization of genomes is critical for many cellular processes. Recently, analyses of genome-wide chromatin packing in the model dicot plant Arabidopsis thaliana have been reported1,2,3,4. At a kilobase scale, the A. thaliana chromatin interaction network is highly correlated with a range of genomic and epigenomic features1,2,3,4. Surprisingly, topologically associated domains (TADs), which appear to be a prevalent structural feature of genome packing in many animal species, are not prominent in the A. thaliana genome1,2,4,5,6. Using a genome-wide chromatin conformation capture approach, Hi-C (ref. 7), we report high-resolution chromatin packing patterns of another model plant, rice. We unveil new structural features of chromatin organization at both chromosomal and local levels compared to A. thaliana, with thousands of distinct TADs that cover about a quarter of the rice genome. The rice TAD boundaries are associated with euchromatic epigenetic marks and active gene expression, and enriched with a sequence motif that can be recognized by plant-specific TCP proteins. In addition, we report chromosome decondensation in rice seedlings undergoing cold stress, despite local chromatin packing patterns remaining largely unchanged. The substantial variation found already in a comparison of two plant species suggests that chromatin organization in plants might be more diverse than in multicellular animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chromosome packing in rice seedlings.
Fig. 2: Identification of rice TADs.
Fig. 3: Features at TAD boundaries.
Fig. 4: Chromatin packing patterns in cold-stressed plants.

Similar content being viewed by others

References

  1. Feng, S. et al. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell 55, 694–707 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grob, S., Schmid, M. W. & Grossniklaus, U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 55, 678–693 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, C. et al. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res. 26, 1057–1068 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, C. et al. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res. 25, 246–256 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nagano, T. et al. Comparison of Hi-C results using in-solution versus in-nucleus ligation. Genome Biol. 16, 175 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Fransz, P., De Jong, J. H., Lysak, M., Castiglione, M. R. & Schubert, I. Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc. Natl Acad. Sci. USA 99, 14584–14589 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, Y. et al. Euchromatic subdomains in rice centromeres are associated with genes and transcription. Plant Cell 23, 4054–4064 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Di Pierro, M., Zhang, B., Aiden, E. L., Wolynes, P. G. & Onuchic, J. N. Transferable model for chromosome architecture. Proc. Natl Acad. Sci. USA 113, 12168–12173 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Santos, A. P. & Shaw, P. Interphase chromosomes and the Rabl configuration: does genome size matter? J. Microsc. 214, 201–206 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Prieto, P., Santos, A. P., Moore, G. & Shaw, P. Chromosomes associate premeiotically and in xylem vessel cells via their telomeres and centromeres in diploid rice (Oryza sativa). Chromosoma 112, 300–307 (2004).

    Article  PubMed  Google Scholar 

  15. Dong, F. & Jiang, J. Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res. 6, 551–558 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Hou, C., Li, L., Qin, Z. S. & Corces, V. G. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 48, 471–484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Sexton, T. & Cavalli, G. The role of chromosome domains in shaping the functional genome. Cell 160, 1049–1059 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mizuguchi, T. et al. Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516, 432–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Le, T. B., Imakaev, M. V., Mirny, L. A. & Laub, M. T. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342, 731–734 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ulianov, S. V. et al. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res. 26, 70–84 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu, C. & Weigel, D. Chromatin in 3D: progress and prospects for plants. Genome Biol. 16, 170 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Danisman, S. et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol. 159, 1511–1523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kosugi, S. & Ohashi, Y. DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J. 30, 337–348 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. O’Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280–1292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ma, J. et al. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development. Sci. Rep. 6, 21535 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martin-Trillo, M. & Cubas, P. TCP genes: a family snapshot ten years later. Trends Plant Sci. 15, 31–39 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Yao, X., Ma, H., Wang, J. & Zhang, D. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. J. Integr. Plant Biol. 49, 885–897 (2007).

    Article  CAS  Google Scholar 

  33. Li, S. The Arabidopsis thaliana TCP transcription factors: a broadening horizon beyond development. Plant Signal. Behav. 10, e1044192 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Probst, A. V. & Mittelsten Scheid, O. Stress-induced structural changes in plant chromatin. Curr. Opin. Plant Biol. 27, 8–16 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Rosa, S. & Shaw, P. Insights into chromatin structure and dynamics in plants. Biology 2, 1378–1410 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yaffe, E. & Tanay, A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet. 43, 1059–1065 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Servant, N. et al. HiTC: exploration of high-throughput ‘C’ experiments. Bioinformatics 28, 2843–2844 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heathcote, A. Fitting wald and ex-Wald distributions to response time data: an example using functions for the S-PLUS package. Behav. Res. Methods Instrum. Comput. 36, 678–694 (2004).

    Article  PubMed  Google Scholar 

  40. Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, W. et al. High-resolution mapping of open chromatin in the rice genome. Genome Res. 22, 151–162 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. He, Y. et al. MEIOTIC F-BOX is essential for male meiotic DNA double-strand break repair in rice. Plant Cell 28, 1879–1893 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feng, C. M., Qiu, Y., Van Buskirk, E. K., Yang, E. J. & Chen, M. Light-regulated gene repositioning in Arabidopsis. Nat. Commun. 5, 3027 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Wegel, E., Koumproglou, R., Shaw, P. & Osbourn, A. Cell type-specific chromatin decondensation of a metabolic gene cluster in oats. Plant Cell 21, 3926–3936 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He, G. et al. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22, 17–33 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fang, Y. et al. Functional characterization of open chromatin in bidirectional promoters of rice. Sci. Rep. 6, 32088 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, K. et al. Differential deposition of H2A.Z in combination with histone modifications within related genes in Oryza sativa callus and seedling. Plant J. 89, 264–277 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Stroud, H. et al. Plants regenerated from tissue culture contain stable epigenome changes in rice. eL ife 2, e00354 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Lanz and K. Fritschi for assistance with sequencing. We thank X. Gao and Y. He for their assistance in microscopy. We thank members of the Liu and Weigel laboratories for critical review and comments on the manuscript. This work was supported by Marie Curie Fellowship PIIF-GA-2012-327608 (C.L.), Deutsche Forschungsgemeinschaft LI 2862/1 (C.L.), a grant from the DFG Collaborative Research Center SFB1101 (D.W.) and the Max Planck Society (D.W.).

Author information

Authors and Affiliations

Authors

Contributions

C.L. and D.W. conceived and designed the experiments. Y.C. and J.W. performed FISH experiments. CL performed the Hi-C and RNA-seq experiments. C.L. and D.W. analysed and interpreted the data and wrote the paper.

Corresponding authors

Correspondence to Chang Liu or Detlef Weigel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–11, Supplementary Tables 3 and 5, Supplementary References.

Supplementary Table 1

Statistics of Hi-C reads.

Supplementary Table 2

TADs identified in the rice genome.

Supplementary Table 4

RNA-seq analyses.

Supplementary Table 6

DI and HMM-state of rice chromatin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Cheng, YJ., Wang, JW. et al. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis . Nature Plants 3, 742–748 (2017). https://doi.org/10.1038/s41477-017-0005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-017-0005-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research