Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

SMURF1, a promoter of tumor cell progression?

Abstract

Overexpression of HECT-type E3 ubiquitin ligase SMURF1 is correlated with poor prognosis in patients with various cancers, such as glioblastoma, colon cancer, and clear cell renal cell carcinoma. SMURF1 acts as a tumor promoter by ubiquitination modification and/or degradation of tumor-suppressing proteins. Combined treatment of Smurf1 knockdown with rapamycin showed collaborative antitumor effects in mice. This review described the role of HECT, WW, and C2 domains in regulating SMURF1 substrate selection. We summarized up to date SMURF1 substrates regulating different type cell signaling, thus, accelerating tumor progression, invasion, and metastasis. Furthermore, the downregulation of SMURF1 expression, inhibition of its E3 activity and regulation of its specificity to substrates prevent tumor progression. The potential application of SMURF1 regulators, specifically, wisely choose certain drugs by blocking SMURF1 selectivity in tumor suppressors, to develop novel anticancer treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulators and substrates of SMURF1.
Fig. 2: SMURF1 related antitumor drugs.

Similar content being viewed by others

References

  1. Chen C, Matesic LE. The Nedd4-like family of E3 ubiquitin ligases and cancer. Cancer Metastasis Rev. 2007;26:587–604.

    CAS  PubMed  Google Scholar 

  2. Shao G, Wang R, Sun A, Wei J, Peng K, Dai Q, et al. The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells. Mol Cancer. 2018;17:24.

    PubMed  PubMed Central  Google Scholar 

  3. Fukushima T, Yoshihara H, Furuta H, Hakuno F, Iemura SI, Natsume T, et al. USP15 attenuates IGF-I signaling by antagonizing Nedd4-induced IRS-2 ubiquitination. Biochem Biophys Res Commun. 2017;484:522–8.

    CAS  PubMed  Google Scholar 

  4. Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z, et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell. 2007;128:129–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou Y, Tao F, Cheng Y, Xu F, Yao F, Feng D, et al. Up-regulation of ITCH is associated with down-regulation of LATS1 during tumorigenesis and progression of cervical squamous cell carcinoma. Clin Invest Med Med Clin et Exp. 2014;37:E384–94.

    CAS  Google Scholar 

  6. Zhang Q, Huang AZ, Shen FJ, Yu JP, Qin CZ. [WWP1 promotes cell proliferation in hepatocellular carcinoma through ubiquitin-degradation EI24]. Zhonghua zhong liu za zhi [Chin J Oncol]. 2020;42:203–9.

    CAS  Google Scholar 

  7. Shimazu J, Wei J, Karsenty G. Smurf1 inhibits osteoblast differentiation, bone formation, and glucose homeostasis through Serine 148. Cell Rep. 2016;15:27–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao Y, Zhang L. A Smurf1 tale: function and regulation of an ubiquitin ligase in multiple cellular networks. Cell Mol Life Sci. 2013;70:2305–17.

    CAS  PubMed  Google Scholar 

  9. Khammanivong A, Gopalakrishnan R, Dickerson EB. SMURF1 silencing diminishes a CD44-high cancer stem cell-like population in head and neck squamous cell carcinoma. Mol Cancer. 2014;13:260.

    PubMed  PubMed Central  Google Scholar 

  10. Kwei KA, Shain AH, Bair R, Montgomery K, Karikari CA, van de Rijn M, et al. SMURF1 amplification promotes invasiveness in pancreatic cancer. PLoS ONE. 2011;6:e23924.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GHA. SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 1999;400:687–93.

    CAS  PubMed  Google Scholar 

  12. Feng X, Jia Y, Zhang Y, Ma F, Zhu Y, Hong X, et al. Ubiquitination of UVRAG by SMURF1 promotes autophagosome maturation and inhibits hepatocellular carcinoma growth. Autophagy. 2019;15:1130–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Critchley DR. Smurf1 zaps the talin head. Nat Cell Biol. 2009;11:538–40.

    CAS  PubMed  Google Scholar 

  14. Huang C, Rajfur Z, Yousefi N, Chen Z, Jacobson K, Ginsberg MH. Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nat Cell Biol. 2009;11:624–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei X, Wang X, Zhan J, Chen Y, Fang W, Zhang L, et al. Smurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation. J Cell Biol. 2017;216:1455–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Boyer L, Turchi L, Desnues B, Doye A, Ponzio G, Mege JL, et al. CNF1-induced ubiquitylation and proteasome destruction of activated RhoA is impaired in Smurf1-/- cells. Mol Biol Cell. 2006;17:2489–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science. 2003;302:1775–9.

    CAS  PubMed  Google Scholar 

  18. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 2005;307:1603–9.

    CAS  PubMed  Google Scholar 

  19. Townsend TA, Robinson JY, Deig CR, Hill CR, Misfeldt A, Blobe GC, et al. BMP-2 and TGFbeta2 shared pathways regulate endocardial cell transformation. Cells Tissues Organs. 2011;194:1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Townsend TA, Wrana JL, Davis GE, Barnett JV. Transforming growth factor-beta-stimulated endocardial cell transformation is dependent on Par6c regulation of RhoA. J Biol Chem. 2008;283:13834–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vohra BP, Fu M, Heuckeroth RO. Protein kinase Czeta and glycogen synthase kinase-3beta control neuronal polarity in developing rodent enteric neurons, whereas SMAD specific E3 ubiquitin protein ligase 1 promotes neurite growth but does not influence polarity. J Neurosci. 2007;27:9458–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng PL, Lu H, Shelly M, Gao H, Poo MM. Phosphorylation of E3 ligase Smurf1 switches its substrate preference in support of axon development. Neuron. 2011;69:231–43.

    CAS  PubMed  Google Scholar 

  23. Bryan B, Cai Y, Wrighton K, Wu G, Feng XH, Liu M. Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth. FEBS Lett. 2005;579:1015–9.

    CAS  PubMed  Google Scholar 

  24. Chang H, Zhang J, Miao Z, Ding Y, Xu X, Zhao X, et al. Suppression of the Smurf1 expression inhibits tumor progression in gliomas. Cell Mol Neurobiol. 2018;38:421–30.

    CAS  PubMed  Google Scholar 

  25. Lu L, Wu M, Lu Y, Zhao Z, Liu T, Fu W, et al. MicroRNA-424 regulates cisplatin resistance of gastric cancer by targeting SMURF1 based on GEO database and primary validation in human gastric cancer tissues. Onco Targets Ther. 2019;12:7623–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tao Y, Sun C, Zhang T, Song Y. SMURF1 promotes the proliferation, migration and invasion of gastric cancer cells. Oncol Rep. 2017;38:1806–14.

    CAS  PubMed  Google Scholar 

  27. Xie P, Zhang M, He S, Lu K, Chen Y, Xing G, et al. The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat Commun. 2014;5:3733.

    CAS  PubMed  Google Scholar 

  28. Ke M, Mo L, Li W, Zhang X, Li F, Yu H. Ubiquitin ligase SMURF1 functions as a prognostic marker and promotes growth and metastasis of clear cell renal cell carcinoma. FEBS Open Bio. 2017;7:577–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nie J, Liu L, Wu M, Xing G, He S, Yin Y, et al. HECT ubiquitin ligase Smurf1 targets the tumor suppressor ING2 for ubiquitination and degradation. FEBS Lett. 2010;584:3005–12.

    CAS  PubMed  Google Scholar 

  30. Yang H, Yu N, Xu J, Ding X, Deng W, Wu G, et al. SMURF1 facilitates estrogen receptor a signaling in breast cancer cells. J Exp Clin Cancer Res. 2018;37:24.

    PubMed  PubMed Central  Google Scholar 

  31. Stiess M, Bradke F. Controlled demolition: Smurf1 regulates neuronal polarity by substrate switching. Neuron. 2011;69:183–5.

    CAS  PubMed  Google Scholar 

  32. Zarrinpar A, Lim WA. Converging on proline: the mechanism of WW domain peptide recognition. Nat Struct Biol. 2000;7:611–3.

    CAS  PubMed  Google Scholar 

  33. Macias MJ, Gervais V, Civera C, Oschkinat H. Structural analysis of WW domains and design of a WW prototype. Nat Struct Biol. 2000;7:375–9.

    CAS  PubMed  Google Scholar 

  34. Li S, Lu K, Wang J, An L, Yang G, Chen H. et al. Ubiquitin ligase Smurf1 targets TRAF family proteins for ubiquitination and degradation. Mol Cell Biochem. 2010;338:11–7.

    CAS  PubMed  Google Scholar 

  35. Ma X, Wang D, Li N, Gao P, Zhang M, Zhang Y. Hippo kinase NDR2 inhibits IL-17 signaling by promoting Smurf1-mediated MEKK2 ubiquitination and degradation. Mol Immunol. 2019;105:131–6.

    CAS  PubMed  Google Scholar 

  36. Kanelis V, Farrow NA, Kay LE, Rotin D, Forman-Kay JD. NMR studies of tandem WW domains of Nedd4 in complex with a PY motif-containing region of the epithelial sodium channel. Biochem Cell Biol=Biochim Biol Cell. 1998;76:341–50.

    CAS  Google Scholar 

  37. Huang X, Poy F, Zhang R, Joachimiak A, Sudol M, Eck MJ. Structure of a WW domain containing fragment of dystrophin in complex with beta-dystroglycan. Nat Struct Biol. 2000;7:634–8.

    CAS  PubMed  Google Scholar 

  38. Verdecia MA, Bowman ME, Lu KP, Hunter T, Noel JP. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol. 2000;7:639–43.

    CAS  PubMed  Google Scholar 

  39. Kanelis V, Rotin D, Forman-Kay JD. Solution structure of a Nedd4 WW domain-ENaC peptide complex. Nat Struct Biol. 2001;8:407–12.

    CAS  PubMed  Google Scholar 

  40. Pires JR, Taha-Nejad F, Toepert F, Ast T, Hoffmüller U, Schneider-Mergener J, et al. Solution structures of the YAP65 WW domain and the variant L30 K in complex with the peptides GTPPPPYTVG, N-(n-octyl)-GPPPY and PLPPY and the application of peptide libraries reveal a minimal binding epitope. J Mol Biol. 2001;314:1147–56.

    CAS  PubMed  Google Scholar 

  41. Aragón E, Goerner N, Zaromytidou AI, Xi Q, Escobedo A, Massagué J, et al. A Smad action turnover switch operated by WW domain readers of a phosphoserine code. Genes Dev. 2011;25:1275–88.

    PubMed  PubMed Central  Google Scholar 

  42. Lu PJ, Zhou XZ, Shen M, Lu KP. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science. 1999;283:1325–8.

    CAS  PubMed  Google Scholar 

  43. Qiu L, Joazeiro C, Fang N, Wang HY, Elly C, Altman Y, et al. Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase. J Biol Chem. 2000;275:35734–7.

    CAS  PubMed  Google Scholar 

  44. Courbard JR, Fiore F, Adelaide J, Borg JP, Birnbaum D, Ollendorff V. Interaction between two ubiquitin-protein isopeptide ligases of different classes, CBLC and AIP4/ITCH. J Biol Chem. 2002;277:45267–75.

    CAS  PubMed  Google Scholar 

  45. Murillas R, Simms KS, Hatakeyama S, Weissman AM, Kuehn MR. Identification of developmentally expressed proteins that functionally interact with Nedd4 ubiquitin ligase. J Biol Chem. 2002;277:2897–907.

    CAS  PubMed  Google Scholar 

  46. Nie J, Xie P, Liu L, Xing G, Chang Z, Yin Y, et al. Smad ubiquitylation regulatory factor 1/2 (Smurf1/2) promotes p53 degradation by stabilizing the E3 ligase MDM2. J Biol Chem. 2010;285:22818–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Scott JL, Frick CT, Johnson KA, Liu H, Yong SS, Varney AG, et al. Molecular analysis of membrane targeting by the C2 domain of the E3 ubiquitin ligase Smurf1. Biomolecules. 2020;10:229. https://doi.org/10.3390/biom10020229.

  48. Yamaguchi K, Ohara O, Ando A, Nagase T. Smurf1 directly targets hPEM-2, a GEF for Cdc42, via a novel combination of protein interaction modules in the ubiquitin-proteasome pathway. Biol Chem. 2008;389:405–13.

    CAS  PubMed  Google Scholar 

  49. Tian M, Bai C, Lin Q, Lin H, Liu M, Ding F, et al. Binding of RhoA by the C2 domain of E3 ligase Smurf1 is essential for Smurf1-regulated RhoA ubiquitination and cell protrusive activity. FEBS Lett. 2011;585:2199–204.

    CAS  PubMed  Google Scholar 

  50. Lu K, Li P, Zhang M, Xing G, Li X, Zhou W, et al. Pivotal role of the C2 domain of the Smurf1 ubiquitin ligase in substrate selection. J Biol Chem. 2011;286:16861–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.

    CAS  PubMed  Google Scholar 

  52. Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M, Alessi DR. Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochemical J. 2008;411:249–60.

    CAS  Google Scholar 

  53. Huang H, Jeon MS, Liao L, Yang C, Elly C, Yates JR 3rd, et al. K33-linked polyubiquitination of T cell receptor-zeta regulates proteolysis-independent T cell signaling. Immunity. 2010;33:60–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Plow EF, Qin J, Byzova T. Kindling the flame of integrin activation and function with kindlins. Curr Opin Hematol. 2009;16:323–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lai-Cheong JE, Parsons M, McGrath JA. The role of kindlins in cell biology and relevance to human disease. Int J Biochem Cell Biol. 2010;42:595–603.

    CAS  PubMed  Google Scholar 

  56. Montanez E, Ussar S, Schifferer M, Bosl M, Zent R, Moser M, et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 2008;22:1325–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Meves A, Stremmel C, Gottschalk K, Fassler R. The Kindlin protein family: new members to the club of focal adhesion proteins. Trends Cell Biol. 2009;19:504–13.

    CAS  PubMed  Google Scholar 

  58. Narimatsu M, Bose R, Pye M, Zhang L, Miller B, Ching P, et al. Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell. 2009;137:295–307.

    CAS  PubMed  Google Scholar 

  59. Hong-Rui W, Yue Z, Barish O, Ogunjimi AA, Evguenia A, Thomsen GH, et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science. 2003;302:1775–9.

    Google Scholar 

  60. Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci USA. 2001;98:974–9.

    CAS  PubMed  Google Scholar 

  61. Lee YS, Park JS, Kim JH, Jung SM, Lee JY, Kim S-J, et al. Smad6-specific recruitment of Smurf E3 ligases mediates TGF-β1-induced degradation of MyD88 in TLR4 signalling. Nat Commun. 2011;2:460.

    PubMed  Google Scholar 

  62. Xia Q, Zhang H, Zhang P, Li Y, Xu M, Li X, et al. Oncogenic Smurf1 promotes PTEN wild-type glioblastoma growth by mediating PTEN ubiquitylation. Oncogene. 2020;39:5902–15.

    CAS  PubMed  Google Scholar 

  63. Lee WS, Yoo WH, Chae HJ. ER stress and autophagy. Curr Mol Med. 2015;15:735–45.

    CAS  PubMed  Google Scholar 

  64. Guo X, Shen S, Song S, He S, Cui Y, Xing G, et al. The E3 ligase Smurf1 regulates Wolfram syndrome protein stability at the endoplasmic reticulum. J Biol Chem. 2011;286:18037–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Fei C, He X, Xie S, Miao H, Zhou Z, Li L. Smurf1-mediated axin ubiquitination requires Smurf1 C2 domain and is cell cycle-dependent. J Biol Chem. 2014;289:14170–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wei R, Guo J, Li M, Yang X, Zhu R, Huang H, et al. Smurf1 controls S phase progression and tumorigenesis through Wee1 degradation. FEBS Lett. 2017;591:1150–8.

    CAS  PubMed  Google Scholar 

  67. Penas C, Ramachandran V, Simanski S, Lee C, Madoux F, Rahaim RJ, et al. Casein kinase 1delta-dependent Wee1 protein degradation. J Biol Chem. 2014;289:18893–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Moren A, Imamura T, Miyazono K, Heldin CH, Moustakas A. Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J Biol Chem. 2005;280:22115–23.

    CAS  PubMed  Google Scholar 

  69. Sangadala S, Metpally RP, Reddy BV. Molecular interaction between Smurf1 WW2 domain and PPXY motifs of Smad1, Smad5, and Smad6-modeling and analysis. J Biomol Struct Dyn. 2007;25:11–23.

    CAS  PubMed  Google Scholar 

  70. Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem. 2010;147:35–51.

    CAS  PubMed  Google Scholar 

  71. Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem. 2001;276:12477–80.

    CAS  PubMed  Google Scholar 

  72. Murakami G, Watabe T, Takaoka K, Miyazono K, Imamura T. Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol Biol Cell. 2003;14:2809–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen Y, Huang Q, Liu W, Zhu Q, Cui CP, Xu L, et al. Mutually exclusive acetylation and ubiquitylation of the splicing factor SRSF5 control tumor growth. Nat Commun. 2018;9:2464.

    PubMed  PubMed Central  Google Scholar 

  74. Yu H, Li D, Zhou P, Li W. Smurf1-positive expression indicates favorable survival for resected non-small cell lung cancer patients. Int J Clin Exp Pathol. 2018;11:399–405.

    PubMed  PubMed Central  Google Scholar 

  75. Xu S, Tong M, Huang J, Zhang Y, Qiao Y, Weng W, et al. TRIB2 inhibits Wnt/beta-Catenin/TCF4 signaling through its associated ubiquitin E3 ligases, beta-TrCP, COP1 and Smurf1, in liver cancer cells. FEBS Lett. 2014;588:4334–41.

    CAS  PubMed  Google Scholar 

  76. Wang J, Park JS, Wei Y, Rajurkar M, Cotton JL, Fan Q, et al. TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPalpha function. Mol Cell. 2013;51:211–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Keeshan K, Bailis W, Dedhia PH, Vega ME, Shestova O, Xu L, et al. Transformation by Tribbles homolog 2 (Trib2) requires both the Trib2 kinase domain and COP1 binding. Blood. 2010;116:4948–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang M, Guo L, Wu Q, Zeng T, Lin Q, Qiao Y, et al. ATR/Chk1/Smurf1 pathway determines cell fate after DNA damage by controlling RhoB abundance. Nat Commun. 2014;5:4901.

    CAS  PubMed  Google Scholar 

  79. Dahlem C, Barghash A, Puchas P, Haybaeck J, Kessler SM. The insulin-like growth factor 2 mRNA binding protein IMP2/IGF2BP2 is overexpressed and correlates with poor survival in pancreatic cancer. Int J Mol Sci. 2019;20:3204. https://doi.org/10.3390/ijms20133204.

  80. Fukunaga E, Inoue Y, Komiya S, Horiguchi K, Goto K, Saitoh M, et al. Smurf2 induces ubiquitin-dependent degradation of Smurf1 to prevent migration of breast cancer cells. J Biol Chem. 2008;283:35660–7.

    CAS  PubMed  Google Scholar 

  81. Fan X, Wang Y, Fan J, Chen R. Deletion of SMURF 1 represses ovarian cancer invasion and EMT by modulating the DAB2IP/AKT/Skp2 feedback loop. J Cell Biochem. 2019;120:10643–51.

    CAS  PubMed  Google Scholar 

  82. Wang W, Du H, Liu H, Hu F, Liu G. SMAD specific E3 ubiquitin protein ligase 1 promotes ovarian cancer cell migration and invasion via the activation of the RhoA/ROCK signaling pathway. Oncol Rep. 2019;41:668–76.

    CAS  PubMed  Google Scholar 

  83. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29:212–26.

    CAS  PubMed  Google Scholar 

  84. Yeung KT, Yang J. Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol. 2017;11:28–39.

    PubMed  Google Scholar 

  85. Wu Q, Li G, Wen C, Zeng T, Fan Y, Liu C, et al. Monoubiquitination of p120-catenin is essential for TGFbeta-induced epithelial-mesenchymal transition and tumor metastasis. Sci Adv. 2020;6:eaay9819.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhan F, Zhong Y, Qin Y, Li L, Wu W, Yao M. SND1 facilitates the invasion and migration of cervical cancer cells by Smurf1-mediated degradation of FOXA2. Exp Cell Res. 2020;388:111809.

    CAS  PubMed  Google Scholar 

  87. Yan C, Su H, Song X, Cao H, Kong L, Cui W. Smad ubiquitination regulatory factor 1 (Smurf1) promotes thyroid cancer cell proliferation and migration via ubiquitin-dependent degradation of Kisspeptin-1. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol. 2018;49:2047–59.

    CAS  Google Scholar 

  88. Sahai E, Garcia-Medina R, Pouysségur J, Vial E. Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J Cell Biol. 2007;176:35–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Koganti P, Levy-Cohen G, Blank M. Smurfs in protein homeostasis, signaling, and cancer. Front Oncol. 2018;8:295.

    PubMed  PubMed Central  Google Scholar 

  90. Yu L, Liu X, Cui K, Di Y, Xin L, Sun X, et al. SND1 acts downstream of TGFβ1 and upstream of Smurf1 to promote breast cancer metastasis. Cancer Res. 2015;75:1275–86.

    CAS  PubMed  Google Scholar 

  91. Chen X, Chen S, Li Y, Gao Y, Huang S, Li H, et al. SMURF1-mediated ubiquitination of ARHGAP26 promotes ovarian cancer cell invasion and migration. Exp Mol Med. 2019;51:1–12.

    PubMed  Google Scholar 

  92. Yamashita M, Ying SX, Zhang GM, Li C, Cheng SY, Deng CX, et al. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell. 2005;121:101–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lin X, Liang M, Feng XH. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem. 2000;275:36818–22.

    CAS  PubMed  Google Scholar 

  94. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000;6:1365–75.

    CAS  PubMed  Google Scholar 

  95. Zhao M, Qiao M, Oyajobi BO, Mundy GR, Chen D. E3 ubiquitin ligase Smurf1 mediates core-binding factor alpha1/Runx2 degradation and plays a specific role in osteoblast differentiation. J Biol Chem. 2003;278:27939–44.

    CAS  PubMed  Google Scholar 

  96. Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ, et al. Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J Biol Chem. 2004;279:29409–17.

    CAS  PubMed  Google Scholar 

  97. Izzi L, Attisano L. Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene. 2004;23:2071–8.

    CAS  PubMed  Google Scholar 

  98. Manikoth Ayyathan D, Koganti P, Marcu-Malina V, Litmanovitch T, Trakhtenbrot L, Emanuelli A, et al. SMURF2 prevents detrimental changes to chromatin, protecting human dermal fibroblasts from chromosomal instability and tumorigenesis. Oncogene. 2020;39:3396–410.

    CAS  PubMed  Google Scholar 

  99. Blank M, Tang Y, Yamashita M, Burkett SS, Cheng SY, Zhang YE. A tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20. Nat Med. 2012;18:227–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tan Y, Chen Y, Du M, Peng Z, Xie P. USF2 inhibits the transcriptional activity of Smurf1 and Smurf2 to promote breast cancer tumorigenesis. Cell Signal. 2019;53:49–58.

    CAS  PubMed  Google Scholar 

  101. Sato Y, Heuckeroth RO. Retinoic acid regulates murine enteric nervous system precursor proliferation, enhances neuronal precursor differentiation, and reduces neurite growth in vitro. Dev Biol. 2008;320:185–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Panchenko MP, Siddiquee Z, Dombkowski DM, Alekseyev YO, Lenburg ME, Walker JD, et al. Protein kinase CK1alphaLS promotes vascular cell proliferation and intimal hyperplasia. Am J Pathol. 2010;177:1562–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kwon A, Lee HL, Woo KM, Ryoo HM, Baek JH. SMURF1 plays a role in EGF-induced breast cancer cell migration and invasion. Mol Cell. 2013;36:548–55.

    CAS  Google Scholar 

  104. Gang X, Wang G, Huang H. Androgens regulate SMAD ubiquitination regulatory factor-1 expression and prostate cancer cell invasion. Prostate. 2015;75:561–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen P, Zhao D, Li J, Liang X, Li J, Chang A, et al. Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-Null glioma. Cancer Cell. 2019;35:868–884.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Xu S, Hui L, Yang N, Wang Y, Zhao N, Jiang XJ. Upregulation of microRNA‑194‑5p inhibits hypopharyngeal carcinoma cell proliferation, migration and invasion by targeting SMURF1 via the mTOR signaling pathway. Int J Oncol. 2019;54:1245–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Li T, Xing Y, Yang F, Sun Y, Zhang S, Wang Q, et al. LncRNA SNHG3 sponges miR-577 to up-regulate SMURF1 expression in prostate cancer. Cancer Med. 2020;9:3852–62. https://doi.org/10.1002/cam4.2992. Epub 2020 Apr 5.

  108. Jiang M, Shi L, Yang C, Ge Y, Lin L, Fan H, et al. miR-1254 inhibits cell proliferation, migration, and invasion by down-regulating Smurf1 in gastric cancer. Cell Death Dis. 2019;10:32.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bian S. miR-4319 inhibited the development of thyroid cancer by modulating FUS-stabilized SMURF1. J Cell Biochem. 2020;121:174–82.

    CAS  PubMed  Google Scholar 

  110. Liu J, Chen Y, Huang Q, Liu W, Ji X, Hu F, et al. IRAK2 counterbalances oncogenic Smurf1 in colon cancer cells by dictating ER stress. Cell Signal. 2018;48:69–80.

    CAS  PubMed  Google Scholar 

  111. Chan MC, Nguyen PH, Davis BN, Ohoka N, Hayashi H, Du K, et al. A novel regulatory mechanism of the bone morphogenetic protein (BMP) signaling pathway involving the carboxyl-terminal tail domain of BMP type II receptor. Mol Cell Biol. 2007;27:5776–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Cui Y, He S, Xing C, Lu K, Wang J, Xing G, et al. SCFFBXL(1)(5) regulates BMP signalling by directing the degradation of HECT-type ubiquitin ligase Smurf1. EMBO J. 2011;30:2675–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Nie J, Wu M, Wang J, Xing G, He F, Zhang L. REGgamma proteasome mediates degradation of the ubiquitin ligase Smurf1. FEBS Lett. 2010;584:3021–7.

    CAS  PubMed  Google Scholar 

  114. Kannan M, Lee SJ, Schwedhelm-Domeyer N, Stegmüller J. The E3 ligase Cdh1-anaphase promoting complex operates upstream of the E3 ligase Smurf1 in the control of axon growth. Development. 2012;139:3600–12.

    CAS  PubMed  Google Scholar 

  115. Lu K, Yin X, Weng T, Xi S, Li L, Xing G, et al. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1. Nat Cell Biol. 2008;10:994–1002.

    CAS  PubMed  Google Scholar 

  116. Nie J, Liu L, Xing G, Zhang M, Wei R, Guo M, et al. CKIP-1 acts as a colonic tumor suppressor by repressing oncogenic Smurf1 synthesis and promoting Smurf1 autodegradation. Oncogene. 2014;33:3677–87.

    CAS  PubMed  Google Scholar 

  117. Wan L, Zou W, Gao D, Inuzuka H, Fukushima H, Berg AH, et al. Cdh1 regulates osteoblast function through an APC/C-independent modulation of Smurf1. Mol Cell. 2011;44:721–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ji CD, Wang YX, Xiang DF, Liu Q, Zhou ZH, Qian F, et al. Kir2.1 interaction with Stk38 promotes invasion and metastasis of human gastric cancer by enhancing MEKK2-MEK1/2-ERK1/2 signaling. Cancer Res. 2018;78:3041–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Seo D, Jung SM, Park JS, Lee J, Ha J, Kim M, et al. The deubiquitinating enzyme PSMD14 facilitates tumor growth and chemoresistance through stabilizing the ALK2 receptor in the initiation of BMP6 signaling pathway. EBioMedicine. 2019;49:55–71.

    PubMed  PubMed Central  Google Scholar 

  120. Chen YL, Liu B, Zhou ZN, Hu RY, Fei C, Xie ZH, et al. Smad6 inhibits the transcriptional activity of Tbx6 by mediating its degradation. J Biol Chem. 2009;284:23481–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Jiao J, Zhang R, Li Z, Yin Y, Fang X, Ding X, et al. Nuclear Smad6 promotes gliomagenesis by negatively regulating PIAS3-mediated STAT3 inhibition. Nat Commun. 2018;9:2504.

    PubMed  PubMed Central  Google Scholar 

  122. Wang Z, Wang J, Li X, Xing L, Ding Y, Shi P, et al. Bortezomib prevents oncogenesis and bone metastasis of prostate cancer by inhibiting WWP1, Smurf1 and Smurf2. Int J Oncol. 2014;45:1469–78.

    CAS  PubMed  Google Scholar 

  123. Cao Y, Wang C, Zhang X, Xing G, Lu K, Gu Y, et al. Selective small molecule compounds increase BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Sci Rep. 2014;4:4965.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu L, Zheng W, Song Y, Du X, Tang Y, Nie J, et al. miRNA-497 enhances the sensitivity of colorectal cancer cells to neoadjuvant chemotherapeutic drug. Curr Protein Pept Sci. 2015;16:310–5.

    CAS  PubMed  Google Scholar 

  125. Lin H, Lin Q, Liu M, Lin Y, Wang X, Chen H, et al. PKA/Smurf1 signaling-mediated stabilization of Nur77 is required for anticancer drug cisplatin-induced apoptosis. Oncogene. 2014;33:1629–39.

    CAS  PubMed  Google Scholar 

  126. Churcher I. Protac-induced protein degradation in drug discovery: breaking the rules or just making new ones? J Med Chem. 2018;61:444–52.

    CAS  PubMed  Google Scholar 

  127. Neklesa TK, Winkler JD, Crews CM. Targeted protein degradation by PROTACs. Pharmacol Therapeut. 2017;174:138–44.

    CAS  Google Scholar 

  128. Smith BE, Wang SL, Jaime-Figueroa S, Harbin A, Wang J, Hamman BD, et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun. 2019;10:131.

    PubMed  PubMed Central  Google Scholar 

  129. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA. 2001;98:8554–9.

    CAS  PubMed  Google Scholar 

  130. Tian M, Zeng T, Liu M, Han S, Lin H, Lin Q, et al. A cell-based high-throughput screening method based on a ubiquitin-reference technique for identifying modulators of E3 ligases. J Biol Chem. 2019;294:2880–91.

    CAS  PubMed  Google Scholar 

  131. Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE, et al. Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem. 2006;281:4326–33.

    CAS  PubMed  Google Scholar 

  132. Choi SH, Seo GY, Nam EH, Jeon SH, Kim HA, Park JB, et al. Opposing effects of Arkadia and Smurf on TGFbeta1-induced IgA isotype expression. Mol Cell. 2007;24:283–7.

    CAS  Google Scholar 

  133. Fei C, Li Z, Li C, Chen Y, Chen Z, He X, et al. Smurf1-mediated Lys29-linked nonproteolytic polyubiquitination of axin negatively regulates Wnt/beta-catenin signaling. Mol Cell Biol. 2013;33:4095–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang X, Jin C, Tang Y, Tang LY, Zhang YE. Ubiquitination of tumor necrosis factor receptor-associated factor 4 (TRAF4) by Smad ubiquitination regulatory factor 1 (Smurf1) regulates motility of breast epithelial and cancer cells. J Biol Chem. 2013;288:21784–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang L, Liu J, Qian L, Feng Q, Wang X, Yuan Y, et al. Induction of OTUD1 by RNA viruses potently inhibits innate immune responses by promoting degradation of the MAVS/TRAF3/TRAF6 signalosome. PLoS Pathog. 2018;14:e1007067.

    PubMed  PubMed Central  Google Scholar 

  136. Li Z, Li L, Zhang H, Zhou HJ, Ji W, Min W. Short AIP1 (ASK1-Interacting Protein-1) isoform localizes to the mitochondria and promotes vascular dysfunction. Arterioscler Thromb Vasc Biol. 2020;40:112–27.

    CAS  PubMed  Google Scholar 

  137. Wang J, Zhang Y, Weng W, Qiao Y, Ma L, Xiao W, et al. Impaired phosphorylation and ubiquitination by p70 S6 kinase (p70S6K) and Smad ubiquitination regulatory factor 1 (Smurf1) promote tribbles homolog 2 (TRIB2) stability and carcinogenic property in liver cancer. J Biol Chem. 2013;288:33667–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Li X, Dai X, Wan L, Inuzuka H, North BJ. Smurf1 regulation of DAB2IP controls cell proliferation and migration. Oncotarget. 2014;7:26057–69.

    Google Scholar 

  139. Yuan C, Qi J, Zhao X, Gao C. Smurf1 protein negatively regulates interferon-? signaling through promoting STAT1 protein ubiquitination and degradation. J Biol Chem. 2012;287:17006–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Xie P, Tang Y, Shen S, Wang Y, Xing G, Yin Y, et al. Smurf1 ubiquitin ligase targets Kruppel-like factor KLF2 for ubiquitination and degradation in human lung cancer H1299 cells. Biochem Biophys Res Commun. 2011;407:254–9.

    CAS  PubMed  Google Scholar 

  141. Shu L, Zhang H, Boyce BF, Xing L. Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration. J Bone Min Res. 2013;28:1925–35.

    CAS  Google Scholar 

  142. Li H, Xiao N, Wang Y, Wang R, Chen Y, Pan W, et al. Smurf1 regulates lung cancer cell growth and migration through interaction with and ubiquitination of PIPKIγ. Oncogene. 2017;36:5668–80.

    CAS  PubMed  Google Scholar 

  143. Liu Y, Liu W, Hu C, Xue Z, Wang G, Ding B, et al. MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis. Stem Cells. 2011;29:1804–16.

    CAS  PubMed  Google Scholar 

  144. Liu W, Qi M, Konermann A, Zhang L, Jin F, Jin Y. The p53/miR-17/Smurf1 pathway mediates skeletal deformities in an age-related model via inhibiting the function of mesenchymal stem cells. Aging. 2015;7:205–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Guo R, Yamashita M, Zhang Q, Zhou Q, Chen D, Reynolds DG, et al. Ubiquitin ligase Smurf1 mediates tumor necrosis factor-induced systemic bone loss by promoting proteasomal degradation of bone morphogenetic signaling proteins. J Biol Chem. 2008;283:23084–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Gong W, Chen Z, Zou Y, Zhang L, Huang J, Liu P, et al. CKIP-1 affects the polyubiquitination of Nrf2 and Keap1 via mediating Smurf1 to resist HG-induced renal fibrosis in GMCs and diabetic mice kidneys. Free Radic Biol Med. 2018;115:338–50.

    CAS  PubMed  Google Scholar 

  147. Tang X, Chen X, Xu Y, Qiao Y, Zhang X, Wang Y, et al. CD166 positively regulates MCAM via inhibition to ubiquitin E3 ligases Smurf1 and betaTrCP through PI3K/AKT and c-Raf/MEK/ERK signaling in Bel-7402 hepatocellular carcinoma cells. Cell Signal. 2015;27:1694–702.

    CAS  PubMed  Google Scholar 

  148. Ito I, Hanyu A, Wayama M, Goto N, Katsuno Y, Kawasaki S, et al. Estrogen inhibits transforming growth factor beta signaling by promoting Smad2/3 degradation. J Biol Chem. 2010;285:14747–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Wen M, Ma X, Cheng H, Jiang W, Xu X, Zhang Y, et al. Stk38 protein kinase preferentially inhibits TLR9-activated inflammatory responses by promoting MEKK2 ubiquitination in macrophages. Nat Commun. 2015;6:7167.

    CAS  PubMed  Google Scholar 

  150. Asanuma K, Yanagida-Asanuma E, Faul C, Tomino Y, Kim K, Mundel P. Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat Cell Biol. 2006;8:485–91.

    CAS  PubMed  Google Scholar 

  151. Lee MG, Jeong SI, Ko KP, Park SK, Ryu BK, Kim IY, et al. RASSF1A directly antagonizes RhoA activity through the assembly of a Smurf1-mediated destruction complex to suppress tumorigenesis. Cancer Res. 2016;76:1847–59.

    CAS  PubMed  Google Scholar 

  152. Sangadala S, Boden SD, Viggeswarapu M, Liu Y, Titus L. LIM mineralization protein-1 potentiates bone morphogenetic protein responsiveness via a novel interaction with Smurf1 resulting in decreased ubiquitination of Smads. J Biol Chem. 2006;281:17212–9.

    CAS  PubMed  Google Scholar 

  153. Sangadala S, Yoshioka K, Enyo Y, Liu Y, Titus L, Boden SD. Characterization of a unique motif in LIM mineralization protein-1 that interacts with jun activation-domain-binding protein 1. Mol Cell Biochem. 2014;385:145–57.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Beijing Natural Science Foundation (Z190018), The Natural Science Foundation of China (81870123), China Postdoctoral Science Foundation Grant (2018M641206), and the National Science Foundation for Young Scientists of China (81902545).

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed and approved the final manuscript. Q.X. and Y.L. contributed to the conception and design of paper. Y.L. drafted the paper. Q.X. provided useful comments and suggestions. L.D. and Q.X. revised the paper.

Corresponding author

Correspondence to Lei Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Q., Li, Y., Han, D. et al. SMURF1, a promoter of tumor cell progression?. Cancer Gene Ther 28, 551–565 (2021). https://doi.org/10.1038/s41417-020-00255-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-00255-8

Search

Quick links