Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

DUB3 and USP7 de-ubiquitinating enzymes control replication inhibitor Geminin: molecular characterization and associations with breast cancer

A Correction to this article was published on 08 May 2019

A Corrigendum to this article was published on 26 June 2017

This article has been updated

Abstract

Correct control of DNA replication is crucial to maintain genomic stability in dividing cells. Inappropriate re-licensing of replicated origins is associated with chromosomal instability (CIN), a hallmark of cancer progression that at the same time provides potential opportunities for therapeutic intervention. Geminin is a critical inhibitor of the DNA replication licensing factor Cdt1. To properly achieve its functions, Geminin levels are tightly regulated through the cell cycle by ubiquitin-dependent proteasomal degradation, but the de-ubiquitinating enzymes (DUBs) involved had not been identified. Here we report that DUB3 and USP7 control human Geminin. Overexpression of either DUB3 or USP7 increases Geminin levels through reduced ubiquitination. Conversely, depletion of DUB3 or USP7 reduces Geminin levels, and DUB3 knockdown increases re-replication events, analogous to the effect of Geminin depletion. In exploring potential clinical implications, we found that USP7 and Geminin are strongly correlated in a cohort of invasive breast cancers (P<1.01E−08). As expected, Geminin expression is highly prognostic. Interestingly, we found a non-monotonic relationship between USP7 and breast cancer-specific survival, with both very low or high levels of USP7 associated with poor outcome, independent of estrogen receptor status. Altogether, our data identify DUB3 and USP7 as factors that regulate DNA replication by controlling Geminin protein stability, and suggest that USP7 may be involved in Geminin dysregulation during breast cancer progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Change history

  • 26 June 2017

    This article has been corrected since Advance Online Publication and a corrigendum is also printed in this issue

Abbreviations

DUB:

de-ubiquitinating enzyme.

References

  1. Blow JJ, Gillespie PJ . Replication licensing and cancer—a fatal entanglement? Nat Rev Cancer 2008; 8: 799–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Duncker BP, Chesnokov IN, McConkey BJ . The origin recognition complex protein family. Genome Biol 2009; 10: 214.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bell SP, Dutta A . DNA replication in eukaryotic cells. Annu Rev Biochem 2002; 71: 333–374.

    Article  CAS  PubMed  Google Scholar 

  4. Macheret M, Halazonetis TD . DNA replication stress as a hallmark of cancer. Annu Rev Pathol 2015; 10: 425–448.

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka S, Diffley JFX . Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation. Genes Dev 2002; 16: 2639–2649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones RM, Mortusewicz O, Afzal I, Lorvellec M, García P, Helleday T et al. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. Oncogene 2013; 32: 3744–3753.

    Article  CAS  PubMed  Google Scholar 

  7. Hills SA, Diffley JFX . DNA replication and oncogene-induced replicative stress. Curr Biol 2014; 24: R435–R444.

    Article  CAS  PubMed  Google Scholar 

  8. Fujita M . Cdt1 revisited: complex and tight regulation during the cell cycle and consequences of deregulation in mammalian cells. Cell Div 2006; 1: 22.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nishitani H, Taraviras S, Lygerou Z, Nishimoto T . The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J Biol Chem 2001; 276: 44905–44911.

    Article  CAS  PubMed  Google Scholar 

  10. Rialland M, Sola F, Santocanale C . Essential role of human CDT1 in DNA replication and chromatin licensing. J Cell Sci 2002; 115: 1435–1440.

    CAS  PubMed  Google Scholar 

  11. McGarry TJ, Kirschner MW . Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 1998; 93: 1043–1053.

    Article  CAS  PubMed  Google Scholar 

  12. Ballabeni A, Melixetian M, Zamponi R, Masiero L, Marinoni F, Helin K . Human geminin promotes pre-RC formation and DNA replication by stabilizing CDT1 in mitosis. EMBO J 2004; 23: 3122–3132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mihaylov IS, Kondo T, Jones L, Ryzhikov S, Tanaka J, Zheng J et al. Control of DNA replication and chromosome ploidy by geminin and cyclin A. Mol Cell Biol 2002; 22: 1868–1880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu W, Chen Y, Dutta A . Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol Cell Biol 2004; 24: 7140–7150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Delgado-Díaz MR, Martin Y, Berg A, Freire R, Smits VAJ . Dub3 controls DNA damage signalling by direct deubiquitination of H2AX. Mol Oncol 2014; 8: 884–893.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pereg Y, Liu BY, O'Rourke KM, Sagolla M, Dey A, Komuves L et al. Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A. Nat Cell Biol 2010; 12: 400–406.

    Article  CAS  PubMed  Google Scholar 

  17. Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 2002; 416: 648–653.

    Article  CAS  PubMed  Google Scholar 

  18. Hu M, Gu L, Li M, Jeffrey PD, Gu W, Shi Y . Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway. PLoS Biol 2006; 4: e27.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J et al. The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 2008; 455: 813–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smits VAJ, Freire R . USP7/HAUSP: a SUMO deubiquitinase at the heart of DNA replication. Bioessays 2016; 38: 863–868.

    Article  CAS  PubMed  Google Scholar 

  21. Faustrup H, Bekker-Jensen S, Bartek J, Lukas J, Mailand N . USP7 counteracts SCFbetaTrCP- but not APCCdh1-mediated proteolysis of Claspin. J Cell Biol 2009; 184: 13–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang P, Wei Y, Wang L, Debeb BG, Yuan Y, Zhang J et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol 2014; 16: 864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alonso-de Vega I, Martin Y, Smits VAJ . USP7 controls Chk1 protein stability by direct deubiquitination. Cell Cycle 2014; 13: 3921–3926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jagannathan M, Nguyen T, Gallo D, Luthra N, Brown GW, Saridakis V et al. A role for USP7 in DNA replication. Mol Cell Biol 2014; 34: 132–145.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lecona E, Rodriguez-Acebes S, Specks J, Lopez-Contreras AJ, Ruppen I, Murga M et al. USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol 2016; 23: 270–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Petropoulou C, Kotantaki P, Karamitros D, Taraviras S . Cdt1 and Geminin in cancer: markers or triggers of malignant transformation? Front Biosci 2008; 13: 4485–4494.

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez MA, Tachibana K-EK, Chin S-F, Callagy G, Madine MA, Vowler SL et al. Geminin predicts adverse clinical outcome in breast cancer by reflecting cell-cycle progression. J Pathol 2004; 204: 121–130.

    Article  CAS  PubMed  Google Scholar 

  28. Yagi T, Inoue N, Yanai A, Murase K, Imamura M, Miyagawa Y et al. Prognostic significance of geminin expression levels in Ki67-high subset of estrogen receptor-positive and HER2-negative breast cancers. Breast Cancer 2016; 23: 224–230.

    Article  PubMed  Google Scholar 

  29. Sundara Rajan S, Hanby AM, Horgan K, Thygesen HH, Speirs V . The potential utility of geminin as a predictive biomarker in breast cancer. Breast Cancer Res Treat 2014; 143: 91–98.

    Article  CAS  PubMed  Google Scholar 

  30. Hussain S, Zhang Y, Galardy PJ . DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. Cell Cycle 2009; 8: 1688–1697.

    Article  CAS  PubMed  Google Scholar 

  31. Nicholson B, Suresh Kumar KG . The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem Biophys 2011; 60: 61–68.

    Article  CAS  PubMed  Google Scholar 

  32. Hernández-Pérez S, Cabrera E, Amoedo H, Rodriguez-Acebes S, Koundrioukoff S, Debatisse M et al. USP37 deubiquitinates Cdt1 and contributes to regulate DNA replication. Mol Oncol 2016; 10: 1196–1206.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Field S, Uyttenhove C, Stroobant V, Cheou P, Donckers D, Coutelier J-P et al. Novel highly specific anti-periostin antibodies uncover the functional importance of the fascilin 1-1 domain and highlight preferential expression of periostin in aggressive breast cancer. Int J Cancer 2016; 138: 1959–1970.

    Article  CAS  PubMed  Google Scholar 

  34. Junankar S, Baker LA, Roden DL, Nair R, Elsworth B, Gallego-Ortega D et al. ID4 controls mammary stem cells and marks breast cancers with a stem cell-like phenotype. Nat Commun 2015; 6: 6548.

    Article  CAS  PubMed  Google Scholar 

  35. Al-Ejeh F, Simpson PT, Saunus JM, Klein K, Kalimutho M, Shi W et al. Meta-analysis of the global gene expression profile of triple-negative breast cancer identifies genes for the prognostication and treatment of aggressive breast cancer. Oncogenesis 2014; 3: e124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Q, Ma S, Song N, Li X, Liu L, Yang S et al. Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis. J Clin Invest 2016; 126: 2205–2220.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z . A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 2006; 38: 1043–1048.

    Article  CAS  PubMed  Google Scholar 

  38. Maire V, Baldeyron C, Richardson M, Tesson B, Vincent-Salomon A, Gravier E et al. TTK/hMPS1 is an attractive therapeutic target for triple-negative breast cancer. PLoS One 2013; 8: e63712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zlatanou A, Sabbioneda S, Miller ES, Greenwalt A, Aggathanggelou A, Maurice MM et al. USP7 is essential for maintaining Rad18 stability and DNA damage tolerance. Oncogene 2016; 35: 965–976.

    Article  CAS  PubMed  Google Scholar 

  40. Qian J, Pentz K, Zhu Q, Wang Q, He J, Srivastava AK et al. USP7 modulates UV-induced PCNA monoubiquitination by regulating DNA polymerase eta stability. Oncogene 2015; 34: 4791–4796.

    Article  CAS  PubMed  Google Scholar 

  41. Chen H, Ma H, Inuzuka H, Diao J, Lan F, Shi YG et al. DNA damage regulates UHRF1 stability via the SCF(β-TrCP) E3 ligase. Mol Cell Biol 2013; 33: 1139–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rivlin N, Katz S, Doody M, Sheffer M, Horesh S, Molchadsky A et al. Rescue of embryonic stem cells from cellular transformation by proteomic stabilization of mutant p53 and conversion into WT conformation. Proc Natl Acad Sci USA 2014; 111: 7006–7011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Epping MT, Meijer LAT, Krijgsman O, Bos JL, Pandolfi PP, Bernards R . TSPYL5 suppresses p53 levels and function by physical interaction with USP7. Nat Cell Biol 2011; 13: 102–108.

    Article  CAS  PubMed  Google Scholar 

  44. Srihari S, Singla J, Wong L, Ragan MA . Inferring synthetic lethal interactions from mutual exclusivity of genetic events in cancer. Biol Direct 2015; 10: 57.

    Article  PubMed  PubMed Central  Google Scholar 

  45. McClurg UL, Robson CN . Deubiquitinating enzymes as oncotargets. Oncotarget 2015; 6: 9657–9668.

    PubMed  PubMed Central  Google Scholar 

  46. Kessler BM . Selective and reversible inhibitors of ubiquitin-specific protease 7: a patent evaluation (WO2013030218). Expert Opin Ther Pat 2014; 24: 597–602.

    Article  CAS  PubMed  Google Scholar 

  47. Pérez-Castro AJ, Freire R . Rad9B responds to nucleolar stress through ATR and JNK signalling, and delays the G1-S transition. J Cell Sci 2012; 125: 1152–1164.

    Article  PubMed  Google Scholar 

  48. Cabrera E, Hernández-Pérez S, Koundrioukoff S, Debatisse M, Kim D, Smolka MB et al. PERK inhibits DNA replication during the unfolded protein response via Claspin and Chk1. Oncogene 2016; 36: 678–686.

    Article  PubMed  Google Scholar 

  49. Salghetti SE, Kim SY, Tansey WP . Destruction of Myc by ubiquitin‐mediated proteolysis: cancer‐associated and transforming mutations stabilize Myc. EMBO J 1999; 18: 717–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martín Y, Cabrera E, Amoedo H, Hernández-Pérez S, Domínguez-Kelly R, Freire R . USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination. Oncogene 2014; 34: 1058–1063.

    Article  PubMed  Google Scholar 

  51. Refolio E, Cavero S, Marcon E, Freire R, San-Segundo PA . The Ddc2/ATRIP checkpoint protein monitors meiotic recombination intermediates. J Cell Sci 2011; 124: 2488–2500.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to V Smits for critical reading of the manuscript, J Moreira, E Lam, M van Vugt for sending cell lines and A Bravo for logistic help. This work was supported by grants from Instituto de Salud Carlos III (BA15/00092), the Spanish Ministry of Economy and Competitiveness (SAF2013-49149-R, BFU2014-51672-REDC), Fundación CajaCanarias (AP2015/008) to RF and the Australian National Health and Medical Research (NHMRC program grant to SRL and KKK (APP1017028)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J M Saunus or R Freire.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Pérez, S., Cabrera, E., Salido, E. et al. DUB3 and USP7 de-ubiquitinating enzymes control replication inhibitor Geminin: molecular characterization and associations with breast cancer. Oncogene 36, 4802–4809 (2017). https://doi.org/10.1038/onc.2017.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.21

This article is cited by

Search

Quick links