Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The molecular mechanics of mixed lineage leukemia

Subjects

Abstract

Mixed lineage leukemia caused by MLL fusion proteins is still a mostly incurable disease. Research on novel treatment strategies has gained momentum in the last years with the elucidation of the molecular mechanisms underlying the transforming potential of these powerful oncoproteins. This review summarizes the recent developments in this area including new attempts to treat MLL in a rational way by exploiting the biochemical vulnerabilities of the leukemogenic process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Rowley JD . Chromosomal patterns in myelocytic leukemia. N Engl J Med 1973; 289: 220–221.

    CAS  PubMed  Google Scholar 

  2. Rowley JD . Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

    CAS  PubMed  Google Scholar 

  3. Berger R, Bernheim A, Sigaux F, Daniel MT, Valensi F, Flandrin G . Acute monocytic leukemia chromosome studies. Leuk Res 1982; 6: 17–26.

    CAS  PubMed  Google Scholar 

  4. Vermaelen K, Barbieri D, Michaux JL, Tricot G, Casteels-Van Daele M, Noens L et al. Anomalies of the long arm of chromosome 11 in human myelo- and lymphoproliferative disorders. I. Acute nonlymphocytic leukemia. Cancer Genet Cytogenet 1983; 10: 105–116.

    CAS  PubMed  Google Scholar 

  5. Childs CC, Hirsch-Ginsberg C, Culbert SJ, Ahearn M, Reuben J, Trujillo JM et al. Lineage heterogeneity in acute leukemia with the t(4;11) abnormality: implications for acute mixed lineage leukemia. Hematol Pathol 1988; 2: 145–157.

    CAS  PubMed  Google Scholar 

  6. Kaneko Y, Maseki N, Takasaki N, Sakurai M, Hayashi Y, Nakazawa S et al. Clinical and hematologic characteristics in acute leukemia with 11q23 translocations. Blood 1986; 67: 484–491.

    CAS  PubMed  Google Scholar 

  7. Stark B, Umiel T, Mammon Z, Galili N, Dzaledetti M, Cohen IJ et al. Leukemia of early infancy. Early B-cell lineage associated with t(4:11). Cancer 1986; 58: 1265–1271.

    CAS  PubMed  Google Scholar 

  8. Chessells JM, Harrison CJ, Kempski H, Webb DK, Wheatley K, Hann IM et al. Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC Childhood Leukaemia working party. Leukemia 2002; 16: 776–784.

    CAS  PubMed  Google Scholar 

  9. Hilden JM, Dinndorf PA, Meerbaum SO, Sather H, Villaluna D, Heerema NA et al. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children's Oncology Group. Blood 2006; 108: 441–451.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007; 370: 240–250.

    CAS  PubMed  Google Scholar 

  11. Tomizawa D, Koh K, Sato T, Kinukawa N, Morimoto A, Isoyama K et al. Outcome of risk-based therapy for infant acute lymphoblastic leukemia with or without an MLL gene rearrangement, with emphasis on late effects: a final report of two consecutive studies, MLL96 and MLL98, of the Japan Infant Leukemia Study Group. Leukemia 2007; 21: 2258–2263.

    CAS  PubMed  Google Scholar 

  12. van der Linden MH, Valsecchi MG, De Lorenzo P, Moricke A, Janka G, Leblanc TM et al. Outcome of congenital acute lymphoblastic leukemia treated on the Interfant-99 protocol. Blood 2009; 114: 3764–3768.

    CAS  PubMed  Google Scholar 

  13. Cowell IG, Sondka Z, Smith K, Lee KC, Manville CM, Sidorczuk-Lesthuruge M et al. Model for MLL translocations in therapy-related leukemia involving topoisomerase IIbeta-mediated DNA strand breaks and gene proximity. Proc Natl Acad Sci USA 2012; 109: 8989–8994.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rowley JD, Olney HJ . International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer 2002; 33: 331–345.

    PubMed  Google Scholar 

  15. Brown P . Treatment of infant leukemias: challenge and promise. Hematology Am Soc Hematol Educ Program 2013; 2013: 596–600.

    PubMed  Google Scholar 

  16. Wang ES . Treating acute myeloid leukemia in older adults. Hematology Am Soc Hematol Educ Program 2014; 2014: 14–20.

    PubMed  Google Scholar 

  17. Beldjord K, Chevret S, Asnafi V, Huguet F, Boulland ML, Leguay T et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood 2014; 123: 3739–3749.

    CAS  PubMed  Google Scholar 

  18. Pigneux A, Labopin M, Maertens J, Cordonnier C, Volin L, Socie G et al. Outcome of allogeneic hematopoietic stem-cell transplantation for adult patients with AML and 11q23/MLL rearrangement (MLL-r AML). Leukemia 2015; 29: 2375–2381.

    CAS  PubMed  Google Scholar 

  19. Pui CH, Carroll WL, Meshinchi S, Arceci RJ . Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 2011; 29: 551–565.

    PubMed  Google Scholar 

  20. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    Article  CAS  PubMed  Google Scholar 

  21. Andersson AK, Ma J, Wang J, Chen X, Gedman AL, Dang J et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet 2015; 47: 330–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Djabali M, Selleri L, Parry P, Bower M, Young BD, Evans GA . A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nat Genet 1992; 2: 113–118.

    CAS  PubMed  Google Scholar 

  23. Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 1992; 71: 701–708.

    CAS  PubMed  Google Scholar 

  24. Tkachuk DC, Kohler S, Cleary ML . Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 1992; 71: 691–700.

    CAS  PubMed  Google Scholar 

  25. Ziemin-van der Poel S, McCabe NR, Gill HJ, Espinosa R 3rd, Patel Y, Harden A et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA 1991; 88: 10735–10739.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Steffen PA, Ringrose L . What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol 2014; 15: 340–356.

    CAS  PubMed  Google Scholar 

  27. Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ . Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 1997; 90: 1799–1806.

    CAS  PubMed  Google Scholar 

  28. Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ . Altered Hox expression and segmental identity in Mll-mutant mice. Nature 1995; 378: 505–508.

    CAS  PubMed  Google Scholar 

  29. Hsieh JJ, Cheng EH, Korsmeyer SJ . Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 2003; 115: 293–303.

    CAS  PubMed  Google Scholar 

  30. Hsieh JJ, Ernst P, Erdjument-Bromage H, Tempst P, Korsmeyer SJ . Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol Cell Biol 2003; 23: 186–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yokoyama A, Kitabayashi I, Ayton PM, Cleary ML, Ohki M . Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood 2002; 100: 3710–3718.

    CAS  PubMed  Google Scholar 

  32. Rao RC, Dou Y . Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer 2015; 15: 334–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Caslini C, Yang Z, El-Osta M, Milne TA, Slany RK, Hess JL . Interaction of MLL amino terminal sequences with menin is required for transformation. Cancer Res 2007; 67: 7275–7283.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Milne TA, Hughes CM, Lloyd R, Yang Z, Rozenblatt-Rosen O, Dou Y et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci USA 2005; 102: 749–754.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004; 24: 5639–5649.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML . The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 2005; 123: 207–218.

    CAS  PubMed  Google Scholar 

  37. Yokoyama A, Cleary ML . Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 2008; 14: 36–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Llano M, Saenz DT, Meehan A, Wongthida P, Peretz M, Walker WH et al. An essential role for LEDGF/p75 in HIV integration. Science 2006; 314: 461–464.

    CAS  PubMed  Google Scholar 

  39. Zeleznik-Le NJ, Harden AM, Rowley JD . 11q23 translocations split the "AT-hook" cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc Natl Acad Sci USA 1994; 91: 10610–10614.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Maethner E, Garcia-Cuellar MP, Breitinger C, Takacova S, Divoky V, Hess JL et al. MLL-ENL inhibits polycomb repressive complex 1 to achieve efficient transformation of hematopoietic cells. Cell Rep 2013; 3: 1553–1566.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Birke M, Schreiner S, Garcia-Cuellar MP, Mahr K, Titgemeyer F, Slany RK . The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res 2002; 30: 958–965.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Milne TA, Kim J, Wang GG, Stadler SC, Basrur V, Whitcomb SJ et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol Cell 2010; 38: 853–863.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Muntean AG, Tan J, Sitwala K, Huang Y, Bronstein J, Connelly JA et al. The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 2010; 17: 609–621.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Slany RK, Lavau C, Cleary ML . The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol Cell Biol 1998; 18: 122–129.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Okuda H, Kawaguchi M, Kanai A, Matsui H, Kawamura T, Inaba T et al. MLL fusion proteins link transcriptional coactivators to previously active CpG-rich promoters. Nucleic Acids Res 2014; 42: 4241–4256.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang PY, Hom RA, Musselman CA, Zhu L, Kuo A, Gozani O et al. Binding of the MLL PHD3 finger to histone H3K4me3 is required for MLL-dependent gene transcription. J Mol Biol 2010; 400: 137–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen J, Santillan DA, Koonce M, Wei W, Luo R, Thirman MJ et al. Loss of MLL PHD finger 3 is necessary for MLL-ENL-induced hematopoietic stem cell immortalization. Cancer Res 2008; 68: 6199–6207.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Muntean AG, Giannola D, Udager AM, Hess JL . The PHD fingers of MLL block MLL fusion protein-mediated transformation. Blood 2008; 112: 4690–4693.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Anderson M, Fair K, Amero S, Nelson S, Harte PJ, Diaz MO . A new family of cyclophilins with an RNA recognition motif that interact with members of the trx/MLL protein family in Drosophila and human cells. Dev Genes Evol 2002; 212: 107–113.

    CAS  PubMed  Google Scholar 

  50. Fair K, Anderson M, Bulanova E, Mi H, Tropschug M, Diaz MO . Protein interactions of the MLL PHD fingers modulate MLL target gene regulation in human cells. Mol Cell Biol 2001; 21: 3589–3597.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 2005; 121: 873–885.

    CAS  PubMed  Google Scholar 

  52. Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ . MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol 2001; 21: 2249–2258.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Paggetti J, Largeot A, Aucagne R, Jacquel A, Lagrange B, Yang XJ et al. Crosstalk between leukemia-associated proteins MOZ and MLL regulates HOX gene expression in human cord blood CD34+ cells. Oncogene 2010; 29: 5019–5031.

    CAS  PubMed  Google Scholar 

  54. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107–1117.

    CAS  PubMed  Google Scholar 

  55. Shilatifard A . The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012; 81: 65–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ruthenburg AJ, Allis CD, Wysocka J . Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 2007; 25: 15–30.

    CAS  PubMed  Google Scholar 

  57. Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 2006; 442: 86–90.

    CAS  PubMed  Google Scholar 

  58. Mishra BP, Zaffuto KM, Artinger EL, Org T, Mikkola HK, Cheng C et al. The histone methyltransferase activity of MLL1 is dispensable for hematopoiesis and leukemogenesis. Cell Rep 2014; 7: 1239–1247.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Terranova R, Agherbi H, Boned A, Meresse S, Djabali M . Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc Natl Acad Sci USA 2006; 103: 6629–6634.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Itzen F, Greifenberg AK, Bosken CA, Geyer M . Brd4 activates P-TEFb for RNA polymerase II CTD phosphorylation. Nucleic Acids Res 2014; 42: 7577–7590.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Denissov S, Hofemeister H, Marks H, Kranz A, Ciotta G, Singh S et al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 2014; 141: 526–537.

    CAS  PubMed  Google Scholar 

  62. Meyer C, Hofmann J, Burmeister T, Groger D, Park TS, Emerenciano M et al. The MLL recombinome of acute leukemias in 2013. Leukemia 2013; 27: 2165–2176.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin C, Smith ER, Takahashi H, Lai KC, Martin-Brown S, Florens L et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 2010; 37: 429–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC, Zhang Y et al. Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 2010; 24: 574–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 2007; 110: 4445–4454.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mueller D, Garcia-Cuellar MP, Bach C, Buhl S, Maethner E, Slany RK . Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol 2009; 7: e1000249.

    PubMed  PubMed Central  Google Scholar 

  67. Yokoyama A, Lin M, Naresh A, Kitabayashi I, Cleary ML . A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 2010; 17: 198–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shilatifard A, Lane WS, Jackson KW, Conaway RC, Conaway JW . An RNA polymerase II elongation factor encoded by the human ELL gene. Science 1996; 271: 1873–1876.

    CAS  PubMed  Google Scholar 

  69. Jonkers I, Lis JT . Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2015; 16: 167–177.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Eskeland R, Leeb M, Grimes GR, Kress C, Boyle S, Sproul D et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell 2010; 38: 452–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. McLean CM, Karemaker ID, van Leeuwen F . The emerging roles of DOT1L in leukemia and normal development. Leukemia 2014; 28: 2131–2138.

    CAS  PubMed  Google Scholar 

  72. Chen CW, Koche RP, Sinha AU, Deshpande AJ, Zhu N, Eng R et al. DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat Med 2015; 21: 335–343.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Monroe SC, Jo SY, Sanders DS, Basrur V, Elenitoba-Johnson KS, Slany RK et al. MLL-AF9 and MLL-ENL alter the dynamic association of transcriptional regulators with genes critical for leukemia. Exp Hematol 2011; 39: e71–e75.

    Google Scholar 

  74. Zeisig DT, Bittner CB, Zeisig BB, Garcia-Cuellar MP, Hess JL, Slany RK . The eleven-nineteen-leukemia protein ENL connects nuclear MLL fusion partners with chromatin. Oncogene 2005; 24: 5525–5532.

    CAS  PubMed  Google Scholar 

  75. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121: 167–178.

    CAS  PubMed  Google Scholar 

  76. Deshpande AJ, Deshpande A, Sinha AU, Chen L, Chang J, Cihan A et al. AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes. Cancer Cell 2014; 26: 896–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang E, Kawaoka S, Yu M, Shi J, Ni T, Yang W et al. Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia. Proc Natl Acad Sci USA 2013; 110: 3901–3906.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Smith E, Lin C, Shilatifard A . The super elongation complex (SEC) and MLL in development and disease. Genes Dev 2011; 25: 661–672.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Garcia-Cuellar MP, Zilles O, Schreiner SA, Birke M, Winkler TH, Slany RK . The ENL moiety of the childhood leukemia-associated MLL-ENL oncoprotein recruits human Polycomb 3. Oncogene 2001; 20: 411–419.

    CAS  PubMed  Google Scholar 

  80. Di Croce L, Helin K . Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 2013; 20: 1147–1155.

    CAS  PubMed  Google Scholar 

  81. Tan J, Jones M, Koseki H, Nakayama M, Muntean AG, Maillard I et al. CBX8, a polycomb group protein, is essential for MLL-AF9-induced leukemogenesis. Cancer Cell 2011; 20: 563–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Leach BI, Kuntimaddi A, Schmidt CR, Cierpicki T, Johnson SA, Bushweller JH . Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure 2013; 21: 176–183.

    CAS  PubMed  Google Scholar 

  83. Butler LH, Slany R, Cui X, Cleary ML, Mason DY . The HRX proto-oncogene product is widely expressed in human tissues and localizes to nuclear structures. Blood 1997; 89: 3361–3370.

    CAS  PubMed  Google Scholar 

  84. Garcia-Cuellar MP, Steger J, Fuller E, Hetzner K, Slany RK . Pbx3 and Meis1 cooperate through multiple mechanisms to support Hox-induced murine leukemia. Haematologica 2015; 100: 905–913.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Li Z, Zhang Z, Li Y, Arnovitz S, Chen P, Huang H et al. PBX3 is an important cofactor of HOXA9 in leukemogenesis. Blood 2013; 121: 1422–1431.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zeisig BB, Milne T, Garcia-Cuellar MP, Schreiner S, Martin ME, Fuchs U et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 2004; 24: 617–628.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Spencer DH, Young MA, Lamprecht TL, Helton NM, Fulton R, O'Laughlin M et al. Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells. Leukemia 2015; 29: 1279–1289.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhu J, Sammons MA, Donahue G, Dou Z, Vedadi M, Getlik M et al. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 2015; 525: 206–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 2011; 20: 66–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Guenther MG, Lawton LN, Rozovskaia T, Frampton GM, Levine SS, Volkert TL et al. Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev 2008; 22: 3403–3408.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wilkinson AC, Ballabio E, Geng H, North P, Tapia M, Kerry J et al. RUNX1 is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell Rep 2013; 3: 116–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Arai S, Yoshimi A, Shimabe M, Ichikawa M, Nakagawa M, Imai Y et al. Evi-1 is a transcriptional target of mixed-lineage leukemia oncoproteins in hematopoietic stem cells. Blood 2011; 117: 6304–6314.

    CAS  PubMed  Google Scholar 

  93. Placke T, Faber K, Nonami A, Putwain SL, Salih HR, Heidel FH et al. Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood 2014; 124: 13–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Schwieger M, Schuler A, Forster M, Engelmann A, Arnold MA, Delwel R et al. Homing and invasiveness of MLL/ENL leukemic cells is regulated by MEF2C. Blood 2009; 114: 2476–2488.

    CAS  PubMed  Google Scholar 

  95. Sroczynska P, Cruickshank VA, Bukowski JP, Miyagi S, Bagger FO, Walfridsson J et al. shRNA screening identifies JMJD1C as being required for leukemia maintenance. Blood 2014; 123: 1870–1882.

    CAS  PubMed  Google Scholar 

  96. van der Linden MH, Willekes M, van Roon E, Seslija L, Schneider P, Pieters R et al. MLL fusion-driven activation of CDK6 potentiates proliferation in MLL-rearranged infant ALL. Cell Cycle 2014; 13: 834–844.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang QF, Wu G, Mi S, He F, Wu J, Dong J et al. MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome. Blood 2011; 117: 6895–6905.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang Y, Owens K, Hatem L, Glass CH, Karuppaiah K, Camargo F et al. Essential role of PR-domain protein MDS1-EVI1 in MLL-AF9 leukemia. Blood 2013; 122: 2888–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen CW, Armstrong SA . Targeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyond. Exp Hematol 2015; 43: 673–684.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Daigle SR, Olhava EJ, Therkelsen CA, Basavapathruni A, Jin L, Boriack-Sjodin PA et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 2013; 122: 1017–1025.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Feng Y, Yang Y, Ortega MM, Copeland JN, Zhang M, Jacob JB et al. Early mammalian erythropoiesis requires the Dot1L methyltransferase. Blood 2010; 116: 4483–4491.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Jo SY, Granowicz EM, Maillard I, Thomas D, Hess JL . Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation. Blood 2011; 117: 4759–4768.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Nguyen AT, He J, Taranova O, Zhang Y . Essential role of DOT1L in maintaining normal adult hematopoiesis. Cell Res 2011; 21: 1370–1373.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen L, Deshpande AJ, Banka D, Bernt KM, Dias S, Buske C et al. Abrogation of MLL-AF10 and CALM-AF10-mediated transformation through genetic inactivation or pharmacological inhibition of the H3K79 methyltransferase Dot1l. Leukemia 2013; 27: 813–822.

    CAS  PubMed  Google Scholar 

  105. Stein EM, Tallman MS . Mixed lineage rearranged leukaemia: pathogenesis and targeting DOT1L. Curr Opin Hematol 2015; 22: 92–96.

    CAS  PubMed  Google Scholar 

  106. Dawson MA, Gudgin EJ, Horton SJ, Giotopoulos G, Meduri E, Robson S et al. Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia. Leukemia 2014; 28: 311–320.

    CAS  PubMed  Google Scholar 

  107. Herrmann H, Blatt K, Shi J, Gleixner KV, Cerny-Reiterer S, Mullauer L et al. Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia AML. Oncotarget 2012; 3: 1588–1599.

    PubMed  PubMed Central  Google Scholar 

  108. Ott CJ, Kopp N, Bird L, Paranal RM, Qi J, Bowman T et al. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 2012; 120: 2843–2852.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Roderick JE, Tesell J, Shultz LD, Brehm MA, Greiner DL, Harris MH et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood 2014; 123: 1040–1050.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Segura MF, Fontanals-Cirera B, Gaziel-Sovran A, Guijarro MV, Hanniford D, Zhang G et al. BRD4 sustains melanoma proliferation and represents a new target for epigenetic therapy. Cancer Res 2013; 73: 6264–6276.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Pott S, Lieb JD . What are super-enhancers? Nat Genet 2015; 47: 8–12.

    CAS  PubMed  Google Scholar 

  113. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013; 153: 307–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kanno T, Kanno Y, LeRoy G, Campos E, Sun HW, Brooks SR et al. BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat Struct Mol Biol 2014; 21: 1047–1057.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Garcia-Cuellar MP, Fuller E, Mathner E, Breitinger C, Hetzner K, Zeitlmann L et al. Efficacy of cyclin-dependent-kinase 9 inhibitors in a murine model of mixed-lineage leukemia. Leukemia 2014; 28: 1427–1435.

    CAS  PubMed  Google Scholar 

  116. Blachly JS, Byrd JC . Emerging drug profile: cyclin-dependent kinase inhibitors. Leuk Lymphoma 2013; 54: 2133–2143.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Borkin D, He S, Miao H, Kempinska K, Pollock J, Chase J et al. Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell 2015; 27: 589–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ et al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 2012; 8: 277–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. He S, Senter TJ, Pollock J, Han C, Upadhyay SK, Purohit T et al. High-affinity small-molecule inhibitors of the menin-mixed lineage leukemia (MLL) interaction closely mimic a natural protein-protein interaction. J Med Chem 2014; 57: 1543–1556.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Shi A, Murai MJ, He S, Lund G, Hartley T, Purohit T et al. Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia. Blood 2012; 120: 4461–4469.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Mereau H, De Rijck J, Cermakova K, Kutz A, Juge S, Demeulemeester J et al. Impairing MLL-fusion gene-mediated transformation by dissecting critical interactions with the lens epithelium-derived growth factor (LEDGF/p75). Leukemia 2013; 27: 1245–1253.

    CAS  PubMed  Google Scholar 

  122. Murai MJ, Pollock J, He S, Miao H, Purohit T, Yokom A et al. The same site on the integrase-binding domain of lens epithelium-derived growth factor is a therapeutic target for MLL leukemia and HIV. Blood 2014; 124: 3730–3737.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Barretto NN, Karahalios DS, You D, Hemenway CS . An AF9/ENL-targted peptide with therapeutic potential in mixed lineage leukemias. J Exp Ther Oncol 2014; 10: 293–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Srinivasan RS, Nesbit JB, Marrero L, Erfurth F, LaRussa VF, Hemenway CS . The synthetic peptide PFWT disrupts AF4-AF9 protein complexes and induces apoptosis in t(4;11) leukemia cells. Leukemia 2004; 18: 1364–1372.

    CAS  PubMed  Google Scholar 

  125. Xu B, On DM, Ma A, Parton T, Konze KD, Pattenden SG et al. Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. Blood 2015; 125: 346–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu H, Westergard TD, Cashen A, Piwnica-Worms DR, Kunkle L, Vij R et al. Proteasome inhibitors evoke latent tumor suppression programs in pro-B MLL leukemias through MLL-AF4. Cancer Cell 2014; 25: 530–542.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Thiel AT, Blessington P, Zou T, Feather D, Wu X, Yan J et al. MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 2010; 17: 148–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Cao F, Townsend EC, Karatas H, Xu J, Li L, Lee S et al. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol Cell 2014; 53: 247–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Grebien F, Vedadi M, Getlik M, Giambruno R, Grover A, Avellino R et al. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPalpha N-terminal leukemia. Nat Chem Biol 2015; 11: 571–578.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to apologize to all colleagues whose work could not be cited because of space constraints. Research in the lab of the author is funded by: Deutsche Forschungsgemeinschaft, the Bavarian Ministry of Sciences, Research and the Arts in the framework of the Bavarian Molecular Biosystems Research Network and by the Emerging Fields Initiative of the FAU University Erlangen-Nürnberg (CYDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R K Slany.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slany, R. The molecular mechanics of mixed lineage leukemia. Oncogene 35, 5215–5223 (2016). https://doi.org/10.1038/onc.2016.30

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.30

This article is cited by

Search

Quick links